27th International Applied Geochemistry Symposium

Short Course No. 2

Application of Indicator Mineral Methods to Exploration

Beth McClenaghan & Dan Layton-Matthews

Course Organizers

April 18th, 2015

Tucson AZ
Short Course 02

Application of Indicator Mineral Methods to Exploration

Convenors: M.B. McClenaghan & D. Layton-Matthews

April 18, 2015

Workshop Introduction
Beth McClenaghan & Dan Layton-Matthews ... i

Mineral chemistry: modern techniques and applications to exploration
Dan Layton-Matthews, Chris Hamilton, Beth McClenaghan 1

Micro-analytical innovation for indicator mineral exploration
Paul Agnew .. 11

Overview of titanite as an indicator mineral
Bob Linnen, Xu Dong Che & Hagit Blumenthal .. 13

Trace element compositions of silicates and oxides as exploration guides to
metamorphosed massive sulphide deposits: examples from Broken Hill, Australia,
and Stollberg, Sweden
Paul Spry, Joshua O’Brien, Kate Frank, Graham Teale, Alan Koenig, Nils Jansson,
Rodney Allen & Hein Raat .. 17

Tourmaline: the universal indicator?
John Chapman ... 25

Direct and indirect indicator minerals in exploration for carbonatites and related
ore deposits — an orientation survey, British Columbia, Canada
George Simandl, Duncan Mackay, X. Ma, P. Luck, J. Gravel, B. Grcic & M. Redfearn 32

Overview of porphyry Cu indicator minerals
Karen Kelley .. 41

Blackwater gold-spessartine-pyrolusite dispersal train, British Columbia, Canada:
Influence of sampling depth on indicator mineralogy and geochemistry
Stuart Averill .. 47

A review of scheelite chemistry and its use as a discriminator in ore-deposit settings,
use as an indicator mineral and monitor of ore-forming processes
Dan Kontak .. 61

Indicator mineral signatures of the Mount Pleasant Sn-W-Mo-Bi-In Deposit,
New Brunswick, Canada
Beth McClenaghan .. 63
WORKSHOP OVERVIEW

This one-day workshop builds on the success of the indicator mineral workshops held at the 24th, 25th, and 26th International Applied Geochemistry Symposia (IAGS). Indicator mineral methods can now be applied to exploration for a broad range of mineral deposit types. This workshop will review principles, methods, and developments in indicator mineral methods in mineral exploration around the world and consists of presentations by some of the most experienced practitioners in the field. Topics covered include indicator minerals for porphyry Cu, VMS, Sn-W-Mo, and REE, Ta-Nb deposits as well as mineral chemistry techniques.

Beth McClenaghan & Dan Layton-Matthews
April, 2015
It is likely that undiscovered ore reserves are currently buried under recently deposited sedimentary cover. As such, our capacity to see through the complexities of this cover and to perceive the nature of the underlying bedrock ore environment has become a fundamental aspect of modern mineral exploration and ore deposit science. To date, the recognition of buried mineral deposits has been aided by our ability to (1) predict indicator minerals in bedrock sources, (2) identify and separate indicator minerals from sedimentary cover, and (3) measure the unique chemical and isotopic composition of these indicator minerals.

A substantial amount of research has been devoted to chemical and physical dispersal of minerals and elements at the Earth’s surface in the development of bedrock weathering and erosional footprints. The aerial and spatial extent of these footprint models has been partially limited by our incomplete understanding of the processes involved in mineral and chemical dispersal, but moreover, by the technological challenges of identifying and measuring subtle mineral and chemical changes in these footprint sediments. Within mineral deposit footprints, the examination of the physical dispersion of relatively large (>63 micron) and heavy (>2.85 g/cm³) mineral concentrates (HMC) from bedrock sources during glaciation has met with great successes in the exploration for kimberlite (Thorleifson 1993; Ward et al. 1996; McClenaghan & Kjarsgaard 2001; McClenaghan 2002; McClenaghan et al. 2002), base metals (Sarala & Peuraniemi 2007; Kelley et al. 2010; Averill 2011; Eppinger et al. 2011; McClenaghan et al. 2011; McClenaghan et al. 2012a; McClenaghan & Peter 2013), and gold (Averill & Zimmerman 1984; Sauerbrei et al. 1987; Craw et al. 1999; Averill 2013) deposits. By using HMC and the mineral chemistry of these indicator minerals, which have been separated from sediments using complex and expensive techniques (e.g. sieved, tabling, heavy liquids, magnetic separation, and hand-picking), the recognition of the spatial extent of the mineral deposit footprint has increased from 100s of metres to 1000s of metres.

In this paper, we present an overview of the current methods and the applications of mineral chemistry using indicator minerals recovered from sedimentary cover. We also discuss new methods and instrumental developments, highlight current research on mineral chemistry, indicator minerals, and mineral exploration, and consider future research directions.

MINERAL IDENTIFICATION AND MINERAL CHEMISTRY

Indicator minerals, by definition, are minerals that have a physical or chemical characteristics that allow them to be readily recovered from stream, alluvial, glacial, or aeolian sediments or soils samples (McClenaghan et al. 2000; McClenaghan & Kjarsgaard 2001). Traditionally, the identification and separation of indicator minerals rely on the characteristics largely related to the minerals’ chemistry, i.e., visual distinctiveness and moderate to high density.

Optical techniques

Indicator minerals are traditionally selected from samples after the samples have undergone heavy mineral separation (see McClenaghan et al. 2000b; McMartin & McClenaghan 2001; McClenaghan 2005). Indicator minerals are “picked” from concentrates during an optical examination under a stereoscopic microscope, a process that may require up to 3 hours per sample. A few tens to several thousand grains may be separated into vials based on colour (Fig. 1A,B) and mineral habit (Fig. 1C,D). The success of a laboratory to produce high-quality mineral concentrates and subsequent mineral picking using experienced technicians is the first critical step in any indicator mineral chemical study.

Electron-based techniques

Once indicator minerals have been recovered, they are commonly epoxy-mounted, polished, and carbon-coated for exam-
ination using micro-analytical techniques (Fig. 2A). Most mineral chemical investigation methods examine these indicator mineral mounts using an electron-based instrument. Traditionally, a scanning electron microscope (SEM) is used to examine the spatial distribution of backscatter secondary electrons (BSE), which is a reflection of differences in the average atomic number of an area of a grain. This is done in combination with energy dispersive spectrometry (EDS) in order to identify relative element concentrations within mineral phases and mineralogy.

The goals of using an SEM are to (1) confirm of mineralogy that has determined through mineral picking, (2) document mineral associations, (3) document mineral textures and morphology (shape, rounding, size, etc.), and (4) identify opti-
Fig. 3. Comparison of sample work-flow for automated mineralogy for (A) mineral liberation analysis and (B) QEMSCAN®.

mineral mineral grains for further, more costly, mineral chemical characterization. The full characterization of a single epoxy mount with 200 to 500 grains can take 6 to 12 hours on a traditional SEM. Recent advances in automated scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (EDS) are transforming the analysis of mineral grain mounts. Time-consuming and qualitative mineral descriptions are now replaced with fast, quantitative, and repeatable SEM analysis. These automated SEM methods provide confirmation of mineralogy, quantification of mineral textures and morphology, and reduces grain mount analysis time to 1 to 2 hours.

The most popular automated SEM supplier is FEI™, the company currently offers a tungsten-based or a field emission gun-based hardware that can be coupled with either Quantitative Evaluation of Minerals by SCANning electron microscopy (QEMSCAN®) or Mineral Liberation Analysis (MLA™) software. Mineral Liberation Analysis was initially developed for the mining industry by the University of Queensland, Australia (JKTech) (Burrows & Gu 2006; Gu et al. 2012); QEMSCAN® was developed for the mining industry by CSIRO, Australia (Butcher et al. 2000; Gottlieb et al. 2000; Pirrie et al. 2004; Pirrie & Rollinson 2009). However, both software packages are currently licensed and sold through FEI™ and their regional supply companies (e.g. Systems for Research, Canada).

MLA automated mineralogy is based on high-resolution BSE images, image analyses, and elemental chemistry from EDS. Collections of BSE images are combined to create a mosaic image of an epoxy grain mount (Fig. 3). Each BSE image is used to remove epoxy from the image, and centroid image analysis segments grains and minerals into individual particles. The MLA software then collects a full X-Ray spectrum (EDS) at the centre of each particle (Fig. 3). In post-collection processing, the full X-Ray spectrum is compared with a user-defined mineral EDS library and the BSE image to create a coherent data set, which includes a false-colour mineral map, modal mineralogy, grain size, mineral associations (occurrence and interlocking), particle properties (roundness, area, shape), and mineral liberation.

QEMSCAN® automated mineralogy is fundamentally different than MLA, in that is based on fast mineral identification using point analysis on a finely spaced grid. Similar to MLA, QEMSCAN® collects BSE images to create a mosaic image of an epoxy grain mount; however, during automated measurement, the system collects EDS spectra along a pre-defined grid (similar to modal counting using a petrographic microscope). QEMSCAN® uses the EDS spectra in combination with the BSE image data to determine areas of epoxy and areas of mineral, minimizing the collection of background data. On mineral phases, a low-count EDS spectrum is collected that allows for ultra-fast discrimination of most minerals. QEMSCAN® also differs from MLA in the way that mineralogy is determined. In MLA, minerals are identified through comparison of unknown EDS with a user-defined EDS database of known minerals. QEMSCAN® uses a built-in library of 72 elemental reference spectra are used to build a composite elemental spectra that is then used in conjunction with user-defined Species Identification Protocols (SIP) to identify discrete minerals. In addition to output data similar to MLA, QEMSCAN® produces elemental maps in addition to mineral maps.

MLA- or QEMSCAN®-generated BSE and false-colour images of a mineral concentrate have many advantages over traditional optical microscopy (Hartner et al. 2011; Gu et al. 2012; Sylvester 2012): 1) measurement of compositional data, 2) measurement of thousands of points per sample mount, 3) repeatable and quantitative measurements, 4) fully automated work-folk, 5) faster processing time, 6) less training required, 7) modal mineralogy calculated assay data, 8) micron-scale resolution, and 9) better determination of analysis points for texturally difficult (i.e. polymetallic) grains and for choosing grains for in situ chemical or isotopic analyses.

The occurrence and modal quantification of distinct HMC in till is of great importance in the definition of till dispersion trains in many ore exploration programs (i.e. gold); however, many HMC mounts are further characterized for individual mineral chemistry. Many HMC studies (McClenaghan 2002b; Morris et al. 2002; Lehtonen et al. 2005 and references therein) have used the occurrence of HMC in bedrock sources coupled with the major and minor element chemistry to identify the provenance and fertility of the HMC.

The quantification of major elements can be obtained quickly for many elements from EDS software using a SEM with detection limits between 2000 and 10,000 ppm (Z>4). However, because EDS requires that individual X-Ray spectra be separated from other X-Ray spectra in a mineral analysis, some X-Ray energies cannot be separated from background radiation (high detection limit) or from X-Ray spectra of other elements (i.e. peak overlap). Most modern EDS detectors have an energy resolution of 130 to 160 eV (Full Width Half Max). For example, the quantitative analysis of molybdenite (MoS₂)
by EDS is not possible because the Mo L alpha line is at 2.2930 keV and overlaps with the S K alpha line at 2.3070 keV.

More commonly, indicator minerals are analyzed for major and minor elements using electron probe microanalyzer (EPMA). In principle, a EPMA is very similar to a SEM, as the electron source and focusing column are nearly identical. However, an EPMA and SEM collect X-Ray data differently. Both instruments collect chemical spectra using an EDS detector, but on a EPMA, spectra are also collected using wavelength dispersive spectroscopy (WDS). During the collection of WDS, spectra are separated by the mechanical diffraction of X-Rays into wavelengths that are individually measured by a detector. Most modern EPMA have up to 5 wavelength dispersive spectrometers, which allows the simultaneous measurement of five elements. EDS and WDS each have advantages and disadvantages. EDS can quickly collect a full X-Ray spectrum in 10s of seconds; whereas WDS is time consuming, requiring the movement of a diffraction crystal to measure each individual element. Much of the spectral interference encountered during EDS can be eliminated by the high-energy resolution of WDS (~10 eV). The biggest disadvantage of both EDS and WDS systems is the detection limits (~0.1 and 0.01%, respectively) for most elements in the characterization of mineral chemistry.

Mass spectrometry-based techniques

The use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for characterization of mineral chemistry has grown since its first application to geological media (Hale et al. 1984; Jackson et al. 1992). Conceptually the application of laser ablation for mineral chemical and isotopic analyses is a straightforward, albeit destructive, technique. A short-pulsed (femto- to nanosecond) laser ablates a small volume (~8000 um3) of a mineral sample over a period of 10s of seconds. During ablation the mineral is converted into vapour and aerosol components. This material is then continually transferred in an Ar or He carrier gas to be ionized in an inductively coupled plasma and mass analyzed in either a quadrupole or magnetic-sector mass spectrometer.

There are several instrument parameters that must be optimized to measure element and isotopic compositions of a mineral by LA-ICP-MS (Arevalo et al. 2010; Rogers et al. 2010; Koch & Gunther 2011); these include (1) laser pit size, (2) laser wavelength, (3) laser pulse-rate, (4) mass spectrometer, (5) matrix-match standards, and (6) curve calibration. Most laser ablation instruments are capable of adjusting the laser beam size from 1–2 to 300 microns, however, most analyses are completed at ~30 microns. If a laser pit is too small then not enough material is ablated to create a suitable signal in the mass spectrometer. If a laser pit is too large, the mass spectrometer detector may become saturated or go beyond the element calibration curve.

Numerous studies have examined the analyses of geological media using variable laser wavelengths (Motilea-Hienco & Donard 2001; Guillong et al. 2005; Jochem et al. 2007; Gaboridi & Humayun 2009) and laser pulse-rates (Poitrasson et al. 2003; Gonzalez et al. 2007; Horn 2008; Saetveit et al. 2008; Glaus et al. 2010), and collectively using similar laser energies. There is consensus that shorter wavelengths and higher laser pulse rates produce superior data that require fewer corrections for elemental and isotopic bias. In mineral analysis, a shorter wavelength laser (i.e. 193 nm vs 213 nm) produces a flat-bottomed and sharp-walled ablation pit. The higher pulse rate (i.e. femtosecond vs nanosecond) of the mineral, the less thermal heating occurs with a lower abundance of secondary condensates (Gunther & Heinrich 1999; Gunther et al. 2000; Poitrasson et al. 2003; Hirata et al. 2004).

Ultimately, the ability of LA-ICP-MS to measure low-concentration elemental and isotopic data is a function of the mass spectrometer paired with the laser ablation system. There are three options for inductively coupled plasma mass spectrometers for use in laser ablation: 1) quadrupole, 2) high-resolution single collector, and 3) high-resolution multi-collector.

By far the most common mass spectrometer used in laser ablation studies of mineral chemistry is the quadrupole mass analyzer. These instruments filter ions created in the plasma by mass and charge (m/z) as they travel to the detector using variable DC voltages on four parallel stainless steel rods. By adjusting the DC voltage on the quadrupoles, the transient ions created in laser ablation can be filtered and analyzed for most of the periodic table in milliseconds (Hill 2007).

In high-resolution mass spectrometers, ions created in laser ablation and in the inductively coupled plasma are passed along a curved flight path through magnetic and electrical fields to disperse ions according to their momentum and translational energy (Willard 1988). By adjusting the magnetic and electrostatic fields, the transient ions arriving at the detector(s) can be varied on the basis of mass. Because of this geometry, the mass resolution of these instruments is superior to that of quadrupole instruments (e.g. ~10,000 versus ~600, respectively). As such, fractions of mass unit can be effectively separated during analysis, allowing for separation of polyatomic interferences (Hill 2007).

For effective ion transmission through both the magnetic and electrical sectors, ions are accelerated at much higher energies than in quadrupole instruments (e.g. 10 kV versus 10 eV, respectively). As such, less ion scattering is created and lower detection limits are observed using high-resolution instruments. For many mineral chemical applications, a high-resolution mass spectrometer commonly has only one detector. However, in applications where isotopic ratios are measured, high-resolution instruments commonly have several detectors (known as multi-collector). These instruments can measure individual isotopes (i.e. 204Pb, 206Pb, 207Pb, 208Pb) simultaneously, without adjustment of the magnetic or electric sectors, which yields superior isotopic ratios.

Quadrupole and high-resolution mass spectrometers each have advantages and disadvantages in mineral chemical analyses using laser ablation. In quadrupole instruments, a wide range of elements (i.e. m/z) can be analyzed very quickly, compared to magnetic and electrical field sector instruments. In high-resolution instruments, the magnetic sector must be adjusted and allowed to stabilize before analyzing of the next mass range (Giessmann & Greb 1994; Jakubowski et al. 1998). Given the transient nature of laser ablation analysis, a quadrupole instrument is much better suited for mineral analyses with varied element mass (i.e. rare earth elements, U, Pb). When there are narrow mass differences (~30%), very small laser ablation pits (~10 microns) or isotopic ratios are needed, for which high-resolution mass spectrometers offer vastly superior precision and detection limits.

Multi-element trace element analysis by LA-ICP-MS has not been universally adopted for mineral analysis because there is a
lack of suitable reference materials with similar matrix compositions. Furthermore, there has been a limited effort to find or create matrix-matched standards with variable concentrations of trace elements (i.e. 10, 100, 500 ppm), which is necessary to create standard calibration curves and element quantification. Recently there have been several geological glasses that have been created from rock powder standards (Jochum et al. 2000, 2006, 2012; Jochum & Nohl 2008) or by the doping of rock powder standards at variable concentrations (Guillong et al. 2005; Jochum et al. 2005; Kaiyun et al. 2013). The use of these standards in conjunction with EPMA data now allows the reliable quantification of many trace elements in minerals using LA-ICP-MS.

APPLICATIONS IN INDICATOR MINERAL STUDIES

During this workshop, several recent examples will outline the use of mineral chemistry in indicator mineral studies illustrating the methods described above. Due to brevity of an extended abstract, only one case study will be presented.

In exploration for volcanogenic massive sulphide (VMS) deposits in northern Canada, an indicator mineral survey was completed around the Izok Lake mineralization (Fig. 4) occurrence in Nunavut, Canada (McClenaghan et al. 2012b,c; McClenaghan et al. 2012c; McClenaghan 2013; Paulen et al. 2013). Ice-flow mapping in this area shows that glacial trajectories have undergone clockwise rotation from southwest to northwest, in a series of discrete ice-flow phases rather than as a continuous ice-flow change (Kerr et al. 1995; Dredge et al. 2003; Paulen et al. 2013). An early southwest ice-flow was followed by strong west- to west-northwest-trending flow. Surface morphology and ice-flow indicators (e.g. striations) within the Izok Lake area reflect this dominant northwest phase (Paulen et al. 2013).

Field documentation of ice-flow in the Izok Lake area, led to till sampling up- and down-ice (Fig. 5). Both bedrock and till
samples were processed for geochemistry, HMC mineral counts, and HMC mineral chemistry (Figs. 6, 7). The 0.25–0.5, 0.5–1.0, and 1.0–2.0 mm non-ferromagnetic fractions of the bedrock and till samples were examined using optical techniques (Fig. 8). Representative thin sections were made, in addition to mineral grain mounts based on indicator minerals counted/selected during optical examination (Table 1). Thin sections and grain mounts were examined using MLA-ESEM (Figs. 9, 10) to quantify modal mineralogy, mineral associations,
Fig. 8. Gahnite in (A) polished slab of drill core (sample 09-MPB-R69); (B) grains from a heavy mineral concentrate (sample 09-MPB-R61); (C) polished thin section (sample 09-MPB-R37); and (D) polished thin section (sample 09-MPB-R41B).

Fig. 9. MLA-SEM image of gahnite grain mount 10-0269-P01 from Izok Lake samples. Adhering gangue mineral compositions are indicated with various colours outlined in the legend. Till sample numbers are listed on the outer sides of the image and grain numbers are listed at the end of each row. Red circles indicate those grains for which the LA-ICP-MS/EPMA mineral chemistry is anomalous (Hicken 2012; Hicken et al. 2013).
grain shape, and grain size. EPMA was completed on a selection of indicator minerals and LA-ICP-MS was conducted on a subset of gahnite grains (>50 microns) for trace element and Pb/Pb dating (Fig. 11).

FUTURE DIRECTIONS IN MINERAL CHEMISTRY

Need for novel methods

The identification of discrete indicator minerals in till has greatly influenced mineral exploration. There are well established methods for separation and identification of minerals in HMC. Indicator mineral chemistry has been used to identify bedrock sources and assess their fertility. The question then becomes, “Why do we need new techniques in the application of mineral chemistry to HMC?”

Successful mineral exploration using sediments and HMC requires a high degree of specialization. This type of work requires a person with not only a background in bedrock geology and ore deposits, but also a person with training in sample collection and preparation, mineralogy, analytical chemistry, and quaternary geology. Current exploration models use a team approach, where each individual contributes their own area of expertise. At present, mineral separation methods have been well established for size-fractions larger than 0.063 mm, but these methods are slow, expensive, and require a highly qualified mineralogist.

New HMC and mineral chemical methods are currently being developed to include a greater number of deposit types (e.g. volcanogenic massive sulphides, uranium, Ni-Cu-PGE, rare earth elements), to utilize the smaller size (i.e. <0.063 mm) and less dense fractions (i.e. <2.85 g/cm³) of samples, and
incorporate new, faster, and more accessible analytical instruments (i.e. hyperspectral, MLA express). Development of these new methods will decrease the need for extensive specialized training, decrease the time and cost of HMC characterization, extend the spatial footprint of dispersion trains (i.e. smaller and farther), and ultimately lead to the identification of new indicator minerals in uncharacterized mineralized systems.

REFERENCES

Micro-analytical innovation for indicator mineral exploration

P.D. Agnew

Chief Geologist – Technical Support & Technology Development - Project Generation Group,
Rio Tinto, 1 Research Avenue, Bundoora, 3083, Australia
*Corresponding author’s e-mail: paul.agnew@riotinto.com

The use of indicator minerals in mineral exploration goes back centuries, to the earliest prospectors panning for specks of gold. In many ways things have not changed much; we still look for specks of something, generally in a heavy mineral concentrate, in the hopes it will lead us to mineralization. What has changed is the range of indicator minerals now used in exploration for a wide range of commodities. In the 1970s, kimberlitic indicator mineral methods for diamond exploration ushered in an era where the major and minor elemental composition of indicator minerals added another layer of capability and complexity to the art of indicator mineral exploration. It is in diamond exploration that indicator mineral exploration came of age and truly demonstrated the power of combining appropriate sampling and mineral concentration/separation methods with mineralogical, and textural and chemical analysis. Now we find ourselves in the dawn of a new era of unprecedented micro-analytical capability where low-cost, high-volume mineral identification, and major and trace element analyses offer a whole new world of capability (and complexity) for indicator mineral exploration.

Like so many step-changes in exploration methods, the “indicator mineral revolution”, which is well and truly upon us, is being driven by new and improved analytical techniques. Rio Tinto Exploration (RTX) is integrating three pre-existing analytical technologies to build a unique “in-house” micro-analytical capability that will drive development and operational implementation of innovative indicator mineral exploration methods for decades to come: 1) The Mineral Liberation Analyser (MLA) for low-cost rapid detection and accurate quantification of potential indicator minerals; 2) Improved energy-dispersive X-ray spectroscopy (EDS) major element quantification for rapid, low-cost major element chemistry of target phases; and 3) Laser Ablation ICP-MS (LAM) for trace element and isotope analyses of confirmed target phases. In combination, this analytical configuration is providing high-volume, low-cost mineralogy and mineral chemistry on a scale that has the potential to transform the art of indicator mineral exploration for Rio Tinto.

Using the MLA to rapidly scan large numbers of grains in order to identify potential indicator minerals removes the reliance on manual optical picking, which is slow and often inaccurate or inconsistent. Instead of detailed grain-by-grain selection and mounting, large populations of grains can be mounted for probing (up to 20,000 mounted on a single epoxy block), which dramatically improves the chances of finding rare mineral phases that can be difficult or impossible to identify optically, particularly those phases included inside another mineral grain.

The MLA can also collect long count EDS spectra on specified phases that are identified during the mineralogy scan. Although still widely considered to be a semi-quantitative micro-analytical technique, using proprietary EDS quantification software developed by CSIRO, RTX is now producing high-quality major element mineral chemistry at a fraction of the time and cost required to produce the same data on a wavelength-dispersive spectrometry (WDS) microprobe system. In 2012, RTX generated >700,000 major element mineral chemistry analyses in support of global diamons exploration programs, at a cost of <50¢ per analysis.

Innovative integration of the LAM with the MLA has provided an unrivalled capability for automated trace element analysis on a scale not currently available in commercial or university analytical facilities. A Large Format Cell™ was developed by the New Wave Research Division of ESI in collaboration with Rio Tinto. The cell holds up to 12 epoxy blocks and is interchangeable between the MLA and the LAM. Grain coordinates and major element internal calibration data are transferred between the MLA and LAM using proprietary software. The semi-automated system can produce up to 400 trace element analyses a day.

In recent years, RTX have utilized the innovative MLA-LAM micro-analytical configuration to develop new indicator mineral exploration techniques for copper, uranium, nickel, and bauxite. Internal and external research and development is showing mineral chemistry has enormous potential to characterize ore systems, as well as potentially vector towards them, and to assess fertility potential. In particular, the pioneering “Greenrocks” research undertaken by CODES, which uses epidote and chlorite mineral chemistry to vector towards porphyry Cu systems and assess their fertility, shows great promise. RTX is actively utilizing the MLA-LAM analytical configuration to refine the “Greenrocks” methodology and apply it operationally in support of global copper exploration programs.
Overview of titanite as an indicator mineral

R.L. Linnen1*, X.D. Che2 & H. Blumenthal3

1Department of Earth Sciences, University of Western Ontario, London, Ontario, Canada N6A 5B7
2School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China
3Stantec, 101-401 Wellington Street West, Stantec, Toronto, Ontario, Canada M5V 1E7
4Perilya Limited, P.O. Box 5001, Broken Hill, New South Wales 2880, Australia

*Corresponding author’s e-mail: rlinnen@uwo.ca

Titanite (CaTiSiO5) has many of the characteristics of indicator minerals that are used in mineral exploration, and some features that other minerals lack. It is a common mineral, present in igneous, metamorphic, sedimentary, and hydrothermally altered rocks and it is resistant to weathering. It commonly retains its original composition because solid-state diffusion rates in this mineral are slow and primary zoning typically is preserved. Substitutions involving a wide range of metals are common (Mazdab et al. 2007). In addition, titanite is used for U-Pb age dating (Li et al. 2010), analyzed for a variety of other radiogenic isotopes, and has been used as a geothermometer (Haden et al. 2008). In spite of these attributes, titanite has received very little attention as an indicator mineral.

The Ca in titanite can be substituted by Na, Ba, Sr, Y, and REE and Ti can be replaced by Sn, Zr, Si, Al, Fe2+, Fe3+, Sb, V, Nb, and Ta. OH and F can also replace O and, because of the different valences of these elements, a number of coupled substitutions have been proposed; two common ones are Al3+ + Fe3+ = 2 Ti4+ and Al3+ + Nb5+ = 2 Ti4+. A number of economically important elements are concentrated in titanite. For example, titanite is known to contain up to 3.9 wt% REE2O3 and 2.8 wt% ZrO2 (Hode Vuorinen & Halenius 2005), 10.56 wt% Nb2O5 (Cempirek et al. 2008). Tin is well known to substitute for Ti in a variety of minerals and titanite at the Qitianling granite in China, is reported to contain up to 26 wt% SnO2 (Xie et al. 2010). Up to 1300 ppm WO3 has been reported in titanite from the Mt. Lindsay Sn-W skarn in Australia (Kwak 1983). Che et al. (2013) studied the concentrations of lithophile and high field strength elements in titanite from W-Mo deposits in British Columbia and Yukon, Canada. Elsewhere, Linnen et al. (2009) studied titanite in fractures around the Dibs rare-metal pegmatite at Manitoba, Canada and Blumenthal (2010) included analyses of magmatic and hydrothermal titanite from a porphyry Cu prospect in southwestern Yukon, Canada. This paper draws on these studies to provide an overview of the potential use of titanite as an indicator mineral for exploration.

ANALYTICAL METHODS

Different facilities were used by the three principle studies considered below: electron microprobe (University of Toronto and the University of Manitoba) and LA-ICP-MS (University of Windsor, University of Manitoba and Laurentian University). Electron microprobe typically utilized a 15 to 20 kV accelerating voltage and 20 to 65 nA beam current. Elements analyzed were Si, Ti, Ca, Al, Fe, Y, Mn, Sn, Zr, Ce, Nb, Mo, Yb, W, and F. For La-ICP-MS analyses, NIST 610 glass was used as an external standard, Femtosecond (785 nm), Nd:YAG (213 nm).

TITANITE IN W-Mo DEPOSITS

Che et al. (2013) studied magmatic and hydrothermal titanite from W-Mo deposits in the Canadian Cordillera: the Risby, Ray Gulch, Mactung, and Fox W skarn deposits; the Northern Dancer and Jersey Emerald W skarn-Mo stockwork systems; and the Boss Mountain and Max porphyry Mo deposits. Igneous rocks from all of the deposits were examined, but magmatic titanite was observed only in granodiorite associated with the Ray Gulch W and Boss Mountain Mo deposits. The titanite grains were interpreted to be magmatic based on their euhedral shapes and sharp planar contacts with other magmatic minerals (plagioclase, K-feldspar, hornblende, quartz, and magnetite; Fig. 1A). Titanite is typically zoned in backscattered electron images (BSE), with lighter cores and darker rims. Hydrothermal titanite is common where biotite is altered to muscovite and chlorite. Hydrothermal titanite is also present in scheelite- and molybdenite-bearing quartz veins that crosscut hornfels. Typically this style of titanite is not zoned in BSE images. Finally, metasomatic titanite is a common mineral in calc-silicate hornfels and skarn samples. Most grains are strongly zoned in BSE images, with lighter cores and darker rims with localized oscillatory zoning (Fig. 1B).

The stoichiometries of titanite were calculated from electron microprobe analyses assuming five equivalent oxygen atoms per formula unit and all iron and Fe3+. Compared to hydrothermal titanite, magmatic titanite contains higher Ti but lower Fe3+, compared to hydrothermal titanite, magmatic titanite contains lower F. There is a strong negative correlation between Ca+Ti and REE+Al+Fe3+ contents, which is indicative of a Ca2+ + Ti4+ = REE3+ + (Al,Fe)3+ exchange. Magmatic titanite has relatively high Ca+Ti but low REE+Al+Fe3+ contents.

Magmatic titanite in the study of Che et al. (2013) has relatively consistent REE patterns on chondrite normalized diagrams. Cores are LREE-enriched, up to roughly 10,000 times chondrite, and exhibit negative slopes. Grains can exhibit either positive or negative Ce and Eu anomalies. Hydrothermal, skarn, and hornfels titanite contain much lower REE concentrations producing variable patterns with negative to positive slopes, as well as inverted U-shapes.

Magmatic titanite can also be enriched in trace elements of interest: titanite from Boss Mountain contains up to 174 ppm W (Che et al. 2013). These values indicate that titanite has the potential to be used to discriminate between Mo-W barren intrusions and fertile ones.
The cores of most titanite from skarns contain elevated contents of Y, W, Nb, Ta, Zr, and Hf, including up to 570 ppm W from a W skarn external to the Max Mo deposit (Che et al. 2013). Hydrothermal titanite in some mineralized systems contains up to 243 ppm W, but the Mo contents of skarn and hydrothermal titanite rarely exceed 100 ppm. By contrast, skarn and hydrothermal titanite are commonly enriched in Sn and Nb, maximum values observed in (Che et al. 2013) this study are 1904 and 23300 ppm, respectively.

TITANITE IN PROPYLITIC ALTERATION

The second example of titanite examined here is from propylitic alteration, interpreted to be peripheral to a porphyry Cu system (Blumenthal 2010). This study consisted of an investigation of chalcopyrite-molybdenite mineralization associated with quartz-carbonate-chlorite-titanite alteration at the Hopper property, Yukon, Canada.

Although titanite is used extensively for age-dating, it is only rarely used to obtain direct ages of mineralization (e.g. Li et al. 2010). At the Hopper property, chalcopyrite is associated with propylitic alteration (Fig. 2), thus the age of the titanite and the age of mineralization are the same. LA-ICP-MS dates of zircon and ID-TIMS U-Pb dates of zircon, as well as hydrothermal and magmatic titanite, all indicated the same age, which strongly suggests a porphyry system. Titanite is thus demonstrated to be an excellent mineral for dating mineralization.

At the Hopper property, the chemical differences between the magmatic and the hydrothermal titanite are relatively minor (Blumenthal 2010). The magmatic titanite is characterized by lower TiO₂, in contrast to the W-Mo study of Che et al. (2013), but has higher Al, Fe, Nb, Zr, Ce, and Y (Blumenthal 2010). Copper contents of both magmatic and hydrothermal titanite are low, roughly 10 ppm, Mo contents are higher, with a maxi-
In a vein from the aureole around the pegmatite, the study of Linnen therefore is an ideal for establishing the dispersion of elements below the surface, hosted entirely within metagabbro, and 200 to 400 ppm at the tops of drillholes, roughly 80 m above the pegmatite contact. This compares to a value of 30 ppm Li for whole-rock. Thus, for rare metal pegmatite, chlorite shows much greater promise than titanite as an indicator mineral.

ACKNOWLEDGEMENTS

We gratefully acknowledge financial support from NSERC, the Yukon Geological Survey, Strategic Metals Ltd., Tantalum Mining Corporation (Tanco), and numerous other people involved with these studies: A. Brand, D. Davis, C. Galeschuk, L. Great, N. Halden, B. Kamber, L. Lau, T. Ulrich, and R.-C. Wang.

REFERENCES

Trace element compositions of silicates and oxides as exploration guides to metamorphosed massive sulphide deposits: examples from Broken Hill, Australia, and Stollberg, Sweden

1Department of Geological and Atmospheric Sciences, 253 Science I, Iowa State University, Ames, Iowa 50011-3212, U.S.A.
2Teale & Associates, P.O. Box 740, North Adelaide, South Australia 5006, Australia
4Department of Civil, Environmental and Natural Resources Engineering, Luleå University, SE-971 87 Luleå, Sweden
5Exploration Department, Boliden Mineral, SE-776 98, Garpenberg, Sweden

*Corresponding author’s e-mail: pgspry@iastate.edu

Although the presence of indicator minerals has long been used as a guide in the exploration for various ore deposits on a regional scale (e.g. Spry 2000; McLennan 2005), the composition of these minerals has also helped to target sulphide mineralisation on a more local scale. Using major element compositions, an increase in the Mg/(Mg+Fe) ratio of ferromagnesian silicates, including garnet, biotite, tourmaline, chlorite, staurolite, cordierite, and amphibole, has been used to indicate proximity to metamorphosed ore deposits in low- to high-grade metamorphic terranes (e.g. Nesbitt 1986; Bryndzia & Scott 1987). More recently, trace element studies using various techniques (e.g. electron microprobe, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), proton-induced X-ray emission (PIXE)) have allowed the provenance of minerals and their composition in various ore deposits to be determined. Such techniques facilitate the measurement of many elements at concentrations as low as parts per billion (e.g. Jackson, 1992). Trace element studies of minerals spatially related to metallic mineral deposits include titanite in porphyry Cu deposits (Xu et al. 2014), magnetite in porphyry Cu-Mo, orogenic Au, skarn, iron oxide-copper-gold (IOCG), volcanicogenic massive sulphide (VMS), and Ni-Cu-platinum-group element deposits (e.g. Dupuis & Beaudoin 2011; Nadoll et al. 2012, 2014), maghemite and hematite in IOCG deposits (e.g. Schmidt Mumm et al. 2012), garnet in skarn (e.g. Gaspar et al. 2008) and Broken Hill-type (BHT) deposits (Spry et al. 2007), and chromite (e.g. Pagé & Barnes 2009), and ilmenite (e.g. Dare et al. 2012) in magmatic sulphide deposits. Nine minerals (feldspar, calcite, garnet, pyroxene, amphibole, allanite, epidote-group minerals, titanite, and apatite) were analyzed by Ismail et al. (2014) in a study of the Hillside IOCG deposit, South Australia.

The use of trace element studies of minerals to vector to metamorphosed massive sulphide has received minimal attention but has largely focused on gahnite (e.g. Clark & Williams-Jones 2004; Layton-Matthews et al. 2013; O’Brien et al. 2013a, 2015a, b), garnet (Spry et al. 2007; Heimann et al. 2009, 2011), and tourmaline (Griffin et al. 1996), with the most detailed work being done on BHT deposits. The present contribution focuses on the trace element composition of gahnite from BHT deposits and metamorphosed VMS, sedimentary exhalative (SEDEX), and non-sulphide zinc (NSZ) deposits, garnet from BHT deposits in the southern Curnamona Province, Australia (including the supergiant Broken Hill Pb-Zn-Ag deposit), and preliminary data for magnetite, garnet, and biotite from the Stollberg Zn-Pb-Ag and magnetite field, Sweden. The analytical methods used in this study are described in O’Brien et al. (2015a) and are not repeated here. The aim of study is to evaluate the use of trace elements of these minerals in guiding exploration, with a discussion of the physicochemical parameters that affect their trace element composition in metamorphosed metallic base metal deposits.

TRACE ELEMENT COMPOSITIONS OF SILICATES AND OXIDES

Gahnite

The major element chemistry of gahnite (AB2O4) is comprised of varying proportions of Zn2+, Fe2+, Mg2+ and lesser amounts of Mn2+ in the tetrahedral site (A), where Zn > (Fe + Mg), and dominantly Al3+ in the octahedral site (B), with minor amounts of Fe3+ also in the octahedral site. The most extensive gahnite horizons known occur in the Proterozoic Broken Hill domain of the southern Curnamona Province, New South Wales, Australia. Gahnite occurs in blue quartz-gahnite lode rocks in and along strike from the Broken Hill Pb-Zn-Ag deposit as well as minor BHT deposits. These rocks form part of the so-called “lode horizon”, which occurs intermittently for >300 km throughout the Broken Hill domain, and also contains quartz garnetite and lesser amounts of garnetite and lode pegmatite. In addition to blue quartz-gahnite lode, garnite occurs in minor to trace amounts in sillimanite gneiss, lode pegmatite, tourmalinite, iron formation, quartz-feldspar-garnet gneiss, and amphibolite. O’Brien et al. (2015a) evaluated the composition of garnite from various rock types, including 11 minor BHT deposits and the main Broken Hill deposit. The aim of their study was to find a compositional fingerprint that could be used to distinguish garnite associated with sulphides from those in rocks devoid of sulphides. Based on >500 major and trace element compositions of garnite from various rocks types, O’Brien et al. found that garnite from the Broken Hill deposit can be distinguished from that associated with unmineralized lode pegmatite and sillimanite gneiss using a principal component analysis and a plot of Zn/Fe versus Ni+Cr+V. Bivariate plots of Zn/Fe versus Ga,
Co, and Mn, or Ga versus Co showed that garnet from the Broken Hill deposit has a relatively restricted compositional range and that it overlaps with the composition of garnet from some minor BHT occurrences (Fig. 1). O’Brien et al. (2015b) further evaluated the same data set using a linear discriminant analysis and a relatively new statistical technique known as Random Forests to discriminate the composition of garnet in the Broken Hill deposit from those in minor BHT deposits (Fig. 2). The use of Random Forests was particularly valuable, more so than the linear discriminant analysis, in identifying compositional factors (i.e. the so-called “spinel elements”: Mg, Al, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, and Cd) that can be used for discrimination purposes.

Garnet in the Stollberg ore field (~12 Mt), Bergslagen district, Sweden, occurs in a variety of strongly altered (i.e. gedrite-albite, garnet-biotite, and garnet-pyroxene-carbonate alteration) rocks associated with massive Zn-Pb-Ag sulphides and magnetite deposits, and in unaltered to weakly altered 1.9 Ga bimodal felsic (dominated by rhyolitic ash-siltstone) and mafic rocks metamorphosed to the amphibolite facies. Sulphides are hosted by volcanic rocks and skarn, and occur as massive to semi-massive base metal lenses. Jansson et al. (2013) considered the deposits to be part of a synvolcanic, seafloor hydrothermal system, which was partly exhalative (iron oxide) and partly carbonate-replacive (sulphides + more iron oxides). Garnet in garnet-biotite alteration and high-grade sulphides is almandine-rich, whereas that in skarn and garnet-pyroxene alteration contains significantly higher proportions of the grossular and spessartine components (e.g. Jansson et al. 2013). In general, garnet contains elevated concentrations of Sc, Ti, V, Cr, Co, Zn, Ga, Ge, Y, and REEs, with Sc, Ga, and Ti being derived exclusively from a volcaniclastic (rather than a hydrothermal) component (Jansson et al. 2013). Overall, chondrite-normalized REE patterns of garnet in quartz garnite at Broken Hill (Fig. 3) are similar to those for garnet in the Stollberg ore field (Fig. 4). Garnet in unaltered (or slightly altered) rhyolitic ash-siltstone at Stollberg typically shows no Eu anomaly and low concentrations of Zn, Ga, Cr, and V. In contrast, garnet in garnet-biotite and garnet-pyroxene alteration, which are strongly altered equivalents of rhyolitic ash-siltstone, shows a strong positive Eu anomaly and contains elevated concentrations of Zn and Ga, and low Ti contents. Garnet in gedrite-albite alteration, which likely represents part of a footwall feeder pipe to deposits on the eastern side of the Stollberg ore field, exhibits a relatively flat chondrite-normalized REE profile and contains elevated Sc content and low concentrations of V, Cr, and Zn. Garnet in mafic dykes and marble contains the highest amounts of Cr, Co, V, and Ti.

Magnetite

Magnetite occurs in a variety of metamorphic, sedimentary, and igneous rocks, as accumulations in iron formations and as an accessory phase in a large variety of ore deposits (e.g. Dupuis & Beaudoin, 2011; Nadoll et al. 2012, 2014). Of all the accessory minerals associated with ore deposits, magnetite is the most studied because it occurs in so many different types...
Fig. 2. Percentage of votes by Random Forests for compositions of gahnite from the Broken Hill deposit versus minor Broken Hill-type occurrences (Broken Hill domain). Predictions represent an average over ten 10-fold cross-validations (after O’Brien et al. 2015b).

Fig. 3. Chondrite-normalized rare earth element patterns of garnet in (A & B) quartz garnetite, and (C & D) metasomatic garnet in post-peak metamorphic quartz-garnet rock (Broken Hill, Australia) (modified from Spry et al. 2007).
Despite numerous studies being conducted on the trace element composition of magnetite associated with metallic mineral deposits, those involving magnetite in VMS deposits are limited in number (e.g. Singoyi et al. 2006; Dupuis & Beaudoin, 2011).

The lithological variability in the Stollberg ore field makes this location ideal to evaluate the physico-chemical parameters that affect the chemistry of magnetite in a district that contains exhalative and replacement base metal sulphide mineralisation metamorphosed to the amphibolite facies. The district has many of the same characteristics as a VMS district but it is atypical in that mineralisation has a high iron-oxide/sulphide ratio, it commonly occurs in limestone, and it lacks massive pyritic rocks. Trace element compositions of magnetite in high-grade ore, skarn, massive magnetite, and garnet-biotite, gedrite-albite, garnet-pyroxene alteration throughout the district show a wide range (Figs. 5 & 6). Such a broad compositional range is inconsistent with previous studies in other ore areas.
fields, which have suggested that magnetite chemistry can be used to define compositional fields for different ore deposit types (e.g. \(\frac{Al}{Zn+Ca} \) vs Cu/\(S_i +Ca \) (Fig. 5); Ca+Al+Mn vs Ti+V (Fig. 6)) or can be used to approximate the temperature of the ore-forming fluid (e.g. Dupuis & Beaudoin 2011; Nadoll et al. 2014). Magnetite in garnet-biotite and gedrite-albite alteration spatially associated with the Dammberget deposit typically contains >200 ppm Ga, >10 ppm Sn, and has Ti/V ratios of >10, whereas magnetite in garnet-biotite alteration associated with the smaller Cedarkreutz deposit contains less Ga, Sn, and lower Ti/V ratios. Magnetite in garnet-biotite alteration associated with the Grångsruvan deposit contains >10 ppm Sn, 20 to 180 ppm Ga, and has Ti/V ratios of 0.1 to 2. These and other trace element compositions of magnetite in altered host rocks show potential as exploration guides to ore in the Stollberg district.

Biotite

Biotite is a common mineral in metamorphic rocks and is locally intergrown with garnet and garnite in both the Broken Hill and Stollberg deposits. Although trace elements of biotite have been obtained on rocks in metamorphic terranes (e.g. Yang & Rivers, 2000), their application as a vector to metamorphosed sulphide deposits has not previously been conducted. None-the-less the trace element composition of biotite intergrown with garnet and garnite in the Broken Hill deposit was evaluated by O’Brien et al. (2013b). The focus of the O’Brien et al. study was to gauge how trace elements partition among garnite, biotite, and garnet, with the view of determining how the concentration of “spinel elements” in garnite was affected by the composition of coexisting minerals. The compositions of biotite in garnite-bearing rocks from the Broken Hill deposit show solid solution between annite and phlogopite end-members, with \(X_{Mg} = \frac{Mg/(Mg+Fe)} \) ranging from 0.29 to 0.60 and \(V_{Al} \) ranging from 0.41 to 1.30. Beryllium, Cr, Co, Ni, Ga, Cd, and to a lesser extent V strongly partition into garnite, whereas Li, Mg, Ti, Ge, Rh, Sr, Sn, Ba, Pb, Bi, Th, and REEs partition into biotite (Fig. 7).

DISCUSSION AND CONCLUSIONS

Previous and ongoing studies suggest that various chemical plots and discrimination diagrams using the concentration of certain elements, or combinations of elements, are valuable for exploration purposes and for determining mineral provenance. For example, based on the major and trace element chemistry of garnite, the best guides to high-grade ore in the Broken Hill
domain involve the following chemical parameters: Zn/Fe = 2 to 4 versus Co = 10–110 ppm, Ga = 110–400 ppm, and Mn = 500–2,250 ppm; and Co = 25–100 ppm versus Ga 125–375 ppm (O’Brien et al. 2015a). In addition, garnet from the Broken Hill deposit is enriched in Zn (>400 ppm), Cr (>140 ppm), and Eu (up to 6 ppm and positive Eu anomalies), and depleted in Co, Ti, and Y compared to garnet in other garnet-rich rocks from other localities in the southern Curnamona Province. These values, as well as MnO contents of >15 wt% and Eu/Eu* >1, were only found in garnet from the Broken Hill deposit and appear to be good pathfinders to BHT mineralisation (Heimann et al. 2011). Garnet in massive sulphides and sulphide-bearing alteration assemblages in the Stollberg ore field can be distinguished from sulphide-poor or sulphide-free rocks of the same alteration type on the basis of a positive Eu anomaly, and the concentrations of Zn, Ga, and Ti. The compositions of magnetite and biotite in the Stollberg ore field also appear to show great promise as pathfinder minerals because the composition of magnetite in altered versus unaltered rocks, and larger versus smaller hydrothermal systems can be distinguished. The Tl and Cs content of biotite also appear to be more elevated in the hanging wall of sulphide mineralisation with proximity to ore (Fig. 8).

Although discrimination diagrams were developed by Dupuis & Beaudoin (2011) and O’Brien et al. (2013a) to assist in determining the provenance of magnetite and gahnite, respectively, they must be considered to be preliminary at best due to the limited number of compositional data that were used in both studies. In the discrimination diagrams used by O’Brien et al. (2013a), individual analyses were plotted; however for diagrams presented by Dupuis & Beaudoin (2011), fields that apparently characterize different types of ore

Fig. 7. Distribution coefficients for coexisting gahnite and biotite in blue quartz-gahnite rock from the Broken Hill deposit. Note that gahnite preferentially incorporates Cr, Co, and Ga relative to biotite, whereas biotite preferentially incorporates Li, Mg, and Ti (after O’Brien et al. 2013a).

Fig. 8. Trace element composition (Mn, Zn, Ga, Y, Sn, Cs, and Tl) of biotite with depth along drillhole SSF 26, which intersects the Dammberget deposit, Stollberg ore field, Sweden. The stratigraphic bottom (i.e. gedrite-albite alteration) is at the top of the vertical section on the left.
deposits are based upon the average composition of magnetite from individual deposits, regardless of the number of data that were collected from that deposit. Such an approach, in the absence of error bars, is questionable, given that data from individual deposits from a specific ore type (e.g. sulphide mineralization in the Stollberg ore field) can cover much of the diagram and plot in the fields of several different deposit types. Variability in trace element composition of a given mineral in metamorphosed massive base metal deposits is dependent upon several variables, including different physicochemical conditions during mineral growth, crystal-chemical controls (i.e. the major element chemistry of the mineral), pre-metamorphic alteration, the chemistry of precursor minerals, the partitioning of elements between coexisting minerals, fO2, f/S2, temperature, pressure, and host-rock geochemistry. The effect of most of these parameters on the trace element composition of oxides and silicates is unknown and, consequently, trying to assess the relative importance of these parameters is difficult at best, notwithstanding the possibility that some minerals may be subject to post-peak modification during retrograde metamorphism. For example, garnet can break down to biotite, chlorite, and staurolite, all of which are known to contain elevated concentrations of Zn (e.g. Spry 2000), and both biotite and garnet can convert to chlorite.

Although considerably more work needs to be done on the minerals evaluated here (i.e. garnite, magnetite, garnet, and biotite), the study of other silicates (e.g. tourmaline, staurolite, chlorite, titanite, amphibole, aluminosilicates, quartz, and pyroxene), and oxides (ilmenite, rutile, högbomite, and ecan-drewsite) is also warranted.

Given the complexity of the physicochemical parameters that affect mineral trace element chemistry, and the large amount of data that can be collected in a short amount of time using EMPA and LA-ICP-MS techniques, application of various types of statistical analyses of data are also important in refining or identifying new empirical parameters that can be used for targeting purposes (e.g. Dupuis & Beaudoin 2011; O’Brien et al. 2015a, b).

REFERENCES

Tourmaline: the universal indicator?

John Chapman1*, Alain Plouffe2 & Travis Ferbey3

1Natural Resources Canada – Geological Survey of Canada, 1500-605 Robson Street, Vancouver, British Columbia, Canada V6B 5J3
2Natural Resources Canada – Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, Canada K1A 0E8
3British Columbia Geological Survey, PO Box 9333 Stn. Prov. Govt., Victoria, British Columbia, Canada V8W 9N3

*Corresponding author's e-mail: john.chapman@nrcan-rncan.gc.ca

The tourmaline supergroup comprises 30 different minerals recognized by the International Mineralogical Association (IMA, Table 1), which share the borate-bearing cyclosilicate ‘tourmaline’ structure. In addition to these IMA-recognized end-member mineral species, there are numerous unofficial and intermediate solid-solution species that occur naturally. Tourmaline minerals as a group are some of the most common boron-bearing minerals in the natural environment; they occur within rocks of widely variable origins including igneous, metamorphic, and hydrothermal settings, as well as within sediments derived from these precursors. Even within sedimentary settings, tourmaline may grow as a result of common diagenetic processes, either as an authigenic overgrowth to existing detrital tourmaline grains or as newly formed minerals within cements and void spaces (Deer et al. 1986). Tourmaline species share many other beneficial characteristics that make them ideally suited for use as indicator minerals for sediment provenance studies, as well as for targeting a wide variety of economically significant mineral deposits.

In the past decade, the tourmaline group has seen a surge in interest amongst researchers from across a broad spectrum of the geosciences. In large part, this increase in activity has been driven by advances in a number of geochemical microanalysis techniques, which have had improved accuracy and precision, while driving down sample sizes, the time taken to perform an analysis, and the costs of equipment. Hence, geological records locked within tourmaline minerals at scales previously too fine for us to access are now amenable to interrogation. The breadth and depth of those records may be unequalled amongst commonly occurring silicate minerals. George Calas’s recent editorial in Elements magazine likened a single tourmaline grain to “Ali Baba’s cave”, stacked high with treasures (Calas 2011). Members of the tourmaline family are stable across a huge range of pressure and temperature conditions, from sedimentary diagenetic settings to ultra-high pressure metamorphic settings, and to temperatures of over 750°C. As a consequence, tourmaline minerals are common constituents of many diverse rock types. The complex crystal structure of tourmaline, incorporating triangular, tetrahedral, and octahedral coordination environments, permits incorporation of a wide array of major, minor, and trace element components.

Such elemental flexibility gives tourmaline almost unparalleled ability to reflect and record the chemical composition of the environment within which it formed. Already, many workers have documented systematic and interpretable chemical signatures associated with distinct geological environments, including within and between different ore-forming settings. Tourmaline’s piezo- and pyroelectric properties also give rise to systematic intra-mineral chemical variability, which may allow the mineral to be used as a single crystal geothermometer and -barometer. In addition to simple abundances, tourmaline also incorporates a wide range of isotopically interesting elements that record both stable and radiogenic (including geochronological) signatures. Such information is preserved through many subsequent episodes of weathering and hydrothermal or metamorphic alteration, owing to tourmaline’s stability and very limited chemical diffusivity, even at elevated temperatures.

Fortunately, for those of us working in mineral exploration research, in addition to its superlative ability to record and preserve complex geological information, tourmaline also possess hardness equal to or greater than quartz, lacks cleavage, and has a density of up to 3.3 g/cm³. Hence, tourmaline is a common resistate phase in elastic sedimentary and surficial settings, and is often recovered as a component of a heavy mineral concentrate. In addition to simple grain abundances and broad mineralogical classification, more detailed analysis of tourmaline recovered from such samples can reveal much more detail of the sediment provenance, including the presence and type of any possible mineral deposit.

This presentation will provide an overview of the complex sphere of tourmaline structure and chemistry. It will cover some aspects of appropriate analytical methods and limitations to be considered when seeking to employ tourmaline within a study. The presentation will conclude with a case study examining the bedrock and surficial occurrence of tourmaline minerals within and around the Woodjam alkalic porphyry Cu-Au deposits of central British Columbia, and demonstrate that, in tandem, tourmaline grain abundance and chemical analyses provide powerful tools to identify and locate porphyry-related mineral deposits.

TOURMALINE CRYSTAL STRUCTURE

Minerals of the tourmaline supergroup share the general chemical formula:

\[XY_2Z_6(T_{18}O_{18})\text{(BO}_3\text{)}_3V_3W^\text{3+} \]

By inspection of this formula, it immediately becomes apparent that the only stoichiometrically required elements within a tourmaline are oxygen and boron. The other lettered sites within the generalized formula commonly take only a limited range of major elemental components:

\[
\begin{align*}
X & = \text{Si, Al, B} \\
Y & = \text{Li, Mg, Fe}^{2+}, \text{Mn}^{2+}, \text{Cu}^{2+}, \text{Al, V}^{3+}, \text{Cr}^{3+}, \text{Fe}^{3+}, \text{Mn}^{3+}, \text{Ti}^{4+} \\
Z & = \text{Mg, Fe}^{2+}, \text{Al, V}^{3+}, \text{Cr}^{3+}, \text{Fe}^{3+} \\
T & = \text{Si, Al, B} \\
V & = \text{OH, O} \\
W & = \text{OH, F, O}
\end{align*}
\]
Table 1. Tourmaline species approved by the International Mineralogical Association (September 2014).

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
<th>IMA Year#</th>
<th>Country</th>
<th>Reference1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adachiite</td>
<td>CaFe2⁺⁺3Al6Si4O15(BO3)3(OH)3(OH)</td>
<td>2012-101</td>
<td>Japan</td>
<td>Mineralogical Magazine, 77 (2013), 2605</td>
</tr>
<tr>
<td>Chromium-dravite</td>
<td>NaMgFe3⁺(Si4O10)(BO3)3(OH)3(OH)</td>
<td>1982-055</td>
<td>Russia</td>
<td>European Journal of Mineralogy, 16 (2004), 345</td>
</tr>
<tr>
<td>Chromo-alumino-povondraite</td>
<td>NaCr(Al,Mg)2(SiO14)(BO3)3(OH)3(OH)O</td>
<td>2013-089</td>
<td>Russia</td>
<td>American Mineralogist, 99 (2014), 1767</td>
</tr>
<tr>
<td>Darrellehyneite</td>
<td>Na(Al2Li)2Al6Si4O15(BO3)3(OH)3(OH)</td>
<td>2012-026</td>
<td>Czech Republic</td>
<td>American Mineralogist, 98 (2013), 1886</td>
</tr>
<tr>
<td>Dravite</td>
<td>NaMgAl2Si4O10(BO3)3(OH)3(OH)</td>
<td>1884</td>
<td>Slovenia</td>
<td>Canadian Mineralogist, 49 (2011), 29</td>
</tr>
<tr>
<td>Elbaite</td>
<td>NaAl3.13Li3Al6Si6O15(BO3)3(OH)3(OH)O</td>
<td>1913</td>
<td>Italy</td>
<td>Canadian Mineralogist, 32 (1994), 31</td>
</tr>
<tr>
<td>Ferovite</td>
<td>CaFe2⁺⁺3Al6Si4O15(BO3)3(OH)3(OH)</td>
<td>1987-057</td>
<td>New Zealand</td>
<td>Canadian Mineralogist, 52 (2014), 285</td>
</tr>
<tr>
<td>Fluor-buergerite</td>
<td>NaFe2⁺⁺3Al6Si4O15(BO3)3(OH)</td>
<td>1965-005</td>
<td>Mexico</td>
<td>American Mineralogist, 51 (1966), 198</td>
</tr>
<tr>
<td>Fluor-dravite</td>
<td>NaAl1.75Si4O10(BO3)3(OH)3(OH)</td>
<td>2009-089</td>
<td>USA</td>
<td>Canadian Mineralogist, 49 (2011), 57</td>
</tr>
<tr>
<td>Fluor-elaite</td>
<td>NaLi2.5Si4Al6Si4O10(BO3)3(OH)3(OH)F</td>
<td>2011-071</td>
<td>Brazil</td>
<td>American Mineralogist, 98 (2013), 297</td>
</tr>
<tr>
<td>Fluor-liddicoaitse</td>
<td>CaLi2Al6Si4O15(BO3)3(OH)3(OH)</td>
<td>1976-041</td>
<td>Madagascar</td>
<td>American Mineralogist, 96 (2011), 895</td>
</tr>
<tr>
<td>Fluor-schorl</td>
<td>NaFe2⁺⁺3Al6Si4O15(BO3)3(OH)3(OH)F</td>
<td>2010-067</td>
<td>Germany/Italy</td>
<td>Mineralogical Magazine, 75 (2011), 289</td>
</tr>
<tr>
<td>Fluor-tsilaisite</td>
<td>NaMn2⁺⁺3Al6Si4O10(BO3)3(OH)3(OH)F</td>
<td>2012-044</td>
<td>Italy</td>
<td>Mineralogical Magazine, 76 (2012), 1281</td>
</tr>
<tr>
<td>Fluor-uvaite</td>
<td>CaMg3Si4O15(BO3)3(OH)3(OH)3(F)</td>
<td>2011-01</td>
<td>Sri Lanka</td>
<td>Mineralogical Record, 8 (1977), 100</td>
</tr>
<tr>
<td>Foiite</td>
<td>□(Fe2⁺⁺3Al6Si4O15(BO3)3(OH)3(OH)F</td>
<td>1992-034</td>
<td>USA</td>
<td>American Mineralogist, 96 (2011), 895</td>
</tr>
<tr>
<td>Luinaite-(OH)</td>
<td>(Na,□)2(□Fe2⁺⁺3Mg6Al6Si4O15(BO3)3(OH)3(OH)F</td>
<td>2009-046</td>
<td>Australia</td>
<td>Norsk Bergverksmuseum Skrift, 50 (2013), 23</td>
</tr>
<tr>
<td>Magnusio-foitite</td>
<td>□(Mg6Al6Si4O15(BO3)3(OH)3(OH)F</td>
<td>1998-037</td>
<td>Canada</td>
<td>Canadian Mineralogist, 44 (2006), 959</td>
</tr>
<tr>
<td>Maruyamaite</td>
<td>K(MgAl2)(Al6Si6O15)BO3(OH)3</td>
<td>2013-123</td>
<td>Kazakhstan</td>
<td>Mineralogical Magazine, 78 (2014), 549</td>
</tr>
<tr>
<td>Olentite</td>
<td>NaAl1.5Si4O15(BO3)3(OH)3(OH)</td>
<td>1985-006</td>
<td>Russia</td>
<td>European Journal of Mineralogy, 14 (2002), 935</td>
</tr>
<tr>
<td>Oxy-chromium-dravite</td>
<td>NaCr3(□Fe2⁺⁺3Mg6Si4O15(BO3)3(OH)3(OH)F</td>
<td>2011-097</td>
<td>Russia</td>
<td>American Mineralogist, 97 (2012), 2024</td>
</tr>
<tr>
<td>Oxy-dravite</td>
<td>NaAl6Si4Mg6Si4O10(BO3)3(OH)3(OH)O</td>
<td>2012-004a</td>
<td>Kenya</td>
<td>Mineralogical Magazine, 78 (2014), 681</td>
</tr>
<tr>
<td>Oxy-schorl</td>
<td>NaFe2⁺⁺3Al6Si4O15(BO3)3(OH)3(OH)F</td>
<td>2011-01</td>
<td>Czech Rep./Slovakia</td>
<td>American Mineralogist, 98 (2013), 485</td>
</tr>
<tr>
<td>Oxy-vanadium-dravite4</td>
<td>Na3V2(Al1.5Si4O15)BO3(OH)3(OH)O</td>
<td>2012-042</td>
<td>Russia</td>
<td>American Mineralogist, 98 (2013), 501</td>
</tr>
<tr>
<td>Povondraite5</td>
<td>NaFe2⁺⁺3(□Fe2⁺⁺3□Mg6Si4O10(BO3)3(OH)3(OH)O</td>
<td>1990-037</td>
<td>Bolivia</td>
<td>American Mineralogist, 78 (1993), 433</td>
</tr>
<tr>
<td>Rossmanite</td>
<td>□(□Mg6Al6Si4O15(BO3)3(OH)3(OH)F</td>
<td>1996-018</td>
<td>Czech Republic</td>
<td>American Mineralogist, 83 (1998), 896</td>
</tr>
<tr>
<td>Schorl</td>
<td>NaFe2⁺⁺3□Al6Si4O15(BO3)3(OH)3(OH)O</td>
<td>2007-09</td>
<td>Germany</td>
<td>American Mineralogist, 90 (2003), 1784</td>
</tr>
<tr>
<td>Tsilaisite</td>
<td>NaMn4⁺⁺3Al6Si4O10(BO3)3(OH)3(OH)O</td>
<td>2011-047</td>
<td>Italy</td>
<td>American Mineralogist, 97 (2012), 989</td>
</tr>
<tr>
<td>Uvite</td>
<td>CaMg2□(□Al6Si4O15)BO3(OH)3(OH)O</td>
<td>2000-03a</td>
<td>Brazil</td>
<td>Mineralogical Magazine, 74 (2010), 375</td>
</tr>
<tr>
<td>Vanadio-oxy-chromium-dravite</td>
<td>Na3V2□(□Fe2⁺⁺3□Mg6Si4O15)BO3(OH)3(OH)O</td>
<td>2012-043</td>
<td>Russia</td>
<td>American Mineralogist, 99 (2014), 1155</td>
</tr>
<tr>
<td>Vanadio-oxy-dravite</td>
<td>Na3V2□(□Mg6Al6Si4O15BO3(OH)3(OH)O</td>
<td>2012-074</td>
<td>Russia</td>
<td>American Mineralogist, 99 (2014), 218</td>
</tr>
</tbody>
</table>

1Reference provided refers to the most recent or most complete study for each mineral, not the original study.
2Originally named 'buergerite', the mineral was renamed in 2011 as the type mineral is F-bearing.
3Originally named 'liddicoaitse', the mineral was renamed in 2011 as the type mineral is F-bearing.
4Originally named 'vanadium-dravite', the mineral was renamed in 2011 to conform to existing oxyshugroup nomenclature.
5Originally named 'ferravite', the mineral was renamed in 1990 as the original site assignments were incorrect.

where □ represents a structural vacancy at the X-site (Hawthorn & Dirlam 2011). The 30 IMA-approved mineral species detailed in Table 1 give a good indication of the most common and more idiosyncratic combinations of site occupancies seen in nature. In addition to these major element components, each site can also play host to minor and trace element substitutions that give tourmaline minerals possibly the greatest and most complex range of elemental possibilities within any abundant mineral group.

Compositional compliance is imparted by the variety of structural settings that the complex tourmaline crystal provides. The T-site is tetrahedrally coordinated by four oxygen atoms, and although dominantly occupied by silicon it may also contain either aluminum (e.g. adachiite, Table 1) or boron. Six oxygen atoms are shared at the corners of six conjoined T-site tetrahedra, forming the basic, six-membered-ring T_6O_{18} unit of the cyclosilicate tourmaline structure. Although possessing six-fold rotational symmetry in plan view, these cyclosilicate rings are asymmetrical in profile. The apices of all TO$_4$ tetrahedrons point in the same direction within each ring, and within a tourmaline crystal all apices point toward the −c pole. It is this strong structural asymmetry that imparts the tourmaline’s pyroelectric and piezoelectric properties.

Between the cyclosilicate rings, linking them, are the Y and Z octahedrally coordinated sites. The Y-site locations are relatively large and regular, located as a trimer toward the centre of the silicate rings, and can be occupied by a very wide variety of cations with a multitude of valence states (e.g. Li$^+$ vs. Ti$^{4+}$). In contrast, the Z-site octahedra are smaller and distorted, and are located at the periphery of the Y-site trimer. These are dominantly occupied by trivalent cations, but may contain significant proportions of divalent cations (e.g. Mg$^{2+}$) if sufficient charge balancing substitutions occur elsewhere.

At the centre of the cyclosilicate axis of symmetry, although out of plane, the X-site is in ninefold-coordination, and although dominantly occupied by sodium or potassium in some species (e.g. foitite) the site may be largely vacant. Also positioned along the central axis, the W-site is dominantly occupied by the OH$^-$ anion or O$^{2-}$. The W$^-$-site is also significant as it is the only position into which the F$^-$ anion can be
partitioned. Under these circumstances, vacancy at the X-site is precluded.

TOURMALINE MINERALOGY

Many illustrious careers have been built largely on the study of tourmaline mineralogy. The variety of chemical compositions and site substitutions, coupled to the diversity of environments within which tourmaline can be formed, mean that naturally occurring tourmaline crystals can adopt an almost unlimited range of colours and a very wide range of morphological habits. Such complexity, recognized since antiquity, has acted to obscure the true identity of many of the currently recognized end-member species, as many previous tourmaline mineralogical classification schemes were based on colour, texture, or paragenetic associations.

As recently as the turn of the 21st century, approximately a dozen tourmaline minerals were officially recognized by the IMA. Table 1 shows that the rapid expansion of research into tourmaline that has occurred in the last decade has increased the stock of known tourmaline minerals to 30, the most recent of which, chromo-alumino-povondraite, was only added to the official list in 2013. In addition, a number of species that have been recognized for many decades have had their crystal chemistry refined and redefined, either through recognition of inadequacies in original analyses of the type specimens (e.g. buergerite and liddicoatite, renamed fluor-buergerite and fluor-liddicoatite in 2011, respectively) or through the splitting of previously mixed compositions into unique minerals (e.g. F-bearing fluor-uvite distinguished from OH-bearing uvite in 2008). Even such, for which the first recognized reference dates from 1505 (Ertl 2006), has had its mineralogy and chemistry refined in the first decade of the new millennium.

Detailed discussions on the mineralogy of tourmaline were presented as papers within two broad reviews of tourmaline research, both published in 2011: Dutrow & Henry (2011) and van Hinsberg et al. (2011). These special issues of the journals Elements and The Canadian Mineralogist are recommended texts for any researcher wanting a more detailed introduction to tourmaline and its geological significance and applications. That year also saw a comprehensive re-examination and restatement of the system for tourmaline nomenclature by the Subcommitteee on Tourmaline Nomenclature of the IMA’s Commission on New Minerals, Nomenclature and Classification, including protocols for the naming of unrecognized and intermediate species (Henry et al. 2011). As well as refining the system of mineral names and specific tourmaline compositions, the Henry et al. (2011) study also proposed a number of compositional diagrams to aid classification of tourmaline minerals.

Following this scheme, tourmaline species may be classified into three broad primary groups, based on the cation occupancy of the X-site, and three general species subgroups based on the anion occupancy of the W-site. Those species whose X-site is dominated by sodium or potassium are classified as ‘alkali’ group; those that have calcium as the dominant X cation are classified as the ‘calcic’ group; and those that have a vacancy dominant in the X-position form the ‘X-vacant’ group. The subgroup assignments are made in a similar fashion, with those species whose W-site occupancy is dominated by F, OH, or O2– classified to ‘fluor-’, ‘hydroxy-’ or ‘oxy-’ subgroups, respectively (Henry et al. 2011).

Dominant end-member species commonly form solid-solution intermediate series with one or more other species, with near-complete compositional spectra. The most common of these is the alkal group schorl−dravite−elbaite series, members of which can be distinguished and classified using a ternary diagram based on the relative Fe2+, Mg2+, or Li+ occupancy of the Y-site. Similar ternary diagrams can be constructed to aid in the classification of the X-vacant rossmanite−foitite−magnesiofoitite and the calcic liddicoatite−feruvite−uvite series.

Such diagrams not only allow individual crystal analyses to be assigned to specific groupings, but as they graphically represent subtle compositional variation they can also be employed to describe the compositional distribution within and between different sample populations. Additional compositional ternary, bivariate, and ratio plots can be devised and constructed as required for any particular application, and from these the expected compositional variation associated with tourmaline from a particular geological setting can be plotted and discriminated for use in sediment-provenance and mineral-vectoring studies. Many studies of this kind have been performed for a variety of igneous and metamorphic tourmaline species, and their results are summarized in Figure 1. Studies of tourmaline mineralogy and chemistry are less developed for hydrothermal mineral deposit settings, although coverage of these is improving annually and are summarized in the following section. An example of this latter application will be discussed below, applied to a series of till samples taken from within and surrounding the Woodjam porphyry-related Cu-Au deposits of central British Columbia.
TOURMALINE IN HYDROTHERMAL SYSTEMS

Tourmaline minerals form common components in the gangue assemblage of many hydrothermal metallic mineral deposits, and this association with ore-forming systems has been recognized for centuries. Indeed, the first known reference to the mineral schorl is taken from a description of placer tin deposits in Germany published in 1505 (Ertl 2006), where the tourmaline was noted as traveling in stream sediments with a black tourmaline species. One of the most comprehensive and detailed reviews of a very broad spectrum of mineral deposit-related tourmaline occurrences and chemistry was published by John Slack in the 1996 *Reviews in Mineralogy and Geochemistry*, volume 33 (Slack 1996). This work, which includes numerous ternary diagrams presenting data compiled from many literature sources, should be on all researchers’ shelves if they intend to employ tourmaline as a part of an ongoing study. In the last decade this work has been augmented by many detailed studies that have documented tourmaline occurrences at a variety of specific ore deposits.

Trace amounts of tourmaline may be found in a very wide range of ore-forming settings, but it is most common in those systems associated with (a) plutonic granitoid magmatism, including porphyry deposits, magmatic-hydrothermal breccia, skarn, granite-associated veins and greisens; b) stratabound and stratiform systems and their associated tourmalinite rocks, such as volcanogenic massive sulphide (VMS) and sedimentary exhalative (SEDEX) deposits; c) metamorphic and intrusion-related gold systems; and d) volcanic veins. However, in some systems tourmaline, although clearly spatially related and locally elevated in abundance, cannot be related directly to the formation of metal-bearing minerals. Rather, in many cases tourmaline appears to be pre- or post-ore within the deposit paragenesis.

However, despite in many cases an unclear direct association, tourmaline minerals from many deposit types appear to have characteristic mineralogical and chemical compositions that can be used both to investigate and interpret the ore-forming system itself, as well as allowing ore-associated tourmaline to be distinguished from regional background in sediment provenance studies. Tourmaline species associated with granitoid deposits are commonly schorl to near-dravite. In many studied Cu-Au systems contain tourmaline that plots significantly below the schorl−dravite join on the discrimination plot of Henry & Giudotti (1985; Fig. 1). A review of tourmaline composition within a range of porphyry Cu-Au, Au, and Sn-W deposits suggested that for many of the more oxidized systems, tourmaline mineral evolution followed the magnesio-foitite−povondraite join, rather than a simple schorl−dravite trend (Baksheev et al. 2012). Very few samples from these settings show significant lithium concentrations (Slack 1996).

Within vein and stratabound ore-system gangue assemblages, many studies have documented a transition in dominant species from schorl-rich assemblages in the deeper, fluid source-proximal portions of the deposit, to a dravite assemblage in the shallower and fluid source-distal portions of the deposit. In many cases, this thought to represent a combination of reducing temperatures, changes in the relative fluid-rock ratio, depletion of iron within the metal source rocks, and/or variations in the relative proportions of iron-rich hydrothermal fluids and magnesium-rich seawater within the tourmaline-forming fluids (Slack 1996). Evolutionary trends within these deposits commonly follow a simple MgFe₂⁺ vector, although stratabound deposits may display a very wide range of major element variability, including significant proportions of alkali defect and uvite compositions.

EXPLORATION CASE STUDY: THE WOODJAM PORPHYRY Cu-Au DEPOSITS, BRITISH COLUMBIA

The Woodjam property in central British Columbia, Canada, encompasses a number of discrete porphyry-related Cu-Au and Cu-Mo deposits, which are thought to be related to the Takomkane batholith underlyng and immediately to the south of the property (Fig. 2A). The individual deposits span a very narrow range in age (ca. 197 Ma) and are interpreted to represent portions of the same genetic system. Despite this relationship, mineralization styles within the deposits range from calc-alkalic Cu-Mo types in the Southeast Zone bodies, to alkaline Cu-Au mineralization in the Takom Zone. Mineralization in the Deerhorn Zone falls between these two, displaying many characteristics of both alkaline Cu-Au deposits as well as some features of more typical Cu-Mo calc-alkalic systems (del Real et al. 2014). The deposits have only very limited surface outcrop. Glacial sediments reaching a thickness of over 200 m in places mantle and obscure many of the mineralized zones. The stratigraphy of the glacial sediment succession is not well known. The last glacial event in the Woodjam district included two vectors of ice flow: first to the southwest, followed by a second event to the northwest (Fig. 2B).

Tourmaline at the Woodjam properties occurs principally in the Deerhorn and Takom zones. Within each of these, tourmaline forms a complex series of spatial and paragenetic associations with a number of other silicate and sulphide minerals. In many cases these occur in barren to very weakly mineralized portions of the deposits, but some tourmaline does appear to be intimately linked to significant copper sulphide (principally chalcocite) mineralization, although this is possibly a later addition rather than being coeval with the copper-bearing stage. To characterize and investigate its spatial and genetic relationship to the ore-forming process, samples of tourmaline and associated Cu-Au mineralization and hydrothermally altered host rocks were taken from exploration diamond-drill core from the Takom and Deerhorn zones, as well as surface samples from albite-epidote-tourmaline alteration of regional volcanic rocks, and tourmaline-cemented breccias, that occur at surface over the Takom Zone. From these samples, polished thin sections were prepared (Fig. 3) and analyzed by optical and scanning electron microscopy, prior to elemental analysis by electron probe microanalysis (EPMA).

In addition to the bedrock samples, to investigate the utility and resolution of tourmaline as a porphyry exploration vector in glaciated terrain, till samples were recovered from numerous sites in and around the Woodjam property. From these till samples, mid-density and heavy mineral concentrates were prepared. Tourmaline content of the till samples was determined for the mid-density (2.8–3.2 g/cm³) 0.25–0.5 mm fraction and normalized to a 10 kg sample weight (Fig. 2B). Broadly, the tourmaline abundance anomaly describes a halo that is approximately 10 km from east to west and runs from the southern margin of the deposits to a point approximately 10 km north of the property (Fig. 2A). The individual deposits span a very narrow range in age (ca. 197 Ma) and are interpreted to represent portions of the same genetic system. Despite this relationship, mineralization styles within the deposits range from calc-alkalic Cu-Mo types in the Southeast Zone bodies, to alkaline Cu-Au mineralization in the Takom Zone. Mineralization in the Deerhorn Zone falls between these two, displaying many characteristics of both alkaline Cu-Au deposits as well as some features of more typical Cu-Mo calc-alkalic systems (del Real et al. 2014). The deposits have only very limited surface outcrop. Glacial sediments reaching a thickness of over 200 m in places mantle and obscure many of the mineralized zones. The stratigraphy of the glacial sediment succession is not well known. The last glacial event in the Woodjam district included two vectors of ice flow: first to the southwest, followed by a second event to the northwest (Fig. 2B).

Tourmaline at the Woodjam properties occurs principally in the Deerhorn and Takom zones. Within each of these, tourmaline forms a complex series of spatial and paragenetic associations with a number of other silicate and sulphide minerals. In many cases these occur in barren to very weakly mineralized portions of the deposits, but some tourmaline does appear to be intimately linked to significant copper sulphide (principally chalcocite) mineralization, although this is possibly a later addition rather than being coeval with the copper-bearing stage. To characterize and investigate its spatial and genetic relationship to the ore-forming process, samples of tourmaline and associated Cu-Au mineralization and hydrothermally altered host rocks were taken from exploration diamond-drill core from the Takom and Deerhorn zones, as well as surface samples from albite-epidote-tourmaline alteration of regional volcanic rocks, and tourmaline-cemented breccias, that occur at surface over the Takom Zone. From these samples, polished thin sections were prepared (Fig. 3) and analyzed by optical and scanning electron microscopy, prior to elemental analysis by electron probe microanalysis (EPMA).

In addition to the bedrock samples, to investigate the utility and resolution of tourmaline as a porphyry exploration vector in glaciated terrain, till samples were recovered from numerous sites in and around the Woodjam property. From these till samples, mid-density and heavy mineral concentrates were prepared. Tourmaline content of the till samples was determined for the mid-density (2.8–3.2 g/cm³) 0.25–0.5 mm fraction and normalized to a 10 kg sample weight (Fig. 2B). Broadly, the tourmaline abundance anomaly describes a halo that is approximately 10 km from east to west and runs from the southern margin of the deposits to a point approximately 10 km north of the property (Fig. 2A).
Number of tourmaline grains (0.25–0.5 mm; norm. /10 kg)

- 0–48
- 49–132
- 133–276
- 277–488
- 489–779

Ice flow

1. 1
2. 2

Tourmaline: the universal indicator?

Table:

<table>
<thead>
<tr>
<th>Number Range</th>
<th>Tourmaline Grain Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–48</td>
<td></td>
</tr>
<tr>
<td>49–132</td>
<td></td>
</tr>
<tr>
<td>133–276</td>
<td></td>
</tr>
<tr>
<td>277–488</td>
<td></td>
</tr>
<tr>
<td>489–779</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Bedrock geology, mineral deposits and sample locations in the vicinity of the Woodjam property, central British Columbia: **A)** bedrock geology and major mineralized zones, Woodjam zones are named; **B)** glacial striations, dominant ice-flow directions, and abundance of tourmaline in the mid-density (3.0–3.2 g/cm^3) 0.25–0.5 mm fraction of till, normalized to 10 kg bulk sediment (<2 mm). Till samples for which tourmaline major element compositions have been determined are labelled. Bedrock geology modified from Massey et al. (2005).
of the Deerhorn Zone. Four of these samples were selected for further study: sample 11PMA003, taken from a site at the southwest end of Horsefly Lake with tourmaline unlikely to be derived from Woodjam; sample 11PMA007, taken from a site located 6.5 km north of Deerhorn containing tourmaline that is unlikely to be derived from the Woodjam mineralization; sample 11PMA012, taken from a site located in between Megabuck and Deerhorn and likely derived from known mineralization; and sample 12TFE114, taken ~1 km northeast of the Southeast Zone and therefore its tourmaline is unlikely derived from the known mineralization. As with samples taken from the bedrock, till tourmaline grains were mounted in epoxy, polished, and their major element chemistry was determined using EPMA.

Based on major element chemistry discriminant plots, the majority of bedrock tourmaline samples analyzed are dravistic, although with a significant subset of albite-associated tourmaline from the surficial outcrop at Takom Zone falling along the chemical-evolution trend to moderately schorl-rich compositions. Samples from both deposits have many of the characteristics identified by Baksheev et al. (2012) as typical for tourmaline in porphyry copper systems: magnesium content is approximately 2 atoms-per-formula unit, and they lie on the FeAl₁ isomorphic substitution trend (Fig. 4A). The dominance of this substitution is reinforced by most samples plotting on the Mg-foitite−povondraite join and above the schorl−dravite join in an Fe-Al-Mg ternary (Fig. 4B). Both of these substitution trends are thought to represent the evolution of an ore-forming fluid from an initial iron-dominant magmatic-hydrothermal precursor to a magnesium-dominant effluent fluid. While the magnesium content (i.e. atomic percentage) varies comparatively little, as iron is stripped from the fluid and the fluid pH is lowered, both through the iron-bearing sulphide precipitation and the substitution of aluminum for iron in the Y-site is promoted (Baksheev et al. 2012). Hence, the evidence for these evolution trends may be considered a fingerprint for the tourmaline-forming fluid having also formed iron sulphide upstream of the tourmaline deposition site.

These element evolution trends are important for the interpretation and application of unknown populations, as can be seen in the major element chemical plots for till tourmaline taken from the vicinity of the Woodjam deposits (Fig. 4C, D). Although samples 11PMA003, 11PMA007 and 12TFE114 are dominated by tourmaline that has chemical compositions that, in part, resemble those of Baksheev et al’s (2012) porphyry tourmaline fingerprint, the scatter and evolutionary trends described by these samples do not follow either the FeAl₁ trend within the Fe(t)-Mg plot (Fig. 4C), nor the magnesiofoitite−povondraite join in an Fe-Al-Mg ternary plot (Fig. 4D). In both cases these tourmaline populations more closely resemble a simple cooling or fluid-rock ratio variation trend, and do not appear to have originated in fluids that have participated in a porphyry-forming sulphide-deposition process. In contrast, the tourmaline population within sample 11PMA012 plots directly over tourmaline taken from Deerhorn and particularly Takom Zone bedrock samples in both an Fe(t)-Mg plot and Fe-Al-Mg ternary plot (Fig. 4C, D).

Of the four till samples analysed, only sample 11PMA012 contains a tourmaline population that unequivocally fits both the Baksheev et al. (2012) porphyry Cu-Au tourmaline model and the range of compositions recorded in local Woodjam mineralized bedrock. This sample site sits directly over the cen-
tourmaline sample data overlain on bedrock data in the same Al-FeT-Mg ternary plot used in (B), only sample 11PMA012 data scatters along the MgFe-1 trend, though only the sample taken directly over the deposits (sample 11PMA012) scatters along the FeAl-1 substitution vector;

demonstrating that although the Mg-cation count is approximately 2 apfu, all three distal populations describe a substitution trend parallel to the magnesio-foitite–povondraite join;

Bedrock samples
- Albite alteration, Takom zone
- Potassic alteration, Deerhorn zone
- Potassic alteration, Takom zone
- Combined data

REFERENCES

ERTL, A. 2006. Über die Etymologie und die Typlokalitäten des Minerals Schörl (About the etymology and the type-localities of schorl). Mitteilungen der Österreichischen Mineralogenischen Gesellschaft, 152, 7–16 (German with English abstract).

SLACK, J.F. 1996. Tourmaline associations with hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry, 33, 559–643

ERTL, A. 2006. Über die Etymologie und die Typlokalitäten des Minerals Schörl (About the etymology and the type-localities of schorl). Mitteilungen der Österreichischen Mineralogenischen Gesellschaft, 152, 7–16 (German with English abstract).

tre of the mineralized district and less than one kilometre down-ice from the Deerhorn Zone. Were the locations of the deposit centres unknown, the spatially restricted anomaly described by the tourmaline chemical fingerprint would give a more precise exploration target than the approximately 10 by 20 km target defined by simple tourmaline grain abundances. At present we cannot explain the looser spatial association of abundant tourmaline with some porphyry characteristics.
Direct and indirect indicator minerals in exploration for carbonatite and related ore deposits — an orientation survey, British Columbia, Canada

G.J. Simandl1,2,* D.A.R. Mackay1, X. Ma3, P. Luck2, J. Gravel3, B. Grcic4 & M. Redfearn4

1School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada V8P 5C2
3Bureau Veritas Commodities Canada Ltd., Geo-analytical Division, 9050 Shaughnessy Street, Vancouver, British Columbia, Canada V6P 6E5
4Bureau Veritas Commodities Canada Ltd, Metallurgical Division, 11620 Horseshoe Way, Richmond, British Columbia, Canada V7A 4V5

*Corresponding author's e-mail: George.Simandl@gov.bc.ca

CARBONATITE AS AN EXPLORATION TARGET

Specialty metals, and more specifically Nb, Ta, and rare earth elements (REE), are concentrated in a variety of deposit types, including carbonatite, peralkaline intrusions, pegmatite, and peraluminous granite (Mackay & Simandl 2014a; Simandl 2014). Carbonatite-related deposits, such as Mountain Pass (California) and Bayan Obo (Inner Mongolia), are the main sources of light rare earth elements (LREE), and Araxá and Catalão (Brazil) and St. Honoré (Quebec) type deposits are the main sources of Nb and ferroniobium. Palabara is an exceptional example of a carbonatite complex with important resources of Cu, natural zirconia (badelleite), vermiculite, phosphate (apatite), and U (Clarke 1981). A discussion of the overall economic importance of carbonatite can be found in Mariano (1989a, b), Richardson & Birkett (1996a, b), and Birkett & Simandl (1999).

Airborne geophysical methods of particular importance for carbonatite exploration are aeromagnetic, radiometric, and gravity. These have been used successfully to discover new, or delimit known carbonatite complexes (Satterly 1970; Thomas et al. 2011; Drenth 2014). In addition to traditional prospecting, geochemical exploration methods, including boulder tracing and indicator minerals, are ideally suited for ground follow-up.

INDICATOR MINERALS — BACKGROUND

Background information regarding the use of indicator minerals and traditional processing methodologies for regional- or country-wide scale surveys is provided in McClenaghan (2005, 2011) and McCurdy et al. (2006, 2009). Since the development of the indicator mineral method for exploration by Gurney (1984) and popularization by Gurney & Zweistra (1995), Muggeridge (1995), Fipke et al. (1995), and McClenaghan & Kjarsgaard (2001), its use has expanded to include exploration for other commodities, such as base metals (e.g. Averill 2001; Paulen et al. 2009, 2011). Traditional indicator mineral surveys are processing intensive and involve mineral-picking. As such, they are relatively expensive and time consuming in comparison to regional geochemical surveys. Indicator mineral concentration flow-charts (e.g. Fig. 8 in Crabtree 2003) illustrate the number of consecutive processing steps used in traditional regional, multi-target surveys. In summary, samples are sieved to a range of size fractions and selected fractions undergo a variety of density and magnetic separations, panning, grain counting, acid washing, and hand-picking to produce a suite of Kimberlite and metamorphic/magmatic massive sulphide indicator minerals (Crabtree 2003; McClenaghan 2011).

One of the objectives of the specialty metals component of the Targeted Geoscience Initiative 4 (TGI-4), a Canadian federal government collaborative geoscience program, was to find efficient and cost-effective methods for vectoring towards carbonatite intrusions and related specialty metal deposits, and by default, towards a wide variety of other carbonatite-related deposit types. During 2013 and 2014 in the framework of this program, limited field and laboratory orientation surveys were undertaken to test the concept of customized indicator mineral methods for carbonatite exploration, to complement traditional regional stream sediment surveys, to follow-up on geophysical anomalies possibly attributable to carbonatite, and to follow-up on REE, Nb, and Ta anomalies detected during regional geochemical and indicator mineral surveys. By extrapolation, the research and ensuing successful methods may be applied in the exploration of other deposit types in regions challenged by extensive and/or transported cover.

SIMPLIFICATION OF INDICATOR MINERAL METHODOLOGY IN EXPLORATION FOR CARBONATITE

Orientation-centric research concentrated on five aspects of indicator mineral surveys that target carbonatite and related deposits in the North American Cordillera:

(a) identification of potential carbonatite indicator minerals;
(b) identification of an optimal grain-size fraction;
(c) simplification of the processing methodology;
(d) use of Quantitative Evaluation of Minerals by Scanning electron microscopy (QEMSCAN®);
(e) improvement of existing and development of new discrimination diagrams that could be used for target identification.

Potential carbonatite indicator minerals

The pyrochlore supergroup (as defined by Atencio et al. 2010), the columbite-tantalite series (as defined by Černý & Erict 1985; Černý et al. 1992), the REE-bearing fluorocarbonate minerals (such as bastnaesite and synchysite), and monazite are direct carbonatite indicator minerals (Table 1). They contain high concentrations of key carbonatite pathfinder elements
Table 1. Principal (shown in red) and potential carbonatite indicator minerals. Density data is from Anthony et al. (2004). Table is simplified from Mackay et al. (2015b).

<table>
<thead>
<tr>
<th>Mineral Name</th>
<th>Chemical Formula</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrochlore supergroup</td>
<td>(Ca,Na)₂(Nb,Ti,Ta)₂O₆(O,OH,F)</td>
<td>4.2–6.4</td>
</tr>
<tr>
<td>Columbite-tantalite series</td>
<td>(Fe,Mn)₂(Ta,Nb)₂O₆</td>
<td>5.3–5.2</td>
</tr>
<tr>
<td>Fersmite</td>
<td>(Ca,Fe)₂(Nb,Ta)₂O₆(O,OH,F)</td>
<td>4.89–4.79</td>
</tr>
<tr>
<td>Bastnaesite</td>
<td>Ce(CO₃)F</td>
<td>4.95–5.00</td>
</tr>
<tr>
<td>Synchysite</td>
<td>Ca(Ce,La)(CO₃)₂F</td>
<td>3.90–4.15</td>
</tr>
<tr>
<td>Monazite</td>
<td>(Ce,La,Nd,Pr)PO₄</td>
<td>4.8–5.5</td>
</tr>
<tr>
<td>Allanite</td>
<td>(Ca,Al,Y)₂(Al,Fe)₃(SiO₄)₃(OH)</td>
<td>3.3–4.2</td>
</tr>
<tr>
<td>Fluorite</td>
<td>CaF₂</td>
<td>3.2–3.6</td>
</tr>
<tr>
<td>Zircon</td>
<td>ZrSiO₄</td>
<td>4.6–4.7</td>
</tr>
<tr>
<td>Apatite</td>
<td>Ca₅(PO₄)₃(OH,F,Cl)</td>
<td>3.16–3.22</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Fe₃O₄</td>
<td>5.1–5.2</td>
</tr>
<tr>
<td>Arfvedsonite</td>
<td>Na₃[(Fe,Mg)₄Fe]₂Si₆O₃₂(OH)₂</td>
<td>3.44–3.45</td>
</tr>
<tr>
<td>Richterite</td>
<td>Na(Ca,Na,Mg)Si₆O₃₂(OH)₂</td>
<td>2.97–3.45</td>
</tr>
<tr>
<td>Aegerine</td>
<td>Na₃FeSi₆O₁₆</td>
<td>5.50–5.54</td>
</tr>
<tr>
<td>Barite</td>
<td>BaSO₄</td>
<td>4.48</td>
</tr>
<tr>
<td>Celestine</td>
<td>SrSO₄</td>
<td>3.9–4.0</td>
</tr>
<tr>
<td>Perovskite</td>
<td>CaTiO₃</td>
<td>4.0–4.3</td>
</tr>
<tr>
<td>Rutile</td>
<td>TiO₂</td>
<td>4.23</td>
</tr>
</tbody>
</table>

(Nb, La, Cc, Pr, and Nd) in their crystal structure. Their presence can be established using traditional chemical analyses (Liberate fusion followed by ICP-MS) and portable X-ray fluorescence spectroscopy (Luck & Simandl 2014; Mackay & Simandl 2014b, c). Barium and Sr sulphate minerals (barite-celestine solution series), Na-pyroxene minerals (commonly aegirine), Na and K amphibole (e.g. arfvedsonite and richterite), bardeleyite, fluoride (Makin et al. 2014, Nb-rutile, Ti-Zr garnet, magnetite,apatite (Belusova et al. 2002a), zircon (Belusova et al. 2002b), and others are also potential carbonatite indicator minerals.

Identification of the ideal sediment grain-size fraction

Three representative carbonatite complexes located in the British Columbia alkaline province (Fig. 1) were selected for orientation surveys. They differ greatly in size, shape, ore mineralogy, and grade. The Aley carbonatite complex, which has been defined by drilling, is exposed over an irregularly shaped, 2 by 3 km area. It has a measured resource of 113 million tonnes grading at 0.41% Nb₂O₅, an indicated resource of 173 million tonnes at 0.35% Nb₂O₅ with a cut-off grade of 0.20% Nb₂O₅ (Jones et al. 2014), and relatively low REE content (Simandl et al. 2014b). The Wicheeda Lake carbonatite area; Fig. 2) and routinely yielded an acceptable mass for testing by QEMSCAN®. The 0.125–0.250 mm fraction is well within the QEMSCAN®'s optimal operational range, and leaves the 0.250–0.500 mm and coarser fractions for traditional mineral picking. Sample sites, sizes, and location as well as distance from deposits and sampling methodology are described by Luck & Simandl (2014) and Mackay & Simandl (2014b, c).

Minimum required processing

The key REE-bearing fluorocarbonate and Nb- and Ta-bearing carbonatite indicator minerals (3.9–8.2 g/cm³, Table 1) have a good density contrast with common rock-forming minerals and lithic fragments (2.5–3.4 g/cm³) that make up the bulk of stream sediments. Splits of the 0.125–0.250 mm size fraction of samples downstream from the Aley carbonatite were successfully processed using Mozley C800 and Wilfley #13 concentrator tables (Mackay et al. 2015a, b). Both tables are simple, efficient, and widely available. Concentrates prepared using Mozley C800 tables were found to have increased Nb content by a factor of 2.8 to 3.7 (average of 3.3), Ta by a factor of 2.1 to 2.9 (average of 2.4), and LREE by a factor of 1.7 to 3.1 (average of 2.5) relative to the corresponding raw samples. The Nb content of Wilfley #13 concentrates increased by a factor of 3.9 to 5.6 (average of 4.8) relative to raw samples. Similarly, Ta increased by a factor of 2.3 to 4.9 (average of 3.6) and LREE content increased by a factor of 1.8 to 5.1 (average of 3.9). High coefficients of determination (R²>0.9) for Nb, LREE (Σ La, Ce, Pr, and Nd), U, Th, and Ba in Mozley C800 and Wilfley #13 table concentrates relative to their unprocessed 0.125–0.250 mm fractions indicate the concentrators produced a predictable degree of enrichment under constant operating conditions.

The Mozley C800 table was preferred to the Wilfley #13 table because it was more user-friendly and permitted efficient processing of relatively small samples (approximately 75 grams
of the 0.125–0.250 mm size fractions in case of Aley and Lonnie samples). Difficulty in obtaining a sufficient mass of the 0.125–0.250 mm size fractions for samples from the Wicheeda Lake area prevented systematic comparison of Mozley C800 and Wilfley #13 table at that location. At the Wicheeda carbonatite, the concentrations of carbonatite indicator minerals in raw stream sediments were too low to obtain sufficient quantities of concentrate for both QEMSCAN® studies and chemical analyses using pXRF, according to the method described in Simandl et al. (2014a) and Luck & Simandl (2014).

QEMSCAN® as a substitute for hand-picking of indicator minerals

Automated scanning electron microscope analysis (QEMSCAN®) is a powerful tool used mainly by metallurgists to...
processed on the Mozley C800 table under constant, controlled conditions. However, even without Mozley C800 table concentration, QEMSCAN® detected pyrochlore supergroup and columbite-tantalite series grains in samples collected more than 11 km downstream of the Aley carbonatite (Nb deposit).

Results of QEMSCAN® analysis were compared to the concentration of pathfinder elements determined by XRF and Li-borate fusion with ICP-MS in the 125–250 µm fraction of three unprocessed samples and five Mozley C800 concentrates from the Aley carbonatite study area. There is a high coefficient of determination ($R^2 = 0.92$) between the concentration of key Nb-bearing minerals in wt% obtained by QEMSCAN® and Nb content determined by XRF. An R^2 of 0.92 was obtained when plotting the QEMSCAN® monazite concentration in wt% against (Σ La, Ce, Pr, Nd) content by ICP-MS. Excellent fit (R^2) between the abundance of pathfinder elements and concentrations of direct indicator minerals (wt%) in the 125–250 µm fraction of stream sediments provides the option to analyze all the samples chemically but use QEMSCAN® only on selected samples. The combination of these two methods would provide the low-cost advantage of geochemical surveys with the high interpretative power of both indicator mineral and geochemical surveys.

Discrimination diagrams

Discrimination diagrams are the key to successful targeting and vectoring towards mineralization. This is illustrated by highly-evolved garnet, chromite, clinopyroxene, olivine, and ilmenite discrimination diagrams used by the diamond exploration industry (Gurney & Zweistra 2005).

The pyrochlore supergroup and columbite-tantalite series discrimination diagrams (Figs. 3 & 4), developed for general specialty-metal exploration, are most appropriate for carbonatite exploration (Mackay & Simandl 2015). They permit iden-
Direct and indirect indicator minerals in exploration for carbonatite and related ore deposits — an orientation survey, British Columbia

Identification of the deposit type(s) from which the indicator mineral grains were derived (e.g., carbonatite-, peralkaline intrusion, peraluminous granite- or pegmatite-related deposits as defined in Mackay & Simandl (2014a) and Simandl (2014)) based on microprobe analyses (no LA-ICP-MS required). There are other diagrams that can be employed for carbonatite exploration; however, many of these are based on small data sets. For example, the apatite discrimination diagram (Fig. 5A) from Belousova et al. (2002a) is based on 61 analyses of apatite from 4 carbonatite rocks. By plotting an additional 250 apatite (sensu lato) analyses from 12 fresh and weathered carbonatite, the Mn range of the carbonatite field expands from 40–450 ppm to 4-2320 ppm (Fig. 5B), and the Sr range expands from approximately 2000–9500 ppm to 1310–9330 ppm.

Other potential indicator minerals could be used in exploration for carbonatite if appropriate carbonate-sensitive discrimination diagrams were successfully developed. Some of them are Ba and Sr sulphate, Na-pyroxene, Na- and K-amphibole, baddeleyite, monazite, fluorite (Makin et al. 2014), Nb-rutile, Ti-Zr garnet, perovskite, magnetite, and zircon (Beloussova et al. 2002b). While discrimination diagrams for some of these minerals exist, the carbonatite field on these diagrams is either poorly constrained or not known. Most of these minerals occur as gangue and/or constituents of fenitized zones associated with carbonatite.

CONCLUSION

Pyrochlore supergroup and columbite-tantalite series minerals and REE-fluorocarbonate are useful direct indicator minerals in exploration for carbonatite and associated mineral deposits. They have very high densities relative to all common rock-forming minerals and to most other potential carbonatite-indicator minerals. Their presence is detectable in the favourable (in our case 0.125–0.250 mm) size fractions of unprocessed sediment downstream of known carbonate by traditional chemical analyses (ICP-MS and XRF) and pXRF for Nb, Ta, and REEs, and also directly with QEMSCAN®.

If the concentrations of these elements are too low in raw samples, no more than single-step gravity concentration (e.g. Mozley C800 or Wilfley #13 tables) is required to enrich the 0.125–0.250 mm size fraction of the samples for QEMSCAN® and microprobe analyses.

High R^2 between the abundance of pathfinder elements and concentrations of direct indicator minerals (wt%) provides explorationists the option to analyze all the samples chemically and only use QEMSCAN® on selected samples. By combining analytical techniques in this way, the explorationist benefits...
from the interpretative power of a combined survey at a fraction of the cost.

Discrimination diagrams (Figs. 4 & 5), designed for microprobe-quality (LA-ICP-MS analysis is not required) data, were developed for pyrochlore supergroup and columbite-tantalite series minerals. These diagrams permit screening of regional geophysical and geochemical anomalies for deposit-type without trenching or drilling.

This project focussed on exploration for carbonatite-related deposits, however, the same concepts and principles, and the experience acquired during optimization of the laboratory procedures (including QEMSCAN®), can be applied to more traditional targets such as base metals, platinum group elements, gold, gold chromite, etc.

ACKNOWLEDGMENTS

This project was supported by the Targeted Geoscience Initiative 4 (2010–2015), a Natural Resources Canada geoscience program. The Specialty Metal component of this program was carried out collaboratively by the Geological Survey of Canada and the British Columbia Geological Survey. Helicopter and logistical support during sampling by Taseko Mines Limited is greatly appreciated. Bureau Veritas Commodities Canada Ltd., Metallurgical and Geo-analytical divisions, are thanked for access to their laboratory equipment and the expert advice of their staff. Edits by Beth. M. McClenaghan (Geological Survey of Canada) are greatly appreciated.

REFERENCES

Direct and indirect indicator minerals in exploration for carbonatite and related ore deposits — an orientation survey, British Columbia

Overview of porphyry Cu indicator minerals

Karen D. Kelley

U.S. Geological Survey, Box 25046, Mail Stop 973, Denver, Colorado 80225 U.S.A.
*Corresponding author's e-mail: kdkelley@usgs.gov

The porphyry Cu indicator mineral (PCIM) method was developed by Averill (2007) with a focus on porphyry deposits in arid regions such as the Atacama Desert. Recent case studies have tested the usefulness of the method in identifying concealed deposits in glaciated environments, including those in Alaska, USA (Kelley et al. 2011, 2013a) and British Columbia, Canada (Bouzari et al. 2011; Celis et al. 2013; Plouffe et al. 2013; Hashmi et al. 2014; Ferbey et al. 2014). Results suggest that the PCIM method is a powerful tool in the exploration for porphyry deposits in arctic regions.

This overview focuses on deposits in glaciated terranes, with emphasis on southwest Alaska. The Pebble Cu-Au-Mo porphyry deposit (Fig. 1) contains one of the largest resources of copper and gold in the world (Kelley et al. 2013b). Except for two small surface exposures, the deposit is buried by glacial deposits, and locally by post-mineralization volcanic and sedimentary rocks that underlie the glacial deposits. Numerous additional porphyry deposits, geologically and geochemically similar to Pebble, are located within the Pebble district. In addition, the Audn-Iliamna porphyry prospect, which is southwest of Pebble, is entirely concealed by up to ~210 m of glacial materials. The PCIM method was applied to both areas, and comparison of the Alaskan examples with those from deposits in British Columbia suggest many similarities with regards to the dominant indicator mineral species present in bedrock and till, and their physical or chemical characteristics.

PORPHYRY Cu INDICATOR MINERALS IN BEDROCK AND TILL

Indicator minerals are defined as those that are heavy (>2.8 S.G.) and thus concentratable, coarse-grained, readily identifiable, and sometimes chemically stable in weathered surficial sediments (i.e. resistate). Identification of gold-grain dispersal trains in tills is perhaps the most effective, because the combination of gold-grain abundance, size, shape, flatness, and fineness may provide information about the source and transport distance. Although the gangue mineralogy of porphyry deposits and their associated alteration zones is variable, there is some commonality among resistate minerals. Apatite, garnet, rutile, titanite, and zircon are commonly associated with many calc-alkaline and alkaline porphyry deposits in Alaska and British Columbia (Table 1). Most of these minerals are stable in oxidizing conditions and thus, in studied examples, are also observed in till. Tourmaline, corundum, and epidote are occasionally components of bedrock or till near some deposits.

Many of the resistate porphyry minerals also occur in barren igneous or other rock types, and therefore their presence in rock or till samples may or may not be significant. However, unique physical or chemical properties of the minerals can indicate their association with mineralized porphyry systems. For example, garnet in porphyry deposits is typically Fe-Ca-Mn-rich (primarily andradite but also grossular or spessartine) and epidote is characteristically rich in Mn (Averill 2011). Recent studies have shown that Mn concentrations in epidote decrease systematically with distance from a deposit, suggesting it may be used to vector to mineralized porphyry systems (Cooke et al. 2014). Cathodoluminescence studies show that apatite associated with K-silicate altered rocks from porphyry deposits in British Columbia luminesce green compared to yellow luminescing apatite in fresh rock, reflecting differences in chemistry (Bouzari et al. 2011). Kelley et al. (2011) report very high V concentrations (avg. 6.3 wt%) in black rutile from rocks affected by potassic alteration at Pebble compared to rutile associated with barren igneous rocks, or to other porphyry deposits (0.2–1.3 wt%) for which data are available (Scott 2005).

Sulphide minerals are generally considered unstable under oxidizing conditions and therefore do not survive weathering processes. Molybdenite and chalcocite may be present in bedrock samples (e.g. Pebble) but physical characteristics (low...

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Present in Bedrock*</th>
<th>Present in Till*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apatite</td>
<td>CM, GC, G, HV, L, MM, MP, P</td>
<td>P, MP</td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td>present in most deposits</td>
<td>HV, MP</td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Epidote</td>
<td>AI, P, MP, WJ</td>
<td></td>
</tr>
<tr>
<td>Garnet</td>
<td>GC, L, MP</td>
<td>AI, P</td>
</tr>
<tr>
<td>Gold</td>
<td>present in most deposits</td>
<td>AI, MP, P</td>
</tr>
<tr>
<td>Jarsite</td>
<td>MM</td>
<td>AI, P</td>
</tr>
<tr>
<td>Magnetite</td>
<td>HV, MM, MP</td>
<td></td>
</tr>
<tr>
<td>Molybdentite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monazite</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td>present in most deposits</td>
<td>AI, P</td>
</tr>
<tr>
<td>Rutile</td>
<td>BL, HV, MM P</td>
<td></td>
</tr>
<tr>
<td>Titanite</td>
<td>CM, MM, MP, P</td>
<td>AI, P</td>
</tr>
<tr>
<td>Tourmalite</td>
<td>HV</td>
<td>AI</td>
</tr>
<tr>
<td>Zircon</td>
<td>A, CM, MM, MP</td>
<td>AI, P</td>
</tr>
</tbody>
</table>

*aabsence of mineral in till from British Columbia deposits is largely a result of lack of study of these deposits, not absence of mineral; lack of minerals in till from the Audn-Iliamna prospect and Pebble deposit is because mineral was not observed

^absence of mineral in bedrock from the Audn-Iliamna deposit is largely a result of lack of study of these deposits, not absence of mineral

British Columbia deposits: A - Ajax; BL - Babine Lake; CM - Copper Mountain; E - Endako; G - Granisle; GC - Galore Creek; HV - Highland Valley; L - Lorraine; MM - Mt. Milligan; MP - Mt. Polley; WJ - Woodjam

Alaskan Deposits: AI - Audn-Iliamna; P - Pebble

hardness) make them vulnerable to glacial crushing and therefore they are not observed in tills. However, some sulphides survive; for example, tills from the Highland Valley and Mt. Polley deposits contain chalcopyrite (Table 1). Chalcopyrite is known to be reasonably stable in till (Averill 2007), and thus the absence in till (e.g. Alaskan deposits; Table 1) suggests either that pre-glacial supergene alteration of the original hypogene mineralization was extreme, or there was in situ post-glacial weathering and oxidation of glacially transported chalcopyrite grains (Averill 2011; Kelley et al. 2011).

The presence of resisitate indicator minerals in mineralized bedrock but not in till down-ice from mineralization (e.g. rutile at Pebble, Table 1) may be attributed to low overall abundance or inhomogeneous distribution in the rocks, or it may be attributable to grain size. Indicator mineral counts are reported for the >0.25 mm (>250 μm) grains. If a given mineral occurs in bedrock as fine, silt-sized grains intergrown with other minerals, these resulting particles may be >0.25 mm, explaining their detection in bedrock samples. During glaciation, rock is broken down along grain boundaries into individual mineral constituents. Therefore, a mineral such as rutile, which undoubtedly is present in the till, probably occurs in the silt-sized fraction (Kelley et al. 2011).

It may be even more common for indicator minerals to be detected in tills but not bedrock samples (e.g. andradite garnet, Mn-epidote, and jarosite at Pebble, Table 1). Such cases suggest that the bedrock samples are not representative of all of the mineralogically diverse zones, or that glacial erosion took place at a higher level of the porphyry system than currently exposed in outcrop or subsurface. Of particular interest is the occurrence of jarosite in till samples down-ice of Pebble, but not in bedrock. Its presence in till suggests that a preglacial supergene cap existed over the deposit (Kelley et al. 2011).

CASE STUDY: SOUTHWEST ALASKA

Based on the distribution of known deposits, southwest Alaska has enormous potential for Cretaceous-Tertiary porphyry-style mineralization yet the area is largely underexplored, due in part to limited exposure and extensive cover by volcanic-sedimentary rocks and glacial deposits (Fig. 1). It is thus critical to develop new and innovative exploration methods that will assist in the search for concealed deposits. The PCIM method was applied at two known porphyry deposits/occurrences: the giant Pebble deposit and surrounding occurrences within the Pebble district and the Audn-Iliamna prospect about 90 km southwest of Pebble. The mineralogical data and details of sampling and processing methods are in Anderson et al. (2011). Results show that the best indicator minerals from the Pebble (+/- Audn-Iliamna) regions are gold, andradite garnet, Mn-epidote, and jarosite. Other indicator minerals such as apatite, titanite, and zircon are present in till samples (Table 1) but based on their distribution, a direct tie to mineralization is not evident (Kelley et al. 2011).

Gold abundance and morphology

Gold-grain abundance includes visible gold identified during panning and that observed during processing in the laboratory; sizes of grains range from 15 to 700 μm. Most tills, including some up-ice from both the Pebble and Audn-Iliamna deposits contain gold (Fig. 2). However, tills from glacial moraines immediately adjacent to Pebble (Fig. 3a) contain 3–30 times the number of gold grains compared to samples up- or down-ice, and the number of grains decreases in the down-ice direction. Abundant gold is also present in tills near porphyry mineral occurrences/prospects in the southwest part of the Pebble district (Fig. 2a). The greatest abundance of modified and pristine grains (as opposed to reshaped grains) is in proximity to mineralization, indicating either short transport distances, or in situ weathering of transported chalcopyrite grains (host to most gold at Pebble) (Kelley et al. 2011).

Surprisingly similar results are shown for the Audn-Iliamna prospect (Fig. 2b) despite the fact that the entire area is covered by up to 210 m of glacial deposits from at least two major stages of glaciation, and sand dunes cover much of the central part of the claim area (Fig. 3b). Tills with the most gold grains, especially those with modified and pristine shapes occur about 5 to 10 km west of the claim blocks (Fig. 2b), consistent with the westward and southwestward directions of ice transport during the older and younger glaciation stages, respectively.

Similar anomalous abundances of gold grains in till are dispersed at least 4.9 km down-ice of the Mt. Polley deposit in British Columbia (Plouffe et al. 2013; Hashmi et al. 2014). The similarities and consistency in results from Canadian deposits with those from southwest Alaska suggest that gold-grain abundance is a potentially reliable tool for identifying porphyry Cu deposits in glaciated terranes, even those that have experienced multiple glaciation events.

Epidote, garnet, and jarosite

Yellow andradite garnet (Ca3Fe2Si3O12) is widespread and
Overview of porphyry Cu indicator minerals

abundant in till samples (0.25–5.0 mm fraction) from Pebble (Fig. 4a). With one exception, all samples up-ice of Pebble contain <10 grains of garnet (normalized to 10 kg of till), samples adjacent to Pebble contain 10–20 grains, and samples with the most grains (>40) occur southwest and further down-ice of Pebble, in close proximity to the smaller mineral occurrences (Fig. 4a).

The lack of garnet in bedrock samples from Pebble does not preclude its presence in mineralized/alter rocks. It is common in the periphery of some deposits, for example, the Mt. Polley, Galore Creek, and Lorraine deposits in British Columbia (Bouzari et al. 2011). The abundance of garnet in tills from Pebble may also reflect peripheral zones or garnet-epidote-quartz skarns associated with some of the porphyry prospects (Kelley et al. 2011). Garnet is abundant in tills from the Audn-Iliamna area, but its distribution is not clearly linked with the location of the deposit. Three samples with the most abundant garnet grains occur west of the claim block, but many other samples northeast and east of the block also contain abundant garnet.

The distribution of Mn-epidote closely mimics the distribution of garnet in the Pebble till samples (Fig. 4a). All samples up-ice and in close proximity to Pebble are mostly free of epidote, whereas samples down-ice of Pebble that contain relatively abundant garnet also contain abundant (up to 40 grains/10 kg) epidote. Anomalous concentrations of epidote are also reported by Hashmi et al. (2014) in till down-ice of the Mt. Polley deposit. The results suggest that the combination of garnet and epidote in till samples is a powerful means for identifying buried porphyry Cu-Au deposits.

Jarosite occurs in about 28 till samples from Pebble (70 total) with a wide range in abundance (1–2,500 grains/10 kg; Fig. 4b). The distribution is more restricted than that of gold grains. All samples up-ice and distal from known mineralized
areas either lack jarosite or contain only trace amounts. The most abundant jarosite occurs in samples adjacent to and within 7 to 8 km down-ice of the Pebble deposit (Fig. 4b). Ages derived from 40Ar/39Ar dating techniques (ca. 8 Ma) suggest that the jarosite formed prior to glaciation, perhaps as a result of oxidation and supergene enrichment. Assuming this is true, it suggests that the level of erosion by glacial processes was shallow (Kelley et al. 2011). The jarosite grains from Pebble are among the first encountered in till samples near porphyry deposits, including other samples from Alaska and Yukon (Stu Averill, oral comm., 2008).

CONCLUSIONS

Indicator minerals in till samples are an effective tool for identifying porphyry deposits in glaciated terranes. Detailed case studies of the Pebble and Audn-Iliamna area suggest the best indicator mineral is gold, which was detected in dispersal trains that extend at least 5 to 10 km down-ice from the deposit. The distribution of andradite garnet and Mn-epidote effectively outlines the Pebble deposit and other occurrences in the district, but is less distinct at Audn-Iliamna. Jarosite distribution at Pebble is particularly informative as (1) it is the first example of a porphyry deposit with abundant jarosite in till samples, (2) it is effective in delineating the deposit, (3) it suggests formation of supergene mineralization, and (4) it indicates the level of glacial erosion was probably shallow. Comparison of Alaskan studies to those underway in Canada suggests many similarities in the characteristics of indicator minerals.

REFERENCES

![Fig. 4](image-url) Distribution of (a) andradite garnet and Mn-rich epidote and (b) jarosite in the 0.25–0.5 mm (250–500 μm) fraction of till samples from the Pebble deposit. Heavy black arrows are ice-flow directions.

New Gold Inc. (New Gold), a Canadian mining company with operations in four countries, holds a highly prospective property known as Blackwater in south-central British Columbia, Canada (Fig. 1). This large property contains two significant Au-Ag deposits, Blackwater in the east and Capoose to the west (Fig. 2).

In 2011, New Gold collected 12 samples of alluvial gravel from first- and second-order drainages downslope from the Blackwater deposit and submitted these samples to the Ottawa laboratory of Overburden Drilling Management Limited (ODM) for heavy indicator mineral testing. As expected, the samples yielded only low levels of gold grains because ~90 percent of gold particles are, by nature, only of silt size (Averill 2001) and this hinders their settling to such a degree (Stokes’ Law) that they are expelled rather than concentrated by high-energy, gravel transporting streams. However, some samples were found to be distinctly anomalous in another, coarser grained indicator mineral – spessartine – a manganiferous garnet (Mn3Al2(Si04)3) which occurs in the altered host rocks of both the Blackwater (Simpson et al. 2012; Christie et al. 2014) and Capoose (Andrew 1988; Awmack et al. 2010) deposits.

Based on the positive spessartine response obtained from the gravel, a systematic indicator mineral survey was conducted in 2012 across much of the Blackwater property. Most of the samples collected were of till rather than gravel because till is unsorted and its matrix, though silt-biased, also contains sand grains of all sizes. Therefore samples collected within the mineral dispersal trains of any Blackwater- or Capoose-type mineralized zones on the property would be expected to contain both fine gold and coarse spessartine grains. The program was very successful, with large, strong gold-spessartine dispersal anomalies identified at both deposits along with other indicator mineral anomalies.

The Blackwater and Capoose deposits have only thin till cover but the till in some parts of the property is thick, potentially compromising the effectiveness of surface sampling. Therefore, in 2013, the till in these thickly covered areas was sampled from top to bottom by reverse circulation drilling. As well, four test holes were drilled on the Blackwater gold-spessartine dispersal train to investigate its subsurface mineralogy, geochemistry, and continuity.

The results obtained from the drilling and sampling programs would normally be confidential for an extended period but in recognition of their scientific importance and geochemical significance New Gold has authorized their early publication. Therefore, in this paper, the signature of the Blackwater dispersal train is described in more detail. In particular, it is shown that the mineralogy and geochemistry of the anomalous till samples are dependent to a significant degree on whether the samples were collected at surface or from the drillholes, i.e., whether the sampled till was oxidized or unoxidized.

PHYSIOGRAPHY AND QUATERNARY GEOLOGY

New Gold’s Blackwater property is ~110 km southwest of the town of Vanderhoof (Fig. 1) on Highway 16, the northern Trans-Canada route, from which it is accessed by forest service roads. Physiographically it is located in the hilly terrain of the Nechako Plateau (Fig. 2). This plateau is part of the larger Interior Plateau of the Canadian Cordillera, which lies between the Rocky Mountains to the east and the Coast Mountains to the West (Fig. 1).

The Blackwater Au-Ag deposit lies on the northern slope of Mount Davidson, one of two peaks of the Fawnie Range on the property (Fig. 2). The Capoose deposit lies atop the other peak, Fawnie Nose. The base of Mount Davidson is ~1500 m above sea level. Its peak is at 1800 m and the Blackwater deposit is at 1600 m, well down the slope.

In the Late Pleistocene, the Blackwater area was glaciated repeatedly by the Cordilleran Ice Sheet, which migrated north-eastward from the high mountains of the Coast Range. The last glacial event was the Fraser Glaciation from ca. 25,000 to 10,000 years ago (Fig. 3; Clague 1989) during which the ice sheet reached its most easterly limit. The direction of ice flow was...
Fig. 2. Topography and physiography of the Blackwater property.
060°, which is recorded in the orientations of numerous drumlins, particularly in the lee of the mountains (Plouffe et al. 2004). Most of the till in the area is related to the Fraser Glaciation but a possibly older till horizon has been identified to the north (Plouffe & Levson 2001). The till is only 2 to 30 m thick over most of the Blackwater deposit (Fig. 4) but thickens rapidly downslope (i.e. glacially down-ice) to as much as 100 m (Fig. 5).

Fig. 3. Maximum extent and final flow directions in the Cordilleran Ice Sheet in south-central British Columbia. Modified from Clague (1989).

Fig. 4. East-west vertical longitudinal section through the Blackwater deposit showing the thickness of glacial till cover and depth of preglacial supergene alteration. Source: Simpson et al. (2012).

Fig. 5. Overburden thicknesses in the vicinity of the Blackwater deposit. Overburden thickness was determined from vertical condemnation holes drilled by New Gold. The locations of the 68 relevant surface till samples and four investigative reverse circulation drillholes are also shown.
Miocene volcanic rocks (Diakow et al.) extensively cover the autochthonous, terrestrial, Eocene and the Late Cretaceous are exposed in windows within a region of volcanic rocks of the Middle Jurassic and granitoid plutons of within this uplifted block allochthonous, mainly submarine part of a structurally raised block or horst, the Nechako uplift. Intermontane Belt of the Western Cordillera (Fig. 6). It covers the Blackwater property is located centrally within the Cordillera. Source: Gabrielse et al. (1997). During construction of the Cordillera (Fig. 6). American protocontinent in the Middle Jurassic (Monger et al.) tectonically from the ancestral Pacific Ocean onto the North American plate. Further construction of the Cordillera (Fig. 6). Diakow et al. (1997) assigned them to the bimodal Hazelton Group, which consists of typical island arc rhyolite flows and volcaniclastic sedimentary rocks of the Entiako Formation overlain by submarine basalt flows of the Naglico Formation. The northeastern slope of Mount Davidson, as far west as the Blackwater deposit, is underlain by the Entiako Formation (Fig. 7). On both the western slope and foot of the mountain, these older rocks are largely covered by Eocene andesite to rhyolitic flows and tuffs of the Ootsa Lake Group.

The Blackwater deposit does not crop out; its geology is known only from drilling. The deposit occurs within and is hosted by an isolated, 2 km wide zone of rhyolitic to andesitic volcanic and volcaniclastic rocks of the Late Cretaceous Kasalka Group (Fig. 7). The Capoose deposit occurs in a similar setting. Regionally, the Kasalka Group is restricted to isolated volcanic centres, mostly at highest elevations as at Blackwater and Capoose.

The Kasalka succession at the Blackwater deposit is much disrupted by faulting but primarily consists of massive to brecciated porphyritic andesite overlain successively by massive to laminated rhyodacitic tuff and heterolitic volcaniclastic breccia (Petersen et al. 2013). Gold mineralization is present in all lithologies but occurs mainly in the tuff and volcaniclastic breccia in association with sericite-silica alteration and 1–5% pyrite ± sphalerite. The sulphides occur mainly as disseminated grains but locally with quartz in stockwork veins (Looby et al. 2013; Petersen et al. 2013). The sericitic alteration appears to be superimposed on an earlier potassic hornfels that, in the outboard andesite, is recorded as replacement of primary hornblende phenocrysts by biotite + spessartine garnet + pyrrhotite (Looby et al. 2013). Spessartine, however, also occurs in the sericitic alteration zone (Petersen et al. 2013), where it has been observed in quartz-garnet-pyrite veinlets and appears to envelop pyrite grains that contain micron-scale gold inclusions (Looby et al. 2013), suggesting a late rather than early paragenesis.

Gold at Blackwater occurs mainly as micron-sized native grains and silver as argentite; visible gold is rare and restricted to quartz-pyrite veins (Petersen 2015). The mineralization has been determined to be epithermal and of the Zn-rich intermediate sulphidation variety (Petersen 2013; Looby et al. 2013; Petersen et al. 2013) although it is rather atypical of this style of alteration (Looby et al. 2013) due to the presence of spessartine garnet, a paucity of As, and the apparent absence of adularia. Recent work by New Gold has established a continuum between the Blackwater mineralization and porphyry-style mineralization on Tsacha Mountain, south of Mount Davidson (Fig. 2, M.A. Petersen, pers. comm. 2015).

FOOTPRINT OF THE BLACKWATER DEPOSIT

The Blackwater deposit is large with a NI43-101 compliant proven and probable mineral reserve of 8.17 Moz gold and 60.8 Moz silver in 344 Mt grading 0.74 g/t Au and 5.5 g/t Ag (Christie et al. 2014). Its subcrop beneath the till, i.e., the area exposed to glaciation, measures ~300 x 1000 m based on a 0.3 g/t Au cut-off (Figs. 5, 7). Therefore, despite its relatively low grade, the deposit and its alteration zone would be expected to be well reflected in the till, both mineralogically and geochemically. Both primary and secondary indicator minerals could be present because 10 to 100 m of the former (preglacial) supergene oxide cap remains over most of the deposit (Fig. 4).

METHODS

Sample collection

In the surface sampling program in 2012, samples of till were collected at 300 m intervals on lines oriented northwest-southeast, orthogonal to the northeast ice-flow direction. The locations of the 68 samples collected closest to and/or glacially in line with the Blackwater deposit are shown in Figure 7. The line spacing for these samples varied from 1500 m for the most distal sample sites to 500 m over the deposit, providing coverage at a density of ~2 to 6 samples per km².

ODM, with assistance from New Gold, collected samples from hand-dug pits at a depth 0.5 to 1 m within the C-horizon.
Fig. 7. Locations of the surface till samples and reverse circulation drillholes in relation to the underlying rock formations. Bedrock geology modified from Massey et al. (2005) and Simpson et al. (2012).
of the soil profile (Fig. 8). The till in the C-horizon is less oxidized than that in the B-horizon but the only sulphide mineral that survives to any degree is chalcopyrite (Averill 2001, 2013a), increasing the dependence of indicator mineral surveys on gold grains and chemically resistant oxide and silicate minerals. The samples were rubbed through an 8 mm sieve to obtain 12 to 13 kg of -8 mm material, sufficient to yield ~10 kg of -2 mm till matrix for indicator mineral processing at the laboratory.

The RC drilling program in 2013 used a rig that was purpose-built for efficient, continuous sampling of unconsolidated surficial sediments of any consistency and bedrock of any hardness. All holes were logged and sampled by ODM. In till sections, 10 kg samples of wet-screened -2 mm material, which includes fine drill cuttings from the till clasts in addition to the matrix of the till, were collected over intervals ranging from 1 m in thin sections to 2 to 3 m in sections over 20 m thick. The till below a depth of 2 to 3 m was found to be unoxidized and thus not depleted in sulphide minerals. Seventy-one till samples were obtained from the four holes drilled down-ice from the Blackwater deposit, with Hole 01 abandoned at a depth of 43.5 m without reaching bedrock.

Sample processing
In ODM’s mineral extraction laboratory, the oxidized surface samples were processed to extract (a) the specific gravity (SG) >3.2 heavy mineral fraction for indicator mineral study; and (b) a large, ~30 g subsample of the -0.063 mm silt + clay fraction for geochemical analysis. The heavy mineral concentrates (HMCs) were not analyzed because, with the till being oxidized and depleted of sulphides, they would contain negligible base metals and gold only in the form of liberated grains, most of which were observed during processing and physically measured to determine their Au value.

A second, lower density concentrate of SG 2.8 to 3.2 had been prepared from the 12 gravel samples collected in 2012 to check for possible jarosite dispersal from the supergene zone of the Blackwater deposit because jarosite is a key indicator mineral at the glaciated Pebble porphyry Cu-Au deposit in Alaska (Kelley et al. 2011). Only a few jarosite grains were found; therefore, preparation of the low-density concentrates was discontinued.

SG >3.2 HMCs were also prepared from the odd-numbered and bottom samples collected from the drillholes. Since the till at depth was unoxidized and sulphide-bearing, the HMCs rather than the -0.063 mm till fines were analyzed geochemically. Only the -0.25 mm fraction of the concentrates was analyzed; the coarser, 0.25 to 2 mm fraction was reserved for indicator mineral determination.

The HMCs were extracted from the till samples using a well established process involving successive separations by tabling, heavy liquids, magnetism, paramagnetism, and sieving to produce 0.25–0.5 mm, 0.5–1 mm, and 1–2 mm nonferromagnetic heavy mineral fractions with the finest, 0.25–0.5 mm fraction further separated into four subfractions of varying paramagnetic susceptibility to facilitate indicator mineral identification. The gold grains were counted after the first separation (i.e. tabling), then returned to the table concentrate. The gold-grain counts were not normalized because the sample weights were relatively constant.

Indicator mineral identification
All six nonferromagnetic heavy mineral fractions were thoroughly examined for indicator mineral grains by experienced mineralogists using a binocular microscope with scanning electron microscope (SEM) support to resolve any questionable grains. The number of grains of each indicator mineral in each of the three particle size ranges was either counted or estimated, depending on the number of grains present. For key minerals, either all of the grains or representative populations were put in vials to form an organized grain library. The overall mineralogy of each concentrate was also recorded systematically, mainly to identify any major changes in till provenance that might suggest the presence of more than one till horizon.

Sample analysis
All geochemical analyses were performed by Actlabs Limited in Ancaster, Ontario. The same analytical methods were used to analyze the -0.063 mm fines from the surface samples and the -0.25 mm HMCs from the drillhole samples. Au and As were determined by instrumental neutron activation (INA) analysis using a large split of the available sample material to ensure that most or all of the gold grains were represented. No pulverizing was required; therefore the gold grains remained intact. Base metals and other potential indicator elements were determined on a small split by inductively coupled plasma (ICP) analysis following aqua regia digestion.

RESULTS
Indicator mineralogy of the surface till samples
The surface sampling identified and outlined a strong indicator mineral dispersal train down-ice from the Blackwater deposit (Fig. 9). This dispersal train, hereinafter called the Blackwater train, is defined equally well by gold (Fig. 9A) and spessartine (Fig. 9B) grains although the margins of the spessartine train are more diffuse. The trend of the train is 060°, matching the azimuth of ice flow at the end of the Fraser Glaciation (Fig. 3). The train is ribbon-shaped and ~1300 m wide, or 300 m wider than the 1000 m footprint of the deposit at a 0.3 g/t Au cutoff grade. This suggests that the train reflects both the eco-
Fig. 9. Concentrations of (A) gold and (B) 0.25–0.5 mm spessartine grains in the surface till samples. See Figure 7 for bedrock lithologies.
nomic core and lower grade margins of the deposit.

Sixteen samples were collected within the main part of the Blackwater train, four on each of four lines across the train (Fig. 9A). Of these, twelve were collected from 0 to 1000 m down-ice from the centre of the mineralized zone and the other four were collected 2500 m down-ice. All sixteen yielded significantly anomalous levels of gold grains, with the counts ranging from 10 to 641 grains per sample (Fig. 9A, Table 1). In contrast, the samples collected alongside and up-ice from the train consistently yielded <10 and mostly 0 to 5 grains, with the exception of sample No. 005 which was collected on the distal line, 2500 m down-ice, and yielded 25,000 grains of the 0.25–0.5 mm size (Table 1), which is only marginally above the regional spessartine background of 0 grains. The other fourteen samples yielded from 250 to 25,000 grains, with the highest counts being closest to the deposit.

Due to the much higher concentration of spessartine grains than gold grains in the Blackwater train, the train should be detectable for a considerably greater distance using spessartine, possibly as far as 10 km down-ice from the Blackwater deposit.

While the highest spessartine concentrations occur within the limits of the gold dispersal train, significantly anomalous responses were obtained up to 1 km outboard on either side of the gold train and 1.5 km further up-ice on the southeastern side (Fig. 9B). The distribution of the outlying anomalous samples beyond the economic limits of the mineralized zone, and sample No. 099, collected on the distal line, 2500 m down-ice, were not significantly anomalous in spessartine (Fig. 9B), yielding only 3 to 25 grains of 0.25–0.5 mm size (Table 1), which is only marginally above the regional spessartine background of 0 grains. The other fourteen samples yielded from 250 to 25,000 grains, with the highest counts being closest to the deposit.

Table 1. Indicator mineralogy and -0.063 mm geochemistry of the surface till samples collected along the Blackwater train. Only the four central samples on each line across and up-ice from the train are shown.

<table>
<thead>
<tr>
<th>Distance Down-Ice from Centre of Deposit (m)</th>
<th>Sample No.</th>
<th>Total No. of Gold Grains</th>
<th>% Pristine or Modified</th>
<th>No. of Spessartine Grains in 0.25–0.5 mm Size</th>
<th>Geochemistry of -0.063 mm Fraction</th>
<th>%</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1500</td>
<td>152</td>
<td>1</td>
<td>0</td>
<td>15 < 2</td>
<td>Au 7.5 Ag 8 As 50 Cu 11 < 0.5</td>
<td>3</td>
<td>317 0.02</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>4</td>
<td>0</td>
<td>25 < 2</td>
<td>9 15.5 13 62 14 < 0.5</td>
<td>4</td>
<td>427 0.01</td>
</tr>
<tr>
<td></td>
<td>131</td>
<td>1</td>
<td>0</td>
<td>8 < 2</td>
<td>2 47.1 13 61 9 < 0.5</td>
<td>3</td>
<td>372 0.05</td>
</tr>
<tr>
<td></td>
<td>126</td>
<td>1</td>
<td>0</td>
<td>6 < 2</td>
<td>< 2 19.6 24 78 9 < 0.5</td>
<td>2</td>
<td>676 0.03</td>
</tr>
<tr>
<td>-500</td>
<td>005</td>
<td>10</td>
<td>2</td>
<td>16 < 2</td>
<td>< 2 0.7 7 52 13 < 0.5</td>
<td>2</td>
<td>234 0.01</td>
</tr>
<tr>
<td></td>
<td>004</td>
<td>5</td>
<td>3</td>
<td>5 < 2</td>
<td>< 2 0.2 18 20 91 18 0.6</td>
<td>2</td>
<td>768 0.01</td>
</tr>
<tr>
<td></td>
<td>127</td>
<td>1</td>
<td>0</td>
<td>0 < 2</td>
<td>6 12 18 207 31 1 4 393</td>
<td>0</td>
<td>01 0.02</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>3</td>
<td>0</td>
<td>13 < 2</td>
<td>0.2 10.5 13 56 7 < 0.5</td>
<td>3</td>
<td>474 0.01</td>
</tr>
<tr>
<td>0</td>
<td>006</td>
<td>62</td>
<td>20</td>
<td>19 < 2</td>
<td>32 39 1620 49 85</td>
<td>2</td>
<td>1210 0.01</td>
</tr>
<tr>
<td></td>
<td>001</td>
<td>641</td>
<td>287</td>
<td>1500 < 2</td>
<td>74 0.2 261 25 266 71 1.4</td>
<td>2</td>
<td>676 0.01</td>
</tr>
<tr>
<td></td>
<td>002</td>
<td>561</td>
<td>287</td>
<td>17 < 2</td>
<td>42 0.2 31.4 18 118 47 1 < 2</td>
<td>2</td>
<td>506 0.01</td>
</tr>
<tr>
<td></td>
<td>003</td>
<td>23</td>
<td>3</td>
<td>8 < 2</td>
<td>21.6 11 95 10 0.6</td>
<td>2</td>
<td>547 0.01</td>
</tr>
<tr>
<td>+500</td>
<td>018</td>
<td>119</td>
<td>29</td>
<td>12 < 2</td>
<td>1.5 57.8 7 761 70 0.9</td>
<td>2</td>
<td>612 0.01</td>
</tr>
<tr>
<td></td>
<td>015</td>
<td>26</td>
<td>8</td>
<td>18 < 2</td>
<td>12.8 0.2 32.8 12 125 17 0.6</td>
<td>2</td>
<td>1140 0.01</td>
</tr>
<tr>
<td></td>
<td>014</td>
<td>151</td>
<td>68</td>
<td>5 < 2</td>
<td>19 0.2 11.7 10 120 26 0.6</td>
<td>2</td>
<td>475 0.01</td>
</tr>
<tr>
<td></td>
<td>011</td>
<td>214</td>
<td>148</td>
<td>6 < 2</td>
<td>0.2 24.9 18 208 66 2.7</td>
<td>2</td>
<td>1020 0.02</td>
</tr>
<tr>
<td>+1000</td>
<td>017</td>
<td>11</td>
<td>8</td>
<td>100 < 2</td>
<td>0.6 12.8 24 125 17 0.6</td>
<td>2</td>
<td>1140 0.01</td>
</tr>
<tr>
<td></td>
<td>022</td>
<td>23</td>
<td>6</td>
<td>17 < 2</td>
<td>0.7 14.3 8 123 32 < 0.5</td>
<td>2</td>
<td>395 0.02</td>
</tr>
<tr>
<td></td>
<td>021</td>
<td>44</td>
<td>17</td>
<td>25 < 2</td>
<td>13.9 0.2 18.8 133 20 0.6</td>
<td>2</td>
<td>326 0.01</td>
</tr>
<tr>
<td></td>
<td>018</td>
<td>58</td>
<td>21</td>
<td>35 < 2</td>
<td>7.5 8 101 45 0.6</td>
<td>2</td>
<td>325 0.01</td>
</tr>
<tr>
<td></td>
<td>011</td>
<td>214</td>
<td>148</td>
<td>6 < 2</td>
<td>0.2 24.9 18 208 66 2.7</td>
<td>2</td>
<td>1020 0.02</td>
</tr>
<tr>
<td>+2500</td>
<td>096</td>
<td>32</td>
<td>0</td>
<td>16 < 2</td>
<td>0.3 9.4 12 70 21 < 0.5</td>
<td>2</td>
<td>266 0.01</td>
</tr>
<tr>
<td></td>
<td>097</td>
<td>28</td>
<td>0</td>
<td>16 < 2</td>
<td>0.3 9 12 115 25 < 0.5</td>
<td>3</td>
<td>270 0.01</td>
</tr>
<tr>
<td></td>
<td>098</td>
<td>162</td>
<td>19</td>
<td>82 < 2</td>
<td>3.8 6.8 120 100 45 < 0.5</td>
<td>2</td>
<td>300 0.01</td>
</tr>
<tr>
<td></td>
<td>099</td>
<td>14</td>
<td>0</td>
<td>12 < 2</td>
<td>0.4 5.6 18 72 8 0.5</td>
<td>3</td>
<td>373 0.01</td>
</tr>
</tbody>
</table>

Fig. 10. Gold particle-size distribution in three oxidized, gold-rich surface till samples and in an unoxidized till sample from reverse circulation drillhole No. 04.

Approximately 90% of the recovered grains were silt-sized (Fig. 10) as expected because (a) most gold grains crystallize at this size in bedrock; and (b) the grains retain their sizes during glacial transport due to their malleability; i.e., they are deformed, not comminuted during transport (Averill 2001, 2013b). This is readily seen in Figure 10 where the gold grains in the most distal gold-rich sample, No. 098, which was collected 2500 km down-ice, have the same particle-size distribution as two gold-rich samples collected close to (sample No. 011) or directly over (sample No. 001) the deposit.

In the twelve samples collected within 1000 m of the deposit, 95 to 100% of the gold grains are either pristine or only partly modified (Table 1). In contrast, only 14 to 62% of the gold grains in the four distal samples, which were collected 2500 m down-ice, are of these morphologies. The rest are fullyreshaped, reflecting the progressive grain modification that occurs with increasing transport distance (Averill 2001).

Three of the seventeen auriferous samples that define the Blackwater train (Fig. 9A), samples 003 and 005, which are

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Distance Down-Ice (m)</th>
<th>Number of Gold Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>0</td>
<td>641</td>
</tr>
<tr>
<td>011</td>
<td>500</td>
<td>214</td>
</tr>
<tr>
<td>098</td>
<td>2500</td>
<td>164</td>
</tr>
<tr>
<td>04-02</td>
<td>500</td>
<td>126</td>
</tr>
</tbody>
</table>
The Blackwater gold-spessartine-pyrolusite dispersal train, B.C.: Influence of sampling depth on indicator mineralogy and geochemistry

The spessartine and andradite grains in the till be differentiated. The only significant difference is that the andradite grains are very abundant in the till. This andradite is also a key indicator mineral, being derived from either skarns (Dawson & Kirkham 1996) or the propylitic alteration zones of porphyry Cu deposits (Averill 2011). Therefore it is critical that the spessartine and andradite grains in the till be differentiated. The spessartine and andradite grains from selected till samples.

The Blackwater deposit contains three main metals, of which two, Au and Zn, are the most strongly anomalous elements in the dispersal train. They were detected in all samples collected within 1000 m of the deposit. The third metal, Ag, is not anomalous in the till, probably because in the mineralized zone it occurs mainly as argentite (Petersen et al. 2013), a sulphide mineral (Ag2S), and the sampled till was oxidized and sulphide minerals were depleted. The oxidation is also reflected in very low-S analyses of 0–0.05%. The till samples that were collected no more than 1000 m down-ice from the centre of the deposit are also weakly anomalous in Pb, and those collected within 500 m are weakly anomalous in As, Cd, and Mn but not in Cu or Mo. The elevated Mn probably reflects the high concentration of spessartine garnet in the till.

The Au and Zn geochemical anomalies are shown in Figure 12A and 12B, respectively. Although both elements are anomalous for 1000 m down-ice from the centre of the Blackwater deposit, the highest Au response — directly over the deposit — is just 74 ppb, and the highest Zn response — also directly over mineralization — is 1620 ppm. The frequency of gold grains in the anomalous samples is sufficient (Fig. 9A, Table 1) for one or more grains to be present in the ~30 g aliquot of ~0.063 mm fines that was analyzed, especially as most of the grains were also finer than 0.063 mm (Fig. 10). Therefore most probably all of the Au anomalies were caused by this particulate gold rather than by Au chemically adsorbed by clay minerals or limonite. However, an outlying, 39 ppb Au anomaly obtained from sample 154, collected west of the Blackwater deposit, may be due to adsorbed Au because no gold grains were observed in this sample.

Till stratigraphy of the reverse circulation drillholes

Two RC drill holes were originally planned along the axis of the Blackwater train to investigate the train at depth: a proximal hole ~600 m down-ice from the centre of the gold deposit and a more distal hole ~1700 m down-ice. However, the original distal hole, Hole 01, was abandoned in till at 43.5 m due to drilling issues and a 70.4 m replacement hole, Hole 02, was drilled further west off the axis of the train. In addition the planned proximal hole, Hole 03, encountered only 1.6 m of till and was replaced by a 40 m hole to the east, Hole 04.

A longitudinal section of the Blackwater train from the gold deposit northeastward through Hole 04 to Hole 02 is shown in Figure 13. The overburden forms a distinct wedge; its thickness increases rapidly downslope to the northeast along the Blackwater train, from ~5 m thick over the Blackwater deposit to 70.4 m at Hole 02, ~1300 m down-ice. Nevertheless it consists entirely of till and this till is of a relatively uniform texture and composition, suggesting that it was all deposited during the Fraser Glaciation.

The depth of oxidation in the three deep drillholes varies from 1.8 to 5.0 m. Below this depth the till is as fresh as when it was deposited ~10,000 years ago, although it contains some highly oxidized clasts derived from preglacially saprolitized bedrock. It typically consists of 20 to 40% pebble- to boulder-size clasts in a matrix dominated by silty to sandy rock flour but locally by clay. This clay is grey-brown and is probably derived from organic-rich glaciolacustrine sediments of the same colour that were intersected within the till on the western part of the property. The clast lithologies indicate a mostly local provenance; 90 to 100% are volcanic and <10% are granitoid,

Fig. 11. Binocular microscope photographs of representative (A) spessartine and (B) andradite garnet grains from selected till samples.
Fig 12. (A) Au and (B) Zn analyses for the -0.063 mm fraction of surface till samples. See Figure 7 for bedrock lithologies.
even though a large pluton, the Laidman Batholith, is present just 10 km up-ice.

Indicator mineralogy of the till sections

Twenty samples were collected from the 40 m thick till section in the deposit-proximal drillhole, Hole 04. The top eleven samples, spanning 22.5 m, were all found to be anomalous, yielding from 10 to 126 gold grains, with an average of 68 grains (Fig. 13, Table 2). The next three samples, spanning 6 m, yielded nearly anomalous to weakly anomalous levels of 9 to 11 grains per sample, giving the gold dispersal train a remarkable total thickness of 28.5 m. The last six samples, spanning 11.5 m between the dispersal train and bedrock, yielded only background levels of 0 to 3 grains per sample. In neighbouring Hole 01, the single till sample obtained from the thin, 1.6 m till section yielded 32 gold grains.

Thirty-five samples were collected from the 70.4 m thick till section in Hole 02. The gold grain results obtained from this hole (Fig. 13) are similar to but weaker than those from Hole 04 because Hole 02 was drilled ~800 m further down-ice and off the axis of the dispersal train. As well, the nearest surface samples, Nos. 017 and 022 (Fig. 9A), yielded just 11 and 23 gold grains (Table 1).

In the drillhole, the main part of the gold dispersal train occurs in a 12 m interval between 17.5 and 29.5 m although the top sample in the hole, between 1.0 and 3.5 m, yielded 11 gold grains, supporting the weak surface anomaly (Fig. 9A). In the main anomalous zone (Fig. 13), seven successive samples yielded from 8 to 25 gold grains, averaging 17 grains. As in Hole 04, the anomalous zone is followed by a zone of elevated but sub-anomalous gold grain concentrations, then a thick zone directly above bedrock — in this case 14.9 m — of only background levels of 0 to 3 grains per sample. The gold grain response obtained from neighbouring Hole 01 was similar; it is not shown in Figure 13 because the hole was not completed to bedrock.

In the thick, unoxidized portion of the Blackwater train at depth, as in the thin, oxidized zone at surface, ~90% of the gold grains are silt sized (Fig. 10). Also as in the surface samples (Table 1), the proportion of pristine to modified grains is high in the proximal part of the train (Table 2) and lower in the distal part. Interestingly, however, the proportion of pristine to modified grains appears to decrease in the upper part of the train. In the top four anomalous samples collected from the train in Hole 04, for example, only 69 to 85% of the gold grains are pristine to modified, compared to 86 to 100% (mostly >90%) in the bottom seven samples (Table 2). This

Fig. 13. Longitudinal section of the Blackwater train through reverse circulation drillholes No. 04 and 02.
suggests that the till in the upper part of the dispersion train has a longer transport history, i.e., it was transported the same horizontal distance as the till in the lower part of the train but at a greater vertical distance and in a longer period of time with the result that the gold grains are physically more mature. Another interesting feature is that in the thick, underlying zone, which has only background levels of 0 to 3 gold grains, 100% of the grains are pristine to modified rather than reshaped, suggesting that they too are related to the Blackwater deposit rather than to distal gold sources.

As previously noted, the concentration of spessartine and other potential indicator minerals other than gold was determined only for the odd-numbered and bottom samples collected from the till section in each drillhole. Spessartine levels in the oxidized zone of the gold dispersal train at depth (Fig. 9B, Table 1) mirror those of the oxidized zone at surface (Fig. 9B, Table 1). Most of the anomalous samples yielded >1000 grains of 0.25 to 0.5 mm size versus a background to slightly elevated concentration of 0 to 20 grains. The strongest response was 30,000 grains, mirroring the 25,000-grain peak in the surface samples. Spessartine levels in the train are not only much higher than gold grain levels, but also appear to decrease more slowly down-ice (Fig. 13). Therefore, in the subsurface as at surface, the Blackwater train should be detectable much further down-ice with spessartine grains than with gold grains.

While the Blackwater train in the subsurface is hosted by unoxidized till and the gold grains in this train are clearly derived from the Blackwater deposit, where the gold is closely associated with pyrite (Petersen 2013, Petersen et al. 2013, Looby et al. 2013), the till contains negligible pyrite. No sample from the 22.5 m thick section of the gold dispersal train in Hole 04 (Fig. 13) yielded more than 30 pyrite grains of 0.25 to 0.5 mm size and most samples yielded no pyrite (Table 2).

The paucity of pyrite in the unoxidized till is evidently due to preglacial oxidation of most of the hypogene sulphides in the supergene zone that caps the deposit because the till is anomalous not only in gold and spessartine but also in pyrolusite (Table 2), a supergene Mn-oxide mineral (MnO2). In Hole 04, the top till sample was from the oxidized zone and, like all of the surface samples along the train (Fig. 9, Table 1), yielded no pyrolusite grains, whereas the next ten samples were from the unoxidized zone and yielded from 1500 to 60,000 grains between 0.25 and 0.5 mm, a response similar to that for spessartine. Moreover, many larger grains of pyrite, which is a coarse-biased mineral, were found in the 0.5–1 mm and 1–2 mm fraction of the HMCs. The indicated presence of pyrolusite in the oxidized cap of the Blackwater deposit contrasts with its absence in oxidized till and suggests that the preglacial climate was more arid.

Geochemistry of the heavy mineral concentrates from the till sections

As previously mentioned, the -0.25 mm HMCs of the drilled till samples were analyzed instead of the -0.063 mm till fines because the unoxidized till at depth retains any heavy sulphide mineral grains that were dispersed during glaciation.

The Au, Ag, As, Ca, Zn, Pb, Cd, Mo, Mn, and S analyses obtained from the HMCs of the 20 samples collected from the 40 m thick till section in Hole 04 are shown in Table 2. The highest Au analyses, ranging up to 11,500 ppm, were obtained in the top half of the till section from the eleven samples having anomalous concentrations of gold grains. However, the observed gold grains were expected to collectively produce Au analyses only one tenth to one-fifth as high as the reported values, due to the very small average size of the grains (Fig. 10). Such a large discrepancy between the expected and actual Au analyses normally indicates that another auriferous mineral is present in the HMCs. Most commonly this mineral is pyrite, as in the dispersal train of New Gold’s large Rainy River gold deposit in Ontario, where 90% of the Au occurs within pyrite grains and pyrite is so plentiful in the till that the HMCs are coarse-biased and results in HMC Mn analyses of up to 34,500 ppm or greater than gold grain levels, but also appear to decrease more slowly down-ice (Fig. 13). Therefore, in the subsurface as at surface, the Blackwater train should be detectable much further down-ice with spessartine grains than with gold grains.

While the Blackwater train in the subsurface is hosted by unoxidized till and the gold grains in this train are clearly derived from the Blackwater deposit, where the gold is closely associated with pyrite (Petersen 2013, Petersen et al. 2013, Looby et al. 2013), the till contains negligible pyrite. No sample from the 22.5 m thick section of the gold dispersal train in Hole 04 (Fig. 13) yielded more than 30 pyrite grains of 0.25 to 0.5 mm size and most samples yielded no pyrite (Table 2).

The paucity of pyrite in the unoxidized till is evidently due to preglacial oxidation of most of the hypogene sulphides in the supergene zone that caps the deposit because the till is anomalous not only in gold and spessartine but also in pyrolusite (Table 2), a supergene Mn-oxide mineral (MnO2). In Hole 04, the top till sample was from the oxidized zone and, like all of the surface samples along the train (Fig. 9, Table 1), yielded no pyrolusite grains, whereas the next ten samples were from the unoxidized zone and yielded from 1500 to 60,000 grains between 0.25 and 0.5 mm, a response similar to that for spessartine. Moreover, many larger grains of pyrite, which is a coarse-biased mineral, were found in the 0.5–1 mm and 1–2 mm fraction of the HMCs. The indicated presence of pyrolusite in the oxidized cap of the Blackwater deposit contrasts with its absence in oxidized till and suggests that the preglacial climate was more arid.

Geochemistry of the heavy mineral concentrates from the till sections

As previously mentioned, the -0.25 mm HMCs of the drilled till samples were analyzed instead of the -0.063 mm till fines because the unoxidized till at depth retains any heavy sulphide mineral grains that were dispersed during glaciation.

The Au, Ag, As, Ca, Zn, Pb, Cd, Mo, Mn, and S analyses obtained from the HMCs of the 20 samples collected from the 40 m thick till section in Hole 04 are shown in Table 2. The highest Au analyses, ranging up to 11,500 ppm, were obtained in the top half of the till section from the eleven samples having anomalous concentrations of gold grains. However, the observed gold grains were expected to collectively produce Au analyses only one tenth to one-fifth as high as the reported values, due to the very small average size of the grains (Fig. 10). Such a large discrepancy between the expected and actual Au analyses normally indicates that another auriferous mineral is present in the HMCs. Most commonly this mineral is pyrite, as in the dispersal train of New Gold’s large Rainy River gold deposit in Ontario, where 90% of the Au occurs within pyrite grains and pyrite is so plentiful in the till that the HMCs are coarse-biased and results in HMC Mn analyses of up to 34,500 ppm or greater than gold grain levels, but also appear to decrease more slowly down-ice (Fig. 13). Therefore, in the subsurface as at surface, the Blackwater train should be detectable much further down-ice with spessartine grains than with gold grains.

While the Blackwater train in the subsurface is hosted by unoxidized till and the gold grains in this train are clearly derived from the Blackwater deposit, where the gold is closely associated with pyrite (Petersen 2013, Petersen et al. 2013, Looby et al. 2013), the till contains negligible pyrite. No sample from the 22.5 m thick section of the gold dispersal train in Hole 04 (Fig. 13) yielded more than 30 pyrite grains of 0.25 to 0.5 mm size and most samples yielded no pyrite (Table 2).

The paucity of pyrite in the unoxidized till is evidently due to preglacial oxidation of most of the hypogene sulphides in the supergene zone that caps the deposit because the till is anomalous not only in gold and spessartine but also in pyrolusite (Table 2), a supergene Mn-oxide mineral (MnO2). In Hole 04, the top till sample was from the oxidized zone and, like all of the surface samples along the train (Fig. 9, Table 1), yielded no pyrolusite grains, whereas the next ten samples were from the unoxidized zone and yielded from 1500 to 60,000 grains between 0.25 and 0.5 mm, a response similar to that for spessartine. Moreover, many larger grains of pyrite, which is a coarse-biased mineral, were found in the 0.5–1 mm and 1–2 mm fraction of the HMCs. The indicated presence of pyrolusite in the oxidized cap of the Blackwater deposit contrasts with its absence in oxidized till and suggests that the preglacial climate was more arid.

Geochemistry of the heavy mineral concentrates from the till sections

As previously mentioned, the -0.25 mm HMCs of the drilled till samples were analyzed instead of the -0.063 mm till fines because the unoxidized till at depth retains any heavy sulphide mineral grains that were dispersed during glaciation.

The Au, Ag, As, Ca, Zn, Pb, Cd, Mo, Mn, and S analyses obtained from the HMCs of the 20 samples collected from the 40 m thick till section in Hole 04 are shown in Table 2. The highest Au analyses, ranging up to 11,500 ppm, were obtained in the top half of the till section from the eleven samples having anomalous concentrations of gold grains. However, the observed gold grains were expected to collectively produce Au analyses only one tenth to one-fifth as high as the reported values, due to the very small average size of the grains (Fig. 10). Such a large discrepancy between the expected and actual Au analyses normally indicates that another auriferous mineral is present in the HMCs. Most commonly this mineral is pyrite, as in the dispersal train of New Gold’s large Rainy River gold deposit in Ontario, where 90% of the Au occurs within pyrite grains and pyrite is so plentiful in the till that the HMCs are coarse-biased and results in HMC Mn analyses of up to 34,500 ppm or greater than gold grain levels, but also appear to decrease more slowly down-ice (Fig. 13). Therefore, in the subsurface as at surface, the Blackwater train should be detectable much further down-ice with spessartine grains than with gold grains.
Table 3. Geochemical analyses for pyrolusite grains separated from Sample 11 in Hole 04.

<table>
<thead>
<tr>
<th>Sample 04-11</th>
<th>Ag ppm</th>
<th>As ppm</th>
<th>Cu ppm</th>
<th>Zn ppm</th>
<th>Pb ppm</th>
<th>Cd ppm</th>
<th>Mo ppm</th>
<th>Ni ppm</th>
<th>Mn ppm</th>
<th>S ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>264</td>
<td>781</td>
<td>133</td>
<td>8660</td>
<td>2010</td>
<td>58.9</td>
<td>18</td>
<td>66</td>
<td>90400</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

rich sample in Hole 04, sample No. 11, was submitted for geochemical analysis (Table 3). This separate was too small for gold analysis but was found to be extremely anomalous in both Ag (264 ppm or 7.5 ounces per ton) and Zn (8660 ppm) and also, in the same manner as the -0.063 mm fines from the oxidized surface samples, significantly anomalous in As (781 ppm), Pb (2010 ppm) and Cd (58.9 ppm) but not in Cu (only 133 ppm) or Mo (18 ppm). These results strongly suggest that the unseen Au in the HMCs resides in the pyrolusite.

Pure pyrolusite contains ~60% or 600,000 ppm Mn, but the Mn analysis obtained from the pyrolusite separate was only 90,400 ppm (Table 3), indicating that the grains are very impure. Analysis of the HMC before the pyrolusite grains were removed yielded 32,000 ppm Mn, which suggests a pyrolusite content of ~35%. The HMC also returned 56 ppm Ag, 668 ppm As, 1920 ppm Zn, 1720 ppm Pb, and 7 ppm Cd, each of which is fully accounted for by the high pyrolusite content of the HMC.

CONCLUSIONS

The till sampling performed near the Blackwater Au-Ag deposit successfully delineated a large, previously unknown indicator mineral dispersal train — the Blackwater train — directly down-ice from the deposit (Fig. 9). The sampling program was unusually comprehensive as it established not only the indicator mineralogy but also the geochemistry of the dispersal train, both at surface where the till is oxidized and in the subsurface where it is unoxidized.

The oxidized zone of the till was sampled for 2.5 km down-ice from the Blackwater deposit at a density varying from 2 to 6 samples per km². At this sample spacing, the Blackwater train was faithfully detected mineralogically for more than 2.5 km from source using either gold (Fig. 9A) or spessartine (Fig. 9B) grains; whereas it is was detected for only 1 km geochemically in the -0.063 mm silt + clay fraction of the till (Fig. 12). Moreover the Mn in the spessartine was detected only in the samples that were collected within 500 m of the Blackwater deposit; these proximal samples contained thousands of spessartine grains.

Gold grains are the best indicator of the Blackwater deposit because they reflect the actual mineralization; the spessartine grains reflect only its alteration envelope. Moreover, the gold grains are malleable and their morphologies change systematically along the train from pristine to reshaped (Table 1), providing a measure of their transport distance. In 10 kg samples, background levels of both gold and spessartine grains are near zero. At an anomaly threshold of 10 gold grains per sample, the dispersal train is probably detectable for at least 3 km down-ice. With spessartine its detectable length may be as much as 10 km because spessartine grains are much more abundant than gold grains within the train.

Gold grains (Fig. 9A) define a train that is ~1.3 km wide — similar to the width of the Blackwater deposit — and ribbon-shaped with straight, sharp, lateral boundaries and a clear cutoff at the deposit. Using spessartine (Fig. 9B), the axis of the train is unchanged but the lateral margins are diffuse and the width doubles. The spessartine train appears to originate entirely from the Late Cretaceous Kasalka volcanic rocks that host the Blackwater deposit, with its core reflecting the known spessartine-bearing alteration envelope of the deposit and the lower grade margins suggesting that the outlying Kasalka volcanic rocks contain other, similar alteration zones.

In the subsurface, the Blackwater train is up to 22.5 m thick and is elevated well above the bedrock surface (Fig. 13). Gold grain and spessartine levels are similar to those at surface (Fig. 9), suggesting that the train is detectable for the same distance down-ice in the subsurface. Although the till that hosts the gold and spessartine grains is unoxidized, and the Blackwater deposit, from which these grains are derived, contains ~1 to 5% pyrite (Petersen et al. 2013, Christie et al. 2014), the till contains negligible pyrite. This appears to be due to the presence of an oxidized, preglaucal supergene cap on the primary pyritic mineralization (Fig. 4). Instead of pyrite, the unoxidized till contains pyrolusite, a heavy, supergene Mn-oxide mineral that is apparently derived from the oxidized cap of the Blackwater deposit. Except at the surface of the Blackwater train where any glacially dispersed pyrolusite grains in the till were consumed by post-glacial oxidation, pyrolusite is as abundant as spessartine (Table 2), constituting up to 35% of some HMCs.

The pyrolusite grains are remarkably enriched in scavenged Ag (256 ppm or 7.5 oz/ton), As (781 ppm), Zn (8660 ppm), Pb (2010 ppm), and Cd (58.9 ppm) (Table 3). The HMC analyses for these elements are roughly proportional to the percentage of pyrolusite in the HMCs. The pyrolusite was not analyzed for Au but apparently it is as enriched in this element as in Ag because the HMC Au analyses are five to ten times higher than expected from the recovered gold grains, 90% of which are silt-sized (Fig. 10) and thus make only a small contribution to the Au analyses.

Possibly the most unusual feature of the gold grain dispersal train is its rapid separation from bedrock in the down-ice direction (Fig. 13). In Hole 04, ~600 m down-ice from the centre of the Blackwater deposit, the base of the dispersal train, excluding the underlying zone of elevated but subanomalous levels of gold grains, is 17.5 m above bedrock and in Hole 02, ~800 m further down-ice, it is 50.9 m above bedrock. While this could suggest the presence at depth of an older, barren till horizon deposited by ice that flowed in a more easterly or northerly direction, only one till appears to be present because (a) macroscopically the till section is very homogeneous; (b) both the barren and auriferous till contain spessartine (Table 2, Fig. 13); and (c) while the barren till in Hole 04 contains only sparse gold grains, all of the grains are pristine (Table 2) and thus are probably derived from the Blackwater deposit.

The progressive separation of the gold-spessartine-pyro- lusite dispersal train from bedrock with increasing distance from the Blackwater deposit is probably due to the englacial thrusting process described by Clayton & Moran (1974), which is also responsible for elevating mineralized boulders to surface down-ice from ore deposits. This upthrusting may have been accelerated by the steep drop-off in the bedrock surface down-ice from the Blackwater deposit (Figs. 5, 13). Similarly perched indicator mineral dispersal trains have been identified by RC drilling at Matagami and a few other mineral deposits that occur on bedrock-highs directly up-ice from deep bedrock valleys in the Abitibi Greenstone Belt of Eastern Canada (Averill 2003). None of these perched trains would have been recognized if only the bottom of the till section, commonly referred
to as “basal” till, had been sampled. As demonstrated by the Blackwater program, the top till samples from a drillhole can be more important than the bottom samples and the entire till section must be sampled to determine the limits and significance of a dispersal train.

ACKNOWLEDGEMENTS

A number of geologists were key to the success of the Blackwater till sampling program. Robin Whiteaker, New Gold’s Senior Project Geologist and Manager, worked closely with ODM, both in planning the program and assisting with field logistics. Three of the author’s colleagues led specific aspects of the program. Don Holmes organized and supervised the field work, Remy Huneault supervised the laboratory sample processing, and Kenzie MacNeil led the indicator mineral identification team. The illustrations and data tables in the paper were prepared by David Hozjan and Michael D. J. Michaud.

The author particularly thanks Mark Petersen, New Gold’s Vice-President Exploration, for reviewing the paper and authorizing the early publication of proprietary but scientifically significant data, even though exploration of the Blackwater property is ongoing. It is hoped that others will recognize the major benefits that this practice brings to the science of mineral exploration.

REFERENCES

Scheelite (CaWO₄) is an important accessory mineral in a variety of magmatic-hydrothermal ore deposit settings, including Cu-Mo porphyry, skarn and vein Sn-W, volcanogenic massive sulphide, orogenic Au, and epithermal. Due to its physical (e.g. H=4.5–5, D=6) and chemical properties, scheelite is relatively impervious to physical and chemical degradation and can be concentrated in surficial environments. Scheelite, therefore, has the potential to be used as a powerful indicator mineral in exploration; however, this application is limited owing to the fact that no comprehensive chemical database (trace elements, stable isotopes, cathodoluminescence character, etc.) exists for the mineral. Here we present the results of a crystal-chemical study of scheelite from a large range and number of ore-deposit settings to assess its application as a pathfinder mineral. In this study scheelite from 32 ore deposits was examined using a variety of analytical methods to fully characterize and assess the features that may prove most useful as discriminators. The following methods have been integrated into this study: (1) SEM-EDS to assess minor element chemistry and document zoning; (2) cathodoluminescence (CL) to characterize zoning; (3) point analyses and elemental mapping using the LA-ICP-MS for minor and trace elements; (4) stable isotopes (¹⁸O) to identify source reservoirs (e.g. magmatic versus metamorphic); and (5) the presence of both mineral and fluid inclusions. The results of this work indicate that scheelite is a chemically complicated mineral that exhibits a large range in the parameters investigated, including (1) zonation, which varies from absent to normal, oscillatory, and discordant; (2) minor-element composition, in particular for As and Mo, which varies greatly; (3) trace-element chemistry, specifically the REEs that vary in terms of ΣREEs (10⁴ range in chondrite-normalized values), degree and type of fractionation patterns (flat, convex, concave), and type (+, -) and amount of Eu anomalies (<0.1 to >20–30); (4) stable isotope chemistry, specifically δ¹⁸O that ranges from -4.6 to +9.1‰; and (5) whereas mineral inclusions are rare, fluid inclusions may be present with a range of fluid types (e.g. HvO versus H₂O-CO₂). This dataset, the most comprehensive for scheelite, are presently being evaluated to assess the discriminating potential of scheelite and its use as an indicator mineral. These new data also provide, in addition, insight into the fluid chemical evolution of a large range of ore deposit types not previously appreciated (e.g. cryptic paragenesis) and will serve as a basis for further applied crystal-chemical studies of this mineral phase.
Indicator mineral signatures of the Mount Pleasant Sn-W-Mo-Bi-In deposit, New Brunswick, Canada

M.B. McCloughan, M.A. Parkhill, A.G. Pronk

1Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario Canada K1A 0E8
2New Brunswick Department of Energy and Mines, Geological Surveys Branch, P.O. Box 50, Bathurst, New Brunswick, Canada E2A 3Z1
3New Brunswick Department of Energy and Mines, Geological Surveys Branch, P.O. Box 6000, Fredericton, New Brunswick, Canada E3B 5H1

*Corresponding author’s e-mail: bethmcclenaghan@nrcan-rncan.gc.ca

The use of indicator minerals to explore for Sn-W mineralization is well documented for stream sediments, but much less so for glacial sediments. To address this knowledge gap, the Geological Survey of Canada (GSC) conducted a case study at the Mount Pleasant Sn-W-Mo-Bi-In deposit in eastern Canada to test and demonstrate modern indicator mineral exploration methods for intrusion-hosted S-W deposits. The study was funded by the GSC’s Targeted Geoscience Initiative 4, a collaborative federal geoscience program with a mandate to provide industry with the next generation of geoscience knowledge and innovative techniques for more effective targeting of buried mineral deposits. It was a collaborative effort between the GSC and the New Brunswick Department of Energy and Mines (NBDEM). These short course notes provide an overview of published literature on the use of indicator minerals for Sn-W exploration, with specific reference to the Mount Pleasant deposit.

Overviews of cassiterite, scheelite, wolframite, fluorite, and topaz are provided below as background information because their physical characteristics and recovery from, and abundance in, till is not well known.

CASSITERITE

Cassiterite (SnO₂) has a long history as an indicator mineral starting with its recovery from placer stream deposits in southwest England as far back as the Bronze age (Camm & Groot 1994). It is considered the best indicator mineral of Sn deposits (Stendal & Theobald 1994) because it is Sn-rich, dense (specific gravity (SG) 6.8–7), and chemically and physically robust (H = 6–7) and thus survives fluvial or glacial transport. Its colour varies from deep red to reddish brown (Fig. 1A) to black. Cassiterite is identified in heavy mineral concentrates (HMC) by its adamantine luster, prismatic habit (Fig. 1A), and it is often still attached to quartz in till samples (Fig. 1B).

Cassiterite has been recovered in stream sediments surveys around the world, including Spain (Zantop & Nespereira 1979; Fernández-Turiel & Durán-Barrachina 1989), and Australia (Towsey & Patterson 1984), as well as from placer deposits such as those in Indonesia (Aleva 1985), Great Britain (e.g. Dunlop & Meyer 1978; Camm & Hosking 1985; Camm & Groot 1994), Russia (e.g. Paryk-Kara 1999), the USA (e.g. Johnson 1910; Theobald & Thompson 1960; Chapman et al. 1963), and Canada (e.g. Thompson 1945; Gleeson & Boyle 1980; Ballantyne & Ellwood, 1988). The presence of cassiterite in till has been reported in a few studies (e.g. Brundin & Bergstrom 1977; Mattila & Peuruniemi 1980; Tovertud 1982; Peuruniemi & Heinänen 1985; Ryan et al. 1988; Turner & Stea 1990; Averill 2001) but only in a few till samples that were first determined to have high Sn contents.

SCHEELITE

Scheelite (CaWO₄) is an important indicator of W mineralization. It is moderately hard (H = 4–5) and dense (SG 5.9–6.1). It is relatively insoluble in the natural pH range of surface water, but survives only moderate distances of fluvial or glacial transport because it is brittle (Horsnail 1979; Hosking 1982; Ottensen & Theobald 1994). It is identified in HMC by its pale yellow colour (Fig. 1C), distinctive cleavage, and its bright blue-white-yellow fluorescence under short-wave ultraviolet (UV) light, which can vary due to Mo content (i.e. powellite substitution). Pure scheelite fluoresces strong whitish blue and with increasing Mo content, this colour changes to white (0.5–1.0 wt% Mo), yellow (>1 wt% Mo), and deep orange-yellow (>4 wt% Mo) (Hosking 1982).

Mainly because of its fluorescence, scheelite is easy to visually identify, and thus is one of the most commonly used indicator minerals in stream sediment surveys for W, Sn, and Au exploration globally (e.g. Zeschke 1961), including Turkey (e.g. Özcan & Çağatay 1989), Spain (e.g. Zantop & Nespereira 1979; Fernández-Turiel et al. 1992), Pakistan (e.g. Zeschke 1961; Asrarullah 1982), Malaysia (e.g. Rajah 1982), Somalia (Frizzo & Hassan 1983); USA (e.g. Theobald & Thompson 1960), and India (e.g. de Smeth et al. 1985). It has also been recovered from stream sediments in glaciated terrain, including Norway (e.g. Stendal 1978), Greenland (e.g. Hallenstein et al. 1981; Steenfelt 1987) and Canada (e.g. Maurice 1986; Allen et al. 1999). In some areas, scheelite content in stream sediments is sufficient for the sediments to be characterized as placer W deposits (e.g. Hess 1917; Wildon & Hotz 1955). In some parts of the world, scheelite is recovered from soils in support of mineral exploration (e.g. Petersen & Stendal 1987; Özcan & Çağatay 1989; Surya Prakash Rao et al. 1989).

Recovery of scheelite grains from till has been reported for several studies (e.g. Nikkari & Bjorklund 1976; Brundin & Bergström 1977; Lindmark 1977; Steiger 1977; Stea & O’Reilly 1982; Tovertud 1984; Johansson et al. 1986; Salminen & Hartikainen 1986; Petersen & Stendal 1987; Snow & Coker 1987; Peuruniemi 1992; Averill 2001) but only in a few till samples in each study that were first determined to have high W contents. It was often noted that the scheelite in till formed...
larger anomalies than those outlined using W content. Recently, scheelite has been reported in till and stream sediments down-ice and downstream of the Sisson W-Mo deposit in eastern Canada (McClenaghan et al. 2014a, in press a).

WOLFRAMITE

The other common W-bearing indicator mineral is wolframite ((Fe,Mn)WO₄). It is relatively insoluble in the natural pH range of surface water (Horsnail 1979) and is dense (SG 7.1–7.5). It is identified in HMC by its black colour (Fig. 1D), prismatic crystal form, moderate hardness (H= 4.5, can be scratched with a needle), reddish brown streak, and lack of fluorescence under UV light. When rounded, it can be difficult to distinguish from other visually similar black heavy minerals (e.g. hornblende, tourmaline, ilmenite) that can be abundant in stream sediments and till. Because of its brittle nature and perfect cleavage, it breaks apart more readily than scheelite and thus tends to be rarer. When present, it is usually found in the finest fraction of stream sediments within 2 to 3 km downstream of its bedrock source (ESCAP Secretariat 1982; Hosking 1982; Meizhong 1982).

Wolframite has been recovered in stream sediment surveys around the world (Zeschke 1961), including Spain (Zantop & Nespereira 1979; Fernández-Turiel & Durán-Barrachina 1989; Fernández-Turiel et al. 1992), and USA (e.g. Johnson 1910; Theobald & Thompson 1960) and from W placer deposits (Hess 1917), such as those in Thailand (e.g. Punggrassami 1986) and Burma (e.g. ESCAP Secretariat 1982). Recovery of wolframite from glacial sediments has been occasionally noted when it occurred in association with scheelite (e.g. Brundin & Bergström 1977; Averill 2001). More recently, wolframite has been reported in till and stream sediments down-ice and downstream of the Sisson W-Mo deposit (McClenaghan et al. 2014a).

FLUORITE

Fluorite (CaF₂) occurs in carbonatite, peralkaline intrusions, Mississippi Valley-Type deposits, fluorite ± barite veins in igneous, sedimentary, and metamorphic rocks, and Climax-type Mo deposits (Stendal & Theobald 1994; Makin et al. 2014). It is easily identified in HMC by its purple (Fig. 1E) to green colour, or colourless nature, octahedral or cubic crystal form, low to moderate hardness (H=4, can be scratched with a needle), and its white-blue fluorescence under short and long-wave ultraviolet light. Its SG spans a range from 3.01 to 3.2, thus only some of the fluorite will be captured in a HMC (>3.2 or >3.3 SG). To optimize recovery of fluorite, the mid-density (3.0–3.2 SG) mineral fraction in addition to the heavy mineral fraction should be examined. Its presence has been reported in stream sediments (e.g. Zeschke 1961; Tripp et al. 1978; Watts & Hassem 1980) and glacial sediments (e.g. Szabo et al. 1975; Brundin & Bergström 1977; Mattila & Peuraniemi 1980; Peuraniemi & Heinänen 1985; Peuraniemi & Gehör 2000; Averill 2001).

TOPAZ

Topaz (Al₂SiO₄(F,OH)₂) is commonly found in felsic igneous rocks and some hydrothermal veins, and surrounding hydrothermally altered rocks (Stendal & Theobald 1994). Because it is dense (SG 3.5–3.6) and physically and chemically robust (H = 8), it is relatively resistant to weathering and stream abrasion, making it a useful indicator mineral of topaz-bearing rocks. It is sometimes recovered by Sn or W placer mining. Topaz may be recognized in HMC by its transparent to translucent white (Fig. 1F) colour and extreme hardness. It fluoresces golden yellow under short-wave UV light and cream colour under long-wave UV light. Its presence has been reported in stream sediments (e.g. Zeschke 1961; Tripp et al. 1978) and glacial sediments (e.g. Szabo et al. 1975; Brundin & Bergström 1977; Friske et al. 2001; Averill 2001).

MOUNT PLEASANT Sn-W-Mo-Bi-In DEPOSIT CASE STUDY

The bedrock geology of the Mount Pleasant area is summarized below from Hosking (1963), Petruck (1972, 1973), Kooiman et al. (1986), Inkemo & Hutchinson (2004), Sinclair et al. (2006), McCutcheon et al. (2010), and McCutcheon et al. (2013). The deposit occurs within two subvolcanic intrusions in the Late Devonian Mount Pleasant Caldera Complex along the north flank of the Saint George Batholith. The McDougall Brook granitic suite is related to the early stages of caldera development, and the Mount Pleasant granitic suite is related to the late stages of caldera development. The deposit consists of Sn, W, and Mo mineralization that is genetically related to highly evolved granitic rocks of the Mount Pleasant Granitic Suite (Granites I,II,III) that are enriched in incompatible elements F, Li, Rb, Cs, U, Th, and Nb. Granite I and related breccia host W-Mo-Bi mineralization and Granite II hosts Sn-In mineralization (Figs. 2, 3). Two mineralized zones subcrop and were glacially eroded during the last 2 million years: the North Zone and the Fire Tower Zone (Fig. 4).

The North Zone consists of older W-Mo mineralization and younger Sn-In mineralization, some of which is at or near surface. The Sn-In zones contain cassiterite, arsenopyrite,
loellingite, sphalerite, and chalcopyrite as well as the other sulphide minerals listed in Table 1. The Fire Tower Zone, 1200 m to the south, contains predominantly large, low-grade W-Mo deposits with some small In-bearing Sn-base metal resources. The main ore minerals in the Fire Tower Zone are wolframite and molybdenite and minor native bismuth and bismuthinite. Gangue minerals include cassiterite, arsenopyrite, and loellingite, quartz, topaz, and fluorite. The Fire Tower Zone also contains small In-bearing Sn-base metal zones in irregular veins and breccias consisting mainly of cassiterite and wolframite along with the sulphide minerals listed in Table 1. Indium in the Mount Pleasant deposit occurs mainly as a solid solution between sphalerite and roquesite, but also in chalcopyrite and stannite (Petruk 1972, 1973; Sinclair et al. 2006). In places, the ore minerals are so fine-grained that they cannot be seen in hand specimen (Petruk 1972). The NI 43-101 resource esti-

Fig. 2. Location of the Mount Pleasant area in eastern Canada (inset map) and local bedrock geology map of the Mount Pleasant Sn-W-Mo-Bi-In deposit area and location of GSC till samples (white dots) collected in 2012 up-ice (northwest), overlying, and down-ice (southeast) of the deposit (modified from McCutcheon et al. 1997; Fyffe & Thorne 2010).

Fig. 3. Cross-section A-B (location shown in from Fig. 2) through the North and Fire Tower zones at Mount Pleasant, showing the ore subzones (purple). Note subzones at the North Zone subcrop. Bedrock geology units same as those in Figure 2 (modified from McCutcheon et al. 1997; Fyffe & Thorne 2010).
0.8417 million tonnes at 0.26% WO₃, 0.20% MoS₂, 0.21% As, 0.57% As, and 0.06% Bi, as well as an inferred resource of 12.4 million tonnes averaging 0.38% Sn, 0.86% Zn, and 64 ppm In, as well as an inferred resource of 13.489 million tonnes at 0.33% WO₃ and 0.21% MoS₂, as well as an inferred resource of 6.577 million tonnes at 0.45% Sn and 0.74% Zn.

Methods

Bedrock samples and large (~15 kg) surface till samples were collected up-ice, overlying, and up to 2 km down-ice (south-east) of the Mount Pleasant deposit to document its indicator mineral signature. Sampling was focused within Szabo et al.’s (1975) glacial dispersal train to maximize the chance of collecting metal-rich till for indicator minerals studies. Small bags of till were tested in the field for their Sn, W, Mo, Bi, and In content using a portable bench-top XRF to help guide till sampling on a daily basis. A few mineralized bedrock samples were collected to determine the minerals indicative of the Mount Pleasant deposit. Bedrock and till samples were processed at the commercial lab Overburden Drilling Management Ltd., Ottawa, using a combination of shaking table, panning, and heavy liquid methods to produce heavy mineral concentrates (HMC) (>3.2 SG) and mid-density concentrates (3.0–3.2 SG) for picking. Pan concentrates, as well as the 0.25–0.5, 0.5–1.0, and 1.0–2.0 mm non-ferromagnetic HMC fractions were examined and potential indicator minerals of Sn-W-Mo-Bi-In mineralization were counted. Detailed descriptions of sample processing methods as well as indicator mineral abundance data for bedrock and till samples are reported in McClenaghan et al. (2014b, 2015a, in press b).

Indicator mineral species

Ore minerals recovered from both bedrock and till samples from the Mount Pleasant deposit include cassiterite, scheelite, wolframite (Fig. 1), and molybdenite. Other indicator minerals recovered from bedrock and glacial sediments include chalcopyrite, galena, sphalerite, arsenopyrite, loellingite, and pyrite (Table 1), as well as fluorite and topaz. Indicator minerals recovered from till also include secondary Pb sulphate minerals beudantite (PbFe₃(AsO₄)(SO₄)(OH)₆) and anglesite (PbSO₄), and the Pb phosphate mineral plumbogummite (PbAl₃(PO₄)₂(OH)₃H₂O), which formed from the oxidation and weathering of galena.

Selected indicator mineral abundances in till are reported in Table 2 according to distance down-ice of known mineralization. The most abundant indicator minerals in till down-ice of the deposit are cassiterite, wolframite, and topaz. Cassiterite content of the till varies from zero grains in background samples to a maximum of 630 grains. Wolframite content varies from zero grains in background samples to a maximum of 35 grains immediately down-ice of known mineralization. Topaz content ranges from 0 to 1 grain in background samples to ~32,000 grains overlying mineralization. Sulphide indicator minerals are present in far fewer till samples and in much less abundance (e.g. molybdenite, pyrite, arsenopyrite, loellingite), or absent (chalcopyrite, sphalerite) (Table 2).

Table 2 reports fluorite abundance in both the heavy (>3.2 SG) and mid-density (3.0–3.2 SG) fractions of 10 kg till samples from the intrusion-hosted Mount Pleasant deposit (McClenaghan et al. in press b). Fluorite abundance is far greater in the 3.0–3.2 SG mid-density fraction of till, indicating that this density fraction is optimal for recovery and determining the abundance of fluorite in till. All indicator minerals recovered from till are most abundant in the 0.25 to 0.5 mm fraction of till. Coarser (0.5–2.0 mm) grains of cassiterite, wolframite, and topaz were also recovered from till samples overlying or just down-ice (up to 1 km south-east) of the North Zone. This pattern indicates that the presence of coarse indicator minerals in till is a strong indicator of proximity to the mineralization.

COMPARISON OF INDICATOR MINERALS AND TILL GEOCHEMISTRY

Indicator elements in till for the Mount Pleasant deposit...
Table 1. Indicator minerals in the Mount Pleasant deposit (Petruk 1972, 1973; Parrish 1977; Kooiman et al. 1986; Sinclair et al. 2006) and those found in bedrock polished thin sections (PTS), bedrock heavy mineral concentrates (HMC), and till heavy mineral concentrates (HMC) from this study.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Formula</th>
<th>Hardness</th>
<th>Specific Gravity</th>
<th>Presence Reported by Other Authors</th>
<th>Identified in Bedrock PTS in this Study</th>
<th>Identified in Bedrock HMC in this Study</th>
<th>Identified in Till HMC in this Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin minerals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cassiterite</td>
<td>SnO₂</td>
<td>6-7</td>
<td>6.8-7</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>stannite</td>
<td>Cu₂Fe₃SnS₄</td>
<td>3.5-4</td>
<td>4.3-4.5</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>kēsterite</td>
<td>Cu₂(Zn,Fe)SnS₄</td>
<td>4.5</td>
<td>4.54-4.59</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>ferrokēsterite</td>
<td>Cu₂(Fe,Zn)SnS₄</td>
<td>4.0</td>
<td>4.5</td>
<td>Parrish (1977)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>stannoidite</td>
<td>Cu₈Fe₃Sn₂S₁₂</td>
<td>4</td>
<td>4.29</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>mawsonite</td>
<td>Cu₂Fe₂SnS₈</td>
<td>3.5-4</td>
<td>4.66</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Tungsten minerals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scheelite</td>
<td>CaWO₄</td>
<td>4-5</td>
<td>5.9-6.12</td>
<td>Parrish (1977)</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>wolframite</td>
<td>(Fe,Mn)WO₄</td>
<td>4.5</td>
<td>7.1-7.5</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Sulphide and arsenide minerals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>molybdenite</td>
<td>MoS₂</td>
<td>1</td>
<td>5.5</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>pyrite</td>
<td>FeS₂</td>
<td>5-5.02</td>
<td>6.5</td>
<td>Petruk (1972)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>marcasite</td>
<td>FeS₂</td>
<td>6.0-6.5</td>
<td>4.89</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>sphalerite</td>
<td>(Zn,Fe)S</td>
<td>3.5-4</td>
<td>3.9-4.2</td>
<td>Petruk (1972)</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>pyrrhotite</td>
<td>Fe₁₊ₓS (x=0-0.17)</td>
<td>3.5-4</td>
<td>4.58-4.65</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>arsenopyrite</td>
<td>Fe₃AsS</td>
<td>5</td>
<td>6.07</td>
<td>Petruk (1972)</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>loellingite</td>
<td>Fe₃As₂</td>
<td>5.0</td>
<td>7.1-7.7</td>
<td>Petruk (1972)</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>ferrimolybdite</td>
<td>Fe₃(MoO₄)₈(H₂O)</td>
<td>2.5-3</td>
<td>4.4-5</td>
<td>Parrish (1977)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>scorodite</td>
<td>Fe₃(AsO₄)(H₂O)₂</td>
<td>3.5-4</td>
<td>3.1-3.3</td>
<td>Parrish (1977)</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Bismuth minerals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bismuthinite</td>
<td>Bi₂S₃</td>
<td>2</td>
<td>6.8-7.2</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>native bismuth</td>
<td>Bi</td>
<td>2-2.5</td>
<td>9.7-9.8</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>arsenobismute</td>
<td>Bi₂(AsO₄)(OH)₃</td>
<td>3</td>
<td>5.7</td>
<td>Parrish (1977)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>zairite</td>
<td>Bi₃(Fe₆Al₂)(OH)₁₀(PO₄)₂₂</td>
<td>4.5</td>
<td>4.37</td>
<td></td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Copper minerals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chalcopyrite</td>
<td>Cu₁₂Fe₇S₄</td>
<td>3.5</td>
<td>4.1-4.3</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>covellite</td>
<td>CuS</td>
<td>1.5-2.0</td>
<td>4.6-4.76</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>tennantite</td>
<td>(Cu₂₁Fe₂₃)As₈S₁₃</td>
<td>3.5-4</td>
<td>4.6-4.7</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>bornite</td>
<td>Cu₂Fe₃S₄</td>
<td>3.0</td>
<td>4.9-5.3</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>chalcanthite</td>
<td>Cu₅S</td>
<td>2.5-3</td>
<td>5.5-5.8</td>
<td>Parrish (1977)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>roquesite</td>
<td>Cu₅Sn₂</td>
<td>3.5-4</td>
<td>not reported</td>
<td>Parrish (1973)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>digenite</td>
<td>Cu₉S₅</td>
<td>2.5-3</td>
<td>5.6</td>
<td>Parrish (1977)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>famatinite</td>
<td>Cu₉S₅</td>
<td>3-4</td>
<td>4.57</td>
<td>Parrish (1977)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Lead minerals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>galena</td>
<td>PbS</td>
<td>2.5</td>
<td>7.2-7.6</td>
<td>Petruk (1972)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>wittichenite</td>
<td>Cu₉Bi₅S₃</td>
<td>2.5</td>
<td>6.3-6.7</td>
<td>Petruk (1973)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>galenobismutite</td>
<td>PbBi₅S₃</td>
<td>2.5-3</td>
<td>6.9-7.1</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>aikinite</td>
<td>PbCu₅Bi₅S₃</td>
<td>2-2.5</td>
<td>6.1-6.8</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>cosalite</td>
<td>Pb₂Bi₅S₃</td>
<td>2.5-3</td>
<td>6.4-6.8</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>kruipkaite</td>
<td>PbCu₅Bi₅S₃</td>
<td>4</td>
<td>6.98</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>beudantite</td>
<td>PbFe₃(AsO₄)(SO₄)(OH)₆</td>
<td>4.0</td>
<td>4.1-4.3</td>
<td></td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>anglesite</td>
<td>Pb(SO₄)₂</td>
<td>2.5-3</td>
<td>6.3</td>
<td></td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>plumbogummite</td>
<td>PbAl₆(PO₄)₆(OH)₁₂·H₂O</td>
<td>4-5</td>
<td>4-5</td>
<td></td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Au and Ag minerals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>freibergite</td>
<td>(Ag,Cu,Fe)₁₂(Sb,As)₁₂S₁₃</td>
<td>3.5-4</td>
<td>4.85-5</td>
<td>Petruk (1973)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>pyrargyrite</td>
<td>Ag₅Sb₅S₃</td>
<td>2.5</td>
<td>5.85</td>
<td>Petruk (1973)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>native silver</td>
<td>Ag</td>
<td>2.5-3</td>
<td>10-11</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>gold</td>
<td>Au</td>
<td>2.5-3</td>
<td>16-19.3</td>
<td>Parrish (1977)</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Alteration minerals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>topaz</td>
<td>Al₂SiO₄(F,OH)₂</td>
<td>8</td>
<td>3.5-3.6</td>
<td>Petruk (1972)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>fluorite</td>
<td>CaF₂</td>
<td>4</td>
<td>3.01-3.25</td>
<td>Petruk (1972)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>tourmaline</td>
<td>NaAl₆(BO₃)₆(SiO₃)₆(O,OH)₄</td>
<td>7</td>
<td>3.01</td>
<td>Petruk (1972)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>columbite</td>
<td>(Fe,Mn,Nb,Ta)₆O₁₆</td>
<td>6.0</td>
<td>5.3-7.3</td>
<td>Petruk (1972)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
eralization. Not all till samples that contain cassiterite have cor-
till. Indicator mineral abundance in the 0.25–0.5 mm HMC
fraction is one of the first to be a significant source of In and this study is one of the first to
investigate the abundance of cassiterite, wolframite, and topaz in the 0.25–0.5 mm fraction and trace elements
relative to SG 3.0–3.2. Copper, Pb, Zn, Ag, As, and In values are high for many of the
till samples, however, ore-associated sulphide mineral (e.g. galena, sphalerite, chalcopyrite, arsenopyrite) abundance in the
same till samples is low to zero. Pb-bearing secondary minerals beudantite, anglesite, and plumbogummite are present in some of these till samples. These patterns indicate that sulphide minerals were either destroyed during pre- or post-glacial oxidation, or both. As a result, till geochemistry and the presence of secondary sulphate or phosphate minerals are useful for identifying the presence of Sn- and W-rich debris in till.

copper, Pb, Zn, Ag, As, and In values are high for many of the till samples, however, ore-associated sulphide mineral (e.g. galena, sphalerite, chalcopyrite, arsenopyrite) abundance in the same till samples is low to zero. Pb-bearing secondary minerals beudantite, anglesite, and plumbogummite are present in some of these till samples. These patterns indicate that sulphide minerals were either destroyed during pre- or post-glacial oxidation, or both. As a result, till geochemistry and the presence of secondary sulphate or phosphate minerals are useful for identifying the presence of polymeric (Cu, Pb, Zn, Ag, As, and In) metal-rich debris glacially eroded from the deposit.
CONCLUSIONS

The Mount Pleasant case study is the first detailed indicator mineral study around a major Sn deposit in glaciated terrain using modern and commercially available indicator mineral recovery methods. Indicator minerals for the Mount Pleasant deposit include the main ore minerals, cassiterite, wolframite, and molybdenite, as well as topaz, chlorapatite, galena, sphalerite, arsenopyrite, pyrite, and loellingite in the 0.25–0.5 mm >3.2 SG fraction of till, and fluorite in the 3.0–3.2 SG fraction. Secondary minerals beudantite, anglesite, and plumbogummite, which formed from the oxidation of galena, may also be useful indicator minerals. Collectively, the indicator minerals identified in till in this study reflect the presence of Sn-W mineralization as well as the polymetallic nature of the deposit. The presence of coarse (0.5–2.0 mm) indicator minerals in till around the Mount Pleasant deposit indicates proximity (<1 km) to the mineralized source. Indicator minerals methods are optimal for identifying the presence of Sn and W mineralization because these minerals are physically and chemically robust and survive post-glacial weathering. Pre- or post-glacial weathering of sulphides combined with the glacial crushing of sulphides, or their weathering products, has resulted in high metal contents in the fine fraction of till around Mount Pleasant. As a result, geochemistry of the <0.063 mm fraction of till is therefore useful for detecting the Ca, Pb, Zn, Ag, As, and In signature of the deposit.

ACKNOWLEDGMENTS

The Mount Pleasant case study was conducted as part of the Geological Survey of Canada’s Targeted Geoscience Initiative (TGI-4) (2010–2015) and was a collaborative effort between the Geological Survey of Canada and the New Brunswick Department of Energy and Mines. Adex Mining Inc., in particular Gustaaf Kooiman, is thanked for providing access to Mount Pleasant. Kathleen Thorne, New Brunswick Department of Energy and Mines, is thanked for her discussions of the bedrock geology. John Chapman (Geological Survey of Canada) and Dave Sinclair (retired, Geological Survey of Canada) are thanked for sharing bedrock samples from the deposit. Rod Smith (Geological Survey of Canada) is thanked for his review of this manuscript.

REFERENCES

