Gold Homogeneity in Certified Reference Materials; A Comparison of Five Manufacturers

N. W. Brand, Geochemical Services Pty Ltd., Suite 10, 5 Colin Street, West Perth, 6005, Australia, nwbrand@gspty.com.au

INTRODUCTION

Certified Reference Materials (CRMs) inserted into analytical batches are a requirement by the international codes governing the mineral industry (JORC 2012; NI43-101; SAMREC) and reporting to the standards laid out in these codes is a mandatory compliance for publicly listed companies on the Australian, New Zealand and Canadian Stock Exchanges. A CRM is a sample where the concentrations of one or more analytes have been quantified by valid methodologies and certified with valid documentation. These certified values are the consensus inter-laboratory mean for an analyte where typically each laboratory analyses multiple subsamples of the CRM.

For gold (Au) CRMs, one of the key properties is the homogeneity of the CRM sample (i.e., testing for nugget effects). Quantifying this homogeneity by the Relative Standard Deviation (RSD) is critical for assessment of laboratory results and the follow up of quality control (QC) failures.

There is vast literature discussing the nugget effect in gold mineralising systems and protocols in reducing the sampling error (e.g., Stanley & Smee 2007), but very little information has been published on the homogeneity of gold CRMs. By their very nature CRMs are assumed to be homogeneous and any variation is attributed to laboratory error (i.e., the variance attributed to the sampling error is less than the analytical error); so how homogenous are commercial gold CRMs?

The homogeneity of a gold CRM sample reflects the capability and competency of a manufacturer to eliminate any nugget effects and provide a homogeneous product that, when analysed, will provide a repeatable result within the statistical limits provided on the CRM certificate. Although all manufacturers refer to the homogeneity of their CRMs, only one manufacturer (OREAS), measures the homogeneity of the CRMs and provides this information as routine with their gold CRM Certificate of Analysis. Rocklabs undertake a homogeneity and segregation test, but do not provide the actual homogeneity results.

This independent study evaluates the homogeneity of gold CRMs from commercial CRM manufacturers at four chosen gold grades (0.5 ppm Au, 1 ppm Au, 3 ppm Au and 9 ppm Au). These grades are typical in mining and exploration scenarios and reliable QC data at these grades is critical. This study provides a benchmark for further evaluations of potentially “nuggetty” CRM products including, but not restricted to, platinum group elements (PGEs), rare earth elements (REE), and Au.

CRM MANUFACTURERS AND THEIR PREPARATION

Four auriferous CRMS from each of five manufacturers were assessed (i.e. 20 CRMs in total). The CRMs were sourced from five manufacturers, as listed below alphabetically. A summary description of the preparation process is also provided and taken from their CRM certificates:

- African Mineral Standards (AMIS): http://www.amis.co.za/. The material was crushed, dry-milled and air-classified to <54 microns. Wet sieve particle size analysis of random samples confirmed the material was 98.5% <54 microns. It was then blended in a bi-conical mixer, systematically divided and then sealed into 1 kg Laboratory Packs.
- CDN Resource Laboratories Ltd (CDN): http://www.cdnlabs.com/. Material was dried, crushed, pulsed and then passed through a 270 mesh screen. The +270 mesh material was discarded. The -270 mesh (53 microns) material was mixed for 5 days in a double-cone blender.
- Geostats Pty Ltd (GST): http://www.geostats.com.au/. All CRMs are dried in an oven for a minimum of 12 hours at 110 °C. The dry material is then pulsed to finer than 75 microns (nominal mean of 45 microns) using an air classifier. The material is then homogenised and stored in a sealed, stable container ready for final packaging.
- Ore Research and Exploration Pty Ltd (ORE): http://www.ore.com.au/. Materials are jaw crushed to minus 3 mm, dried to constant mass at 105 °C, barren materials are milled to >98% minus 75 microns and gold bearing material milled to 100% minus 20-30 microns, blending in appropriate proportions to achieve the desired grade, packaging into 60 g and 100 g units in laminated foil pouches and 1 kg units in plastic jars.
- Rocklabs (RLB): http://rocklabs.com/. Pulverized feldspar minerals, basalt rock and barren ironpyrites were blended with finely divided gold containing minerals that have been screened to ensure there is no nuggety gold. (NOTE no sizing information provided).

See also Table 1 for a summary.

continued on page 5
Providing unrivalled confidence in your assay data

We have the largest dedicated mining CRM production facility in the world, supplying over 1200 customers in 105 countries. OREAS gold CRMs are the most homogeneous available, giving you peace of mind that comes with negligible sampling error. Our new line of SuperCRMs™ feature method specific certification of full ICP-OES and MS suites. Find out how OREAS can add value and certainty to your operations by contacting info@ore.com.au now.

AUSTRALIA
ORE Research & Exploration Pty Ltd
www.oreas.com

NORTH AMERICA
Analytical Solutions Ltd
www.explorationgeochem.com
Gold Homogeneity in Certified Materials: A Comparison of Five Manufacturers .. 1
Notes from the Editor ... 3
President’s Message ... 4
Geological Nuggets... 17
Join Us for Exploration 17 .. 17
Minutes of the 2015 AAG Annual General Meeting ... 18
Recently Published in Elements ... 19
Eric L. Hoffman Memorial Scholarship ... 19
AAG’s Student Support Program Resurrected in 2015 .. 20
Treatise of Geochemistry ... 20
Student-Industry Mineral Exploration Workshop ... 21
AAG New Members ... 21
Calendar of Events ... 23

ADVERTISERS

Activation Laboratories Ltd. ... 24
AGAT Laboratories ... 22
ALS ... 4
Bureau Veritas Minerals ... 6
ORE Research and Exploration ... 2
SciApps, Inc. ... 7

Notes from the Editor

The December 2015 issue of EXPLORE features a technical article about gold homogeneity in certified reference materials by Nigel Brand. EXPLORE thanks all contributors to this fourth issue of 2015: Steve Amor, Al Arsenault, Dennis Arne, Nigel Brand, Bob Garrett, Pim van Geffen, Matt Leybourne, Paul Morris, Jamil Sader, and Dave Smith. In this last issue of 2015, EXPLORE gratefully acknowledges our three corporate sponsors for the year, ALS Minerals, AGAT Laboratories, and REFLEX Geochemistry, as well as our advertisers for their continuing financial support of EXPLORE. Pim van Geffen, our Business Manager, is thanked for managing the financial aspects of publishing EXPLORE including corporate sponsors and advertisers. Pim and I wish all AAG members and other readers of EXPLORE a successful 2016.

Beth McClanagan
Editor

Table of Contents

Gold Homogeneity in Certified Materials: A Comparison of Five Manufacturers
Notes from the Editor
President’s Message
Geological Nuggets
Join Us for Exploration 17
Minutes of the 2015 AAG Annual General Meeting
Recently Published in Elements
Eric L. Hoffman Memorial Scholarship
AAG’s Student Support Program Resurrected in 2015
Treatise of Geochemistry
Student-Industry Mineral Exploration Workshop
AAG New Members
Calendar of Events

ADVERTISERS
Activation Laboratories Ltd.
AGAT Laboratories
ALS
Bureau Veritas Minerals
ORE Research and Exploration
SciApps, Inc.

Notes from the Editor
The December 2015 issue of EXPLORE features a technical article about gold homogeneity in certified reference materials by Nigel Brand. EXPLORE thanks all contributors to this fourth issue of 2015: Steve Amor, Al Arsenault, Dennis Arne, Nigel Brand, Bob Garrett, Pim van Geffen, Matt Leybourne, Paul Morris, Jamil Sader, and Dave Smith. In this last issue of 2015, EXPLORE gratefully acknowledges our three corporate sponsors for the year, ALS Minerals, AGAT Laboratories, and REFLEX Geochemistry, as well as our advertisers for their continuing financial support of EXPLORE. Pim van Geffen, our Business Manager, is thanked for managing the financial aspects of publishing EXPLORE including corporate sponsors and advertisers. Pim and I wish all AAG members and other readers of EXPLORE a successful 2016.

Beth McClanagan
Editor
President's Message

This will be my final message as President of the Association of Applied Geochemists. Ryan Noble will take on the role of President for 2016-2017, ably assisted by Steve Cook from Teck Resources Limited as Vice President. The past two years have, as we all know, been very difficult with a major and sustained slow-down in the mineral exploration industry. Despite that, the Association continues unabated with a number of significant milestones. Since Bob Eppinger penned his final Presidential message (December 2013 EXPLORE), the Association has held two successful IAGS conferences (Rotorua, 2013 and Tucson 2015), implemented a number of social media avenues of member expression (LinkedIn, Facebook), and successfully transitioned to a new Editor-in-Chief (Kurt Kyser) for our journal GEEA. I hope that you are all working diligently to produce large quantities of high-quality papers to inundate Kurt with, as he has a lot of time on his hands. As I have stated before, but it bears repeating, Gwendy Hall did an outstanding job as our Editor-in-Chief prior to Kurt taking over. Thankfully, she continues to manage the arduous task of maintaining and growing the Association investments and overall finances as the AAG Treasurer. Dan Layton-Matthews is the 2015-2017 AAG Distinguished Lecturer and, with financial support from the Association for travel, is available to present a talk at an institution near you. Please get in touch with Dan to organize a lecture tour (dlayton@queensu.ca).

I would like to express my thanks and gratitude to all members of Council for their efforts over the last two years, and to all AAG members who continue to support the Association. I would particularly like to thank my Vice-President, Ryan Noble for his help, as well as Gwendy Hall (Treasurer), Dave Smith (Secretary), Beth McLlenaghan (EXPLORE editor), Pim van Geffen (EXPLORE Business Manager), Patrice de Caritat and Dennis Arne (Elements coordinators), Kurt Kyser (GEEA Editor), 2014-2015 Councillors (Alejandro Arauz, Dennis Arne, Stephen Cook, Melt Lintern, Paul Morris, Peter Simpson and Bob Eppinger), and the 2015-2016 Councillors (Dave Cohen, Ray Lett, Tom Molyneux, Juan Carlos Ordóñez Calderón, Peter Rogers, and Peter Winterburn). Also deserving of gratitude are Gemma Bonham-Carter and Bruno Lemiere for their efforts maintaining and managing the Association Website. I also thank all the Regional Councillors, and AAG Committee members for all of their work.

Finally, another change over the last two years was the passing of the reins of managing our Association from Betty Arsenault to her husband Al Arsenault; both have been indispensable, and it has made things easier that they coincidentally have the last name.

Sadly, we have also lost some of the greats in our field over the last couple of years including Eion Cameron, Bill Coker, and Eric Hoffman; all of them are greatly missed.

To close, I wish the incoming president and vice-president an outstanding and successful two years. I hope that the industry is on the upswing that will translate to a stellar IAGS in 2017 or 2018.

Matt Leybourne
AAG President

The Global Benchmark
Breaking Boundaries with Innovative Solutions

- Rapid, low cost, Pb isotope analysis
- Low detection limits with multi-element ICP-MS
- CoreViewer™ Technology
- Data integration with 3D modeling
- Industry leading hyperspectral technologies

For more information, scan this QR code or visit www.alsglobal.com | Phone: +1 604-984-0221
CRMs SELECTED

To allow a comparison between CRM manufacturers four (4) auriferous grade ranges were chosen centred around 0.5 ppm; 1 ppm; 3 ppm and 9 ppm (see Table 2). The selection of CRMs from these grade ranges were determined by the availability of materials from the manufacturers, and preference given to CRMs that are siliceous in nature and manufactured within the last six years (to minimise any variation due to change in the manufacturing process and/or possible oxidation of sulphides). To this end, low sulphur samples were chosen where available.

Table 2: Summary of CRMs chosen for this study.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>CRM</th>
<th>Certified Au (ppm)</th>
<th>Assay Method</th>
<th>Brief Material description</th>
<th>S (%)</th>
<th>SiO₂ (%)</th>
<th>Year of release</th>
<th># labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMIS</td>
<td>G909-6</td>
<td>0.57</td>
<td>Fire assay</td>
<td>Composite-Gold Ore low sulphide</td>
<td>nr</td>
<td>nr</td>
<td>2009</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>G131-1</td>
<td>1</td>
<td>Fire assay</td>
<td>Composite-Gold Ore</td>
<td>0.035</td>
<td>61.85</td>
<td>2014</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>G184-6</td>
<td>3.21</td>
<td>Fire assay</td>
<td>High-Grade low sulphide</td>
<td>0.06</td>
<td>65.01</td>
<td>2011</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>G184-7</td>
<td>9.81</td>
<td>Fire assay</td>
<td>High-Grade low sulphide</td>
<td>0.04</td>
<td>65.87</td>
<td>2011</td>
<td>178</td>
</tr>
<tr>
<td>Geostats</td>
<td>OREAS 201</td>
<td>0.514</td>
<td>10-50 g fire assay</td>
<td>Basaltic</td>
<td>0.39</td>
<td>59.68</td>
<td>2012</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>OREAS 202</td>
<td>1.063</td>
<td>10-50 g fire assay</td>
<td>Basaltic</td>
<td>0.704</td>
<td>52.64</td>
<td>2012</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>OREAS 11C</td>
<td>3.04</td>
<td>10-50 g fire assay</td>
<td>Basaltic</td>
<td>1.59</td>
<td>49.41</td>
<td>2009</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>OREAS 12C</td>
<td>8.78</td>
<td>10-50 g fire assay</td>
<td>Andesitic volcanics</td>
<td>0.55</td>
<td>60.58</td>
<td>2009</td>
<td>26</td>
</tr>
<tr>
<td>Rocksats</td>
<td>SN75</td>
<td>8.671</td>
<td>30 g fire assay</td>
<td>Feldspor, basalt & iron pyrites with minor fine gold minerals</td>
<td>2.3</td>
<td>54.76</td>
<td>2012</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>SIBS</td>
<td>2.656</td>
<td>30 g fire assay</td>
<td>Basaltic</td>
<td>3.6</td>
<td>54.52</td>
<td>2012</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>SIBO</td>
<td>5.89</td>
<td>30 g fire assay</td>
<td>Basaltic</td>
<td>3.6</td>
<td>54.52</td>
<td>2012</td>
<td>30</td>
</tr>
</tbody>
</table>

MATERIAL RECEIVED

Amounts corresponding to the minimum manufacturers order were purchased. To this end:
- Two x 100 g sachets of each of the four CRM were purchased from AMIS and received in vacuum sealed foil pouches;
- Four x 100 g sachets of each of the four CRMs from CDN and received in paper bags and sealed in plastic;
- Four x 100 g sachets of each of the four CRMs from Geostats and received in plastic bags;
- Four x 60 g sachets of each of the four CRMs from OREAS and received in foil pouches;
- One 2.5 kg plastic jar for each CRM were ordered and received from Rocklabs.

The materials as received are shown in Photo 1.

Photo 1. CRM's "as received" from the five manufacturers.

SAMPLE PREPARATION AND ANALYSIS

Prior to dispatching the materials for analysis, each CRM was subsampled twenty times in a clean room. A 10 g aliquot of each CRM was placed into a Ziploc® plastic bag using a disposable plastic spatula to avoid any cross-contamination. This procedure was repeated for each CRM so that the samples were sequenced in lots of 20, with each lot corresponding to one CRM.

For the homogeneity test work, Instrumental Neutron Activation Analysis (INAA) was used. INAA is a highly precise and unique assay method that focuses on the elements in the sample matrix irrespective of the form of the element. Each sample is subjected to a flux of neutrons to produce radioactive nuclides. These nuclides decay emitting gamma rays that are characteristic for each nuclide. When compared with a known standard, the intensity of the emitted gamma rays can be quantified into an element concentration (Lieser 2001).

The 400 x 10 g subsamples were dispatched to Activation Laboratories Limited (Acitlab) in Ancaster, Canada (www.acatlabs.com) for INAA; Actlabs were informed of the purpose of the analysis and requested to weigh out 1 g

continued on page 6
Gold Homogeneity in Certified Reference Materials...

Continued from page 5

of material from each sample. To minimise any effects of between batch bias, Actlabs were requested not to split any of the 20 sample CRM lots and all possible sources of measurement error (e.g., weighing, counting, detector geometry, flux monitor errors, etc.) be kept to a minimum. Minimising the sources of error and ensuring no sample lots were split provides confidence that the results are a true reflection of CRM sampling errors and hence CRM homogeneity, and that the analytical precision errors are minor in comparison to sampling errors. By subjecting all the samples to the identical non-destructive analytical technique provided by one laboratory that required no sample preparation, reagents or digestion, any laboratory error is constant for all samples and considered minimal. Thus variance in the spread of analytical results from each of the CRMs will represent the degree of homogeneity.

RESULTS

The results of this exercise are presented in Appendix 1, which is available for download from the EXPLORE page of the AAG website (www.appliedgeochemists.org). The certificates of the CRMs used in this study are downloadable from the AAG website (www.appliedgeochemists.org) and the Geochemical Services website (http://www.gspty.com.au/).

Precision/homogeneity

The Certified Value (CV), Relative Standard Deviation (RSD) across the 20 x 1 g INAA values of each CRM, Sampling Constant (which is the minimum required sample mass to achieve a 1% RSD), mean INAA sample mass analysed (g), two Relative Standard Deviations at typical fire assay charge weights of 30 g (30 g 2RSD) and 50 g (50 g 2RSD) for each CRM by manufacturer is presented in Table 3. A mean RSD for each manufacturer is also presented as an indication of overall performance.

Table 3: Relative Standard Deviation comparison for the various CRM Manufacturers (based on 20 x 1 g INAA determinations per CRM).

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>CRM</th>
<th>Certified Value (ppm)</th>
<th>Mean INAA sub-sample (g)</th>
<th>1 g RSD INAA Mean</th>
<th>Mean RSD</th>
<th>Sampling Constant (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMIS</td>
<td>AMIS0267</td>
<td>8.05</td>
<td>1.05</td>
<td>27.46%</td>
<td>12.10%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>3.04</td>
<td>1.04</td>
<td>5.05%</td>
<td>2.53%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>2.94</td>
<td>1.04</td>
<td>3.60%</td>
<td>1.80%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>2.84</td>
<td>1.04</td>
<td>6.14%</td>
<td>3.07%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>2.74</td>
<td>1.04</td>
<td>8.06%</td>
<td>4.03%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>2.64</td>
<td>1.04</td>
<td>10.27%</td>
<td>5.13%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>2.54</td>
<td>1.04</td>
<td>12.80%</td>
<td>6.26%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>2.44</td>
<td>1.04</td>
<td>15.41%</td>
<td>7.39%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>2.34</td>
<td>1.04</td>
<td>18.02%</td>
<td>8.52%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>2.24</td>
<td>1.04</td>
<td>20.63%</td>
<td>9.65%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>2.14</td>
<td>1.04</td>
<td>23.24%</td>
<td>10.78%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>2.04</td>
<td>1.04</td>
<td>25.85%</td>
<td>11.91%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>1.94</td>
<td>1.04</td>
<td>28.46%</td>
<td>13.03%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>1.84</td>
<td>1.04</td>
<td>31.07%</td>
<td>14.16%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>1.74</td>
<td>1.04</td>
<td>33.68%</td>
<td>15.29%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>1.64</td>
<td>1.04</td>
<td>36.29%</td>
<td>16.42%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>1.54</td>
<td>1.04</td>
<td>38.90%</td>
<td>17.55%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>1.44</td>
<td>1.04</td>
<td>41.51%</td>
<td>18.68%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>1.34</td>
<td>1.04</td>
<td>44.12%</td>
<td>19.81%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>1.24</td>
<td>1.04</td>
<td>46.73%</td>
<td>20.93%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>1.14</td>
<td>1.04</td>
<td>49.34%</td>
<td>22.06%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>1.04</td>
<td>1.04</td>
<td>51.95%</td>
<td>23.18%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.94</td>
<td>1.04</td>
<td>54.56%</td>
<td>24.30%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.84</td>
<td>1.04</td>
<td>57.17%</td>
<td>25.42%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.74</td>
<td>1.04</td>
<td>59.78%</td>
<td>26.54%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.64</td>
<td>1.04</td>
<td>62.39%</td>
<td>27.66%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.54</td>
<td>1.04</td>
<td>65.00%</td>
<td>28.78%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.44</td>
<td>1.04</td>
<td>67.61%</td>
<td>29.90%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.34</td>
<td>1.04</td>
<td>70.22%</td>
<td>31.02%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.24</td>
<td>1.04</td>
<td>72.83%</td>
<td>32.14%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.14</td>
<td>1.04</td>
<td>75.44%</td>
<td>33.26%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.04</td>
<td>1.04</td>
<td>78.05%</td>
<td>34.38%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.34</td>
<td>1.04</td>
<td>79.97%</td>
<td>35.50%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.24</td>
<td>1.04</td>
<td>82.79%</td>
<td>36.62%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.14</td>
<td>1.04</td>
<td>85.60%</td>
<td>37.74%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.04</td>
<td>1.04</td>
<td>88.42%</td>
<td>38.86%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.34</td>
<td>1.04</td>
<td>91.23%</td>
<td>40.00%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.24</td>
<td>1.04</td>
<td>94.05%</td>
<td>41.14%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.14</td>
<td>1.04</td>
<td>96.87%</td>
<td>42.28%</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>AMIS0260</td>
<td>0.04</td>
<td>1.04</td>
<td>99.69%</td>
<td>43.41%</td>
<td>9.05</td>
</tr>
</tbody>
</table>

The RSD is used as a standardised measure of dispersion that indicates the precision or repeatability of an assay. The lower the RSD, the more repeatable, precise or homogeneous the CRM; conversely the higher the RSD the less homogeneous the CRM. Given the critical importance of CRMs and their mandatory use in the mining and exploration industry, the lower the RSD determined from replicate analysis via the INAA method on reduced analytical subsamples (e.g. 1 g) the more homogeneous the reference material and the greater confidence and control the QC officer has in vetting data quality from a laboratory. The overall mean RSD for each manufacturer has been derived from the mean of the individual RSD’s of the 1 g INAA data. In order of increasing mean RSD (corresponding to decreasing homogeneity) they range from OREAS: 1.61%, to Rocklabs: 2.35%, to Geostats: 3.09%, to CDN: 9.70%, to AMIS: 12.08%.

The Sampling Constant (Ingamells & Switzer 1973) has been calculated to show the minimum sample mass required to measure gold in each CRM by the 1 g INAA method to achieve a relative standard deviation of 1%. For high grade gold samples (~9 ppm Au), the sampling constant ranges from a low of 1.4 g from CDN, Geostats and OREAS to 794.8 g for AMIS. This suggests AMIS0267 is influenced by a nugget effect.

The 30 and 50 g 2RSDs have been calculated from the Sampling Constants for each CRM and in some instances

Bureau Veritas Minerals

"Industry Leading Solutions for the Exploration & Mining Community".

- Geochimcal, Metallurgical & Mineralogical Services
- Technology and Innovation: ICP-ES, ICP- MS, LA-ICP-MS & XRF
- Full Access to our Enterprise Management System (LIMS/EMS)
- Industry Leading Quality Assurance

Ph: +1 604 253 3158 | www.bureauveritas.com/UM

continued on page 8

Paid Advertisement
Want the entire picture?
See what others simply can’t

LIBZ TECHNOLOGY
Combines never before possible element suites with spatial elemental mapping at a micro scale in a hand held device.

With Z you can determine a variety of critical geochemical elements in the field, for even the lightest of elements: Low atomic number elements/major elements: H, Li, Be, B, C, N, O, Na, Mg, Al, Si, P, K, Ca, Halogens: F, Cl, Br, Plus Transition and Heavy Metals, REE and Precious Metals.

By using the LIBZ rastering specific parts of sample can be precisely targeted for analysis yielding valuable information about mineral chemistry, zonation and alteration at a micro scale. Generate elemental “heat maps” in the field in real time.

SciAps, Inc.
2 Constitution Way
Woburn, MA 01801

+1 339 927 9455
www.sciaps.com
sales@sciaps.com
reveal significant sampling errors. Typical measurement error for 30 or 50 g fire assay charge weights are usually around 5% at commercial laboratories for ore grade methods. The 2RSD values encapsulate the sampling error contribution from the CRM and these can be added to the nominal 5% measurement error laboratories tend to achieve to get a feel for what the overall errors would be in reported analytical results. Results from individual manufacturers are discussed below:

AMIS: homogeneity for individual AMIS CRMs varies from 3.60% RSD (AMIS0360; 2.94 ppm Au) to 27.46% RSD (AMIS0267; 9.05 ppm Au), a spread of 23.86% RSD showing no systematic change in homogeneity with changing grade. The sampling constant for AMIS0267 indicates that 794.8 g of sample would be required to ensure a RSD of 1% during analysis, and for a 30 g fire assay a sampling error of 10.29% applies. At this charge mass only AMIS0352 (30 g 2RSD sampling error of 1.67%) and AMIS0360 (30 g 2RSD of 1.35%) would be fit for purpose CRMs based on these calculations. The gold homogeneity of CRMs produced by AMIS is considered very poor to good.

CDN: homogeneity for individual CDN CRMs varies from 1.16% RSD (CDN-GS-8C; 8.59 ppm Au) to 15.85% RSD (CDN-GS-1M; 1.07 ppm Au), a spread of 14.69% RSD showing no systematic change in homogeneity with changing grade. Of the four CRMs evaluated only CDN-GS-8C (30 g 2RSD of 0.44%), the highest grade CDN gold CRM tested, would be suitable for a 30 g fire assay. For CDN-GS-P5C (0.571 ppm Au) a sample mass of 111.8 g would be required to obtain an RSD of 1% during analysis; equivalent to a sampling error (30 g 2RSD) of 3.86%; 263.4 g for CDN-GS-1M; equivalent to a 2RSD sampling error of 5.93% at 30 g; and 140.0 g for CDN-GS-3L (3.18 ppm Au), equivalent to a 2RSD sampling error of 4.32% at 30 g. While the homogeneity of CDN-GS-8C is very good, the remaining CDN CRMs tested are considered to be poor to very poor.

Geostats: homogeneity for individual Geostats CRM’s vary from 1.15% RSD (G914-7; 9.81 ppm Au) to 6.14% RSD (G313-1; 1.00 ppm Au), a spread of 4.99% RSD showing no systematic change in homogeneity with changing grade. Three of the four CRM’s (G909-6 at 0.570 ppm Au, G914-6 at 3.21 ppm Au & G914-7 at 9.81 ppm Au) are fit for purpose as grade control CRM’s for 30 g fire assay whilst G313-1 at 1.00 ppm Au would be suitable for a 50 g fire assay based on the sampling constant. The 2RSD sampling errors at a 30 g charge weight vary from 0.43% to 2.29%. The homogeneity of CRM’s produced by Geostats range from mediocre to very good.

OREAS: All OREAS CRM’s show consistently low RSDs ranging from 1.18% RSD (OREAS 62c at 8.79 ppm Au) to 1.87% RSD (OREAS 201 at 0.514 ppm Au) for a spread of 0.69% RSD. An inverse correlation is apparent between grade and RSD suggesting a possible influence of analytical precision. All four OREAS CRM’s tested are fit for purpose for 30 g fire assay with sampling constants indicating that a 4 g fire assay charge weight would provide a sampling error of 1% or less for all OREAS CRM’s. The sampling error at a 30 g charge weight varies from 0.44% to 0.70%. The homogeneity of CRM’s produced by OREAS is considered very good.

Rocklabs: Individual Rocklabs CRM homogeneity varies from 1.20% RSD (SJ80 at 2.66 ppm Au) to 5.05% RSD (SG66 at 1.09 ppm Au), a spread of 3.83% RSD with the CRM’s showing no systematic change in homogeneity with changing grade. Three of the four CRM’s (SE68 at 0.599 ppm Au, SJ80 at 2.66 ppm Au and SN75 at 8.67 ppm Au) are fit for purpose for 30 g fire assay while SG66 would probably be more fit for purpose for 50 g fire assay based on the sampling constant. The sampling errors of a 30 g charge weight range from 0.45% to 1.90%. The homogeneity of CRM’s produced by Rocklabs is considered good to very good.

Table 4: Summary Statistics for each CRM.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>CRM</th>
<th>Certified Value Au (ppb)</th>
<th>NAA Mean Au (ppb)</th>
<th>NAA Min Au (ppb)</th>
<th>NAA Max Au (ppb)</th>
<th>NAA SDev Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMIS</td>
<td>AMIS0352</td>
<td>450</td>
<td>445.3</td>
<td>393</td>
<td>487</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>AMIS0310</td>
<td>1030</td>
<td>1080</td>
<td>946</td>
<td>1450</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>AMIS0360</td>
<td>2940</td>
<td>3014</td>
<td>2810</td>
<td>3280</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>AMIS0267</td>
<td>9500</td>
<td>8849</td>
<td>7450</td>
<td>17900</td>
<td>2425</td>
</tr>
<tr>
<td>CDN</td>
<td>CDN-GS-P5C</td>
<td>571</td>
<td>492.7</td>
<td>423</td>
<td>642</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>CDN-GS-1M</td>
<td>1070</td>
<td>975.4</td>
<td>774</td>
<td>1480</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>CDN-GS-3L</td>
<td>3180</td>
<td>3136</td>
<td>2340</td>
<td>3800</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>CDN-GS-4C</td>
<td>8590</td>
<td>8238</td>
<td>8100</td>
<td>8440</td>
<td>96</td>
</tr>
<tr>
<td>Geostats</td>
<td>G909-6</td>
<td>570</td>
<td>545.8</td>
<td>510</td>
<td>576</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>G914-6</td>
<td>1000</td>
<td>971.8</td>
<td>885</td>
<td>1130</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>G914-7</td>
<td>9810</td>
<td>9657</td>
<td>9440</td>
<td>10000</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>OREAS 201</td>
<td>514</td>
<td>546.2</td>
<td>531</td>
<td>567</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>OREAS 104</td>
<td>1045</td>
<td>1020</td>
<td>996</td>
<td>1050</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>OREAS 17C</td>
<td>1045</td>
<td>1020</td>
<td>996</td>
<td>1050</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>OREAS 62C</td>
<td>8790</td>
<td>8411</td>
<td>8100</td>
<td>8570</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>SG66</td>
<td>599</td>
<td>615.5</td>
<td>591</td>
<td>638</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>SG66</td>
<td>1086</td>
<td>1037</td>
<td>1030</td>
<td>1320</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>SJ80</td>
<td>2656</td>
<td>2520</td>
<td>2450</td>
<td>2570</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>SN75</td>
<td>8671</td>
<td>8000</td>
<td>7720</td>
<td>8150</td>
<td>100</td>
</tr>
</tbody>
</table>

INTERNAL CRM VARIATION

Control charts presented below show the variation in results of each CRM for each manufacturer. Figures 1 to 5 (A-D plots) show graphical representation of the 20 x 1 g INAA data where the X axis represents the order of analysis (analytical subsamples 1 to 20) from left to right; and the Y axis shows the measured INAA concentration in Au ppb. A solid red line shows the mean INAA value (see Table 4) for each CRM and for each grade range (i.e. 0.5 ppm Au, 1 ppm Au, 3 ppm Au and 9 ppm Au). The same Y axis concentration range and scale has been used where possible to facilitate visual comparison between the manufacturers. The Y axis in Figures 1-5 (E-H plots) shows the percentage difference from the calculated INAA mean. These diagrams are not intended as verification charts for each CRM by INAA, but as a standardised graphical communication tool.
The North Atlantic Craton and surrounding belts: a craton-specific approach to exploration targeting

Following on from the successful first North Atlantic Craton meeting in St Andrews in March 2014, the organising committee invites you to attend the second meeting in Edinburgh in 2016. The North Atlantic Craton (NAC) stretches from Canada through Greenland, Scotland and into Norway. This meeting welcomes contributions that develop our understanding of the NAC and its surrounding mobile belts, and their mineral resource potential.

Science themes:
- Formation and cratonisation of the NAC: from micro-continents to craton
- Proterozoic orogens: the mobile belts surrounding the NAC
- The NAC margin in Canada and its mineralisation
- Metallogenesis and links to geodynamic setting
- Mineral resources of the NAC and adjacent Palaeoproterozoic mobile belts

Registration fees:
- Standard: £245
- Member of the Mineralogical Society: £205
- Student £60
- Registration includes conference icebreaker (21 March), conference dinner (22 March), and lunches on two days of conference.

The post-conference field trip will run from 24–28 March 2016 and will visit the Outer Hebrides. The focus will be on Archaean gneisses of the NAC, Palaeoproterozoic belts formed at the craton margins, and a range of younger intrusions including the Loch Roag dyke, a mantle and lower crustal xenolith locality. There will also be spectacular coastal scenery and the chance to visit some stunning heritage sites.

Price is to be confirmed, but likely to be approximately £500 including all travel, hotel accommodation, meals and field guidebook. A maximum of 15 places will be available. Please email NACworkshop@gmail.com to express interest (before 17th Dec).

Confirmed keynote speakers:
- Prof Nicholas Arndt (University of Grenoble)
 Sources of metals from the asthenosphere vs. lithospheric mantle, and the formation of continental crust
- Dr Alan Hinchey (Newfoundland & Labrador Geological Survey)
 Geology of the Makkovik-Kiellitkan orogenic belt
- Dr Simon Jawitz (Monash University)
 Large igneous provinces and the geochronological application of dyke swarm correlation
- Prof Raimo Laitinen (Geological Survey of Finland)
 Palaeoproterozoic tectonic evolution and metallogeny of Fennoscandia
- Dr Bo Moller-Stensgaard (GEUS)
 Archaean-Palaeoproterozoic evolution of the NAC in Greenland

www.bgs.ac.uk/NAC2016
Gold Homogeneity in Certified Reference Materials...

AMIS: Figure 1 graphically depicts results for the AMIS CRMs. Individual values for each CRM show a wide spread of almost random data with no systematic variation. AMIS0267 (cert 9.05 ppm) ranges from 7.45 ppm Au to 17.90 ppm Au (Fig. 1D) which represents -15.8% to +102% difference from the INAA mean of this CRM (Fig. 1H). Two samples show a significant departure from the INAA mean, reporting +43.5% (12.70 ppm Au) and +102% (17.90 ppm Au) of the mean value (Fig. 1H) and reflects inhomogeneity (presumably a nugget effect) of the CRM. AMIS0310 (cert 1.03 ppm) also shows (Figs. 1B and F) significant departure from the INAA mean for two samples (+29.7% and...
Gold Homogeneity in Certified Reference Materials... continued from page 1

+34.2%). This inhomogeneity of AMIS CRMs has potentially significant implications for laboratory reporting whereby a user would question the laboratory results based on the assumption that the CRM is homogeneous.

CDN: Figure 2 graphically displays the results for the CDN CRMs. With the exception of CDN-GS-8C (cert 8.59 ppm) which has a very tight spread of data around the INAA mean ranging from -1.7% to +2.5% (Fig. 2H). The lower three of the four CDN CRMs (CDN-GS-P5C, CDN-GS-1M and CDN-GS-3L), show a wide scatter of data that commonly exceeds ±20% of the INAA mean value; CDN-GS-

Figure 2. Control charts for CDN CRMs showing INAA concentration (Au ppb) in relation to the certified value [A-D] and the percentage difference from the INAA mean value [E-H].

continued on page 12
Gold Homogeneity in Certified Reference Materials... continued from page 11

PS (cert .0571 ppm) shows a range of -14.2 to +30.3% from the INAA mean (Figs. 2A and 2E); CDN-GS-1M (cert 1.07 ppm) ranges from -20.6 to +51.7 (Figs. 2B and 2F) and CDN-GS-3L (cert 3.18 ppm) ranges from -25.4 to +21.2% (Figs. 2C & 2G). This indicates inhomogeneity in three of these CRMs produced by CDN. The exception is CDN-GS-8C (cert 8.59 ppm) which has a very tight spread of data around the INAA mean ranging from -1.7% to +2.5% (Figs. 2D and 2H).

GEOSTATS: Figure 3 shows the individual results for the Geostats CRMs. G914-6 (cert 3.21 ppm) and G914-7 (cert...
Gold Homogeneity in Certified Reference Materials... continued from page 12

9.81 ppm) show a relatively tight cluster around the INAA mean with G914-6 ranging from -4.9% to +3.7% (Figs. 3E and 3G) and G914-7 ranging from -2.2 to +3.6% (Figs. 3D and H). G909-6 (cert 0.57 ppm) shows a wider scatter whilst G313-1 (cert1.0 ppm) shows the widest scatter of all Geostats CRMs ranging from -8.9% to +16.3% of the INAA mean (Figs. 3B and 3F).

OREAS: Figure 4 shows the individual results for the OREAS CRMs. All OREAS CRMs show a consistent

Figure 4. Control charts for OREAS CRMs showing INAA concentration (Au ppb) in relation to the certified value [A-D] and the percentage difference from the INAA mean value [E-H].

continued on page 14
Gold Homogeneity in Certified Reference Materials... continued from page 13

tight range within ±5% of the INAA mean indicating a consistent homogenous CRM product over the range of CRMs tested.

Rocklabs: Figure 5 shows the individual results for the Rocklabs CRMs. Three of the four CRMs evaluated show a tight range within ±5% of the INAA mean indicating a consistent homogenous product. SG66 (cert 1.086 ppm) is slightly less homogenous with values ranging from -5.2% to +19.6% including one outlier (Figs. 5B and 5F).

Figure 5. Control charts for Rocklabs CRMs showing INAA concentration (Au ppb) in relation to the certified value [A-D] and the percentage difference from the INAA mean value [E-H].

Table:

<table>
<thead>
<tr>
<th>CRM</th>
<th>Order of Analysis</th>
<th>Percentage Diff from Mean INAA Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SE68</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>SG66</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>SJ80</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>SN75</td>
<td></td>
</tr>
</tbody>
</table>
Gold Homogeneity in Certified Reference Materials... continued from page 14

DISCUSSION

The application of CRMs in the mining and exploration industry is to monitor laboratory quality and to comply with mandatory reporting requirements (e.g., TSX, ASX). They are also utilised during ore reserve calculations to understand the uncertainty in a resource that ultimately feeds into an economic model. It is thus essential that users have confidence in the quality and homogeneity of their CRMs. The CRM certified values are consensus values derived by inter-laboratory round robin programs. The methods used by some manufacturers to filter outliers can mask potential issues with the homogeneity of the materials. Only outliers confidently reasoned to be analytical should be removed and this confidence only exists where homogeneity has been independently validated.

Results from this study show that the degree of homogeneity of CRMs available from the five manufacturers is variable; users and analysts of these materials need confidence that the CRMs are homogenous to a level fit for purpose so that QC failures are genuine and not a function of sampling error (i.e. inhomogeneous materials). A ranking system based on the values for the 30 g 2RSD sampling error would provide a guide to homogeneity of a CRM and enable users to select appropriate CRMs for their projects such that <1% is considered Very Good; 1-2% considered Good; 2-3% considered Mediocre; 3-4% considered Poor and >4% considered Very Poor.

AMIS (McWha & Smee 2012a-c, 2014) certificates contain no evidence of homogeneity testing but state, “Samples were randomly selected for homogeneity testing and third party analysis. Statistical analysis of both homogeneity and the consensus test results were carried out by independent statisticians”. CDN certificates (Sanderson & Smee 2013a-c, 2014) make no mention of homogeneity; Geostats certificates (Geostats 2009, 2014, 2015a,b) provide an unsupported statement that “materials are tested regularly to ensure stability and homogeneity”. OREAS publishes homogeneity test results with their gold CRM certificates (Hamlyn, 2009a,b, 2012a,b). Rocklabs (Smith & Ball 2012a,b,2013a,b) certificates contain a ‘Homogeneity Assessment’ section with the RSD reported but do not provide the actual results. Segregation/Settling information is also provided.

To enable the exploration and mining industry to have confidence in the quality of gold CRMs used for QC and mandatory reporting, manufacturers need to provide data on the homogeneity of every gold CRM. This homogeneity test work could be through the Reduced Analytical Subsample Method as utilised routinely by OREAS and chosen for this study or through the Replicates of Large and Small Sample Mass as described by Bagley et al. (2015). Without CRM manufacturers providing transparency on the homogeneity through test work, users should not assume all CRMs represent quality products.

CONCLUSIONS

The homogeneity of twenty commercial gold ore CRMs produced by AMIS (South Africa), CDN (Canada), Geostats (Australia), OREAS (Australia) and Rocklabs (New Zealand) have been evaluated and compared. The CRMs range in gold content from 0.45 to 9.81 ppm, typical of the levels commonly encountered in mining exploration projects.

The CRMs of AMIS, CDN, Geostats and OREAS are produced from naturally occurring gold ores to which variable quantities of barren/waste rock material has been added to achieve target grades. Rocklabs CRMs are produced from a range of rock and mineral products to which fine gold dust particles have been added in concentrations to achieve desired grades.

The investigation has shown a remarkable contrast in homogeneity between the various producers. These contrasting levels of homogeneity have serious ramifications with regard to sampling errors, which in some instances are of a magnitude equal to or greater than typical 30 g fire assay measurement errors rendering them of questionable value as a QC tool. Sampling errors for a typical fire assay charge weight (25 to 50 g) should be very minor compared to laboratory measurement errors. Otherwise the CRM cannot be deemed fit for purpose as the user is unable ascertain the source of the error seen in analytical data.

The homogeneity of the 20 gold CRM’s were evaluated using the Sampling Constant, the minimum sample mass (charge weight) required to achieve a 1% relative standard deviation in repeat analyses. For the four AMIS CRM’s tested, the Sampling Constants returned a range from 14 to 791 g. CDN had one CRM with a Sampling Constant of 1.4 g while the other three ranged from 111.8 to 263.4 g. Geostats had one CRM with a Sampling Constant of 1.4 g with the other three ranging from 4.9 to 39.4 g.

The OREAS CRM’s all returned Sampling Constants of less than 4 g. For Rocklabs, three of the four CRM’s returned Sampling Constants of less than 4 g with the fourth coming in at 27.1 g. Currently, OREAS is the only CRM manufacturer routinely evaluating and publishing the results of homogeneity test work on all their gold CRM’s using the Reduced Analytical Subsample INAA method.

This study clearly demonstrates that there is a wide range in quality amongst commercially available gold ore CRM’s and that the homogeneity of gold CRM’s from most manufacturers varies from one product to the next. It is proposed that all manufacturers be encouraged to undertake and publish results of homogeneity test work on gold in CRM’s, thereby providing end users irrefutable data on the magnitude of CRM sampling errors and their impact on QC protocols.

ACKNOWLEDGEMENTS AND DISCLOSURE

The author would like to acknowledge two reviewers who assisted in framing this article and Robert Garrett, Emeritus Scientist, Geological Survey of Canada, for his constructive comments on the manuscript. The author has no financial interests, direct or indirect, in any of the five CRM manufacturers.
REFERENCES

Geochemical Nuggets

Sometimes an ICP-MS Never Forgets!

As a general rule, it is always a good idea to match both the matrix and grade of certified reference materials (CRM) with the samples in a geochemical survey. The following example illustrates what can happen when this is not the case.

Table 1 illustrates a sub-sample of ICP-MS aqua regia Au data for soil samples in a regional survey designed to detect sub-10 ppb Au anomalies. The control material chosen for the survey was a sulphidic, ore grade Au CRM because this is what the exploration crew had on hand. As the table illustrates, regional background is probably on the order of 2 ppb, so the CRM chosen was more than three orders of magnitude above this level. The high levels of Au in the CRM have carried across to the “downstream” samples within the analytical sequence, giving them values that would otherwise be considered anomalous. The effect possibly continues further along the analytical sequence although the level of contamination gradually diminishes. As a consequence, the most obviously affected samples had to be filtered out of the interpretation of a survey involving several hundred soil samples.

The “memory effect” is a well-known issue with analyses by conventional ICP-MS using an aqua regia digestion (Wang and Brindle, 2014), or even un-acidified samples. Essentially, metals may be adsorbed from solution onto glass ware or tubing during sample injection and nebulization within an ICP. These metals may not be effectively removed by standard, dilute acidic wash solutions and it may be some time before cross contamination levels are reduced to background levels, as was the case here. Had the issue been recognized in time, the sample solutions might have been re-read before disposal, without the CRMs.

While advances in instrumentation now allow us to detect the levels of some analytes down to the ppb or even ppt level, these advances must be matched with an understanding of instrumentation and the consequences of failing to use appropriate CRMs. In this instance a well-intentioned attempt to introduce quality controls samples into a low-level Au soil survey succeeded only in compromising the data due to poor CRM selection.

Table 1. Gold analyses by ICP-MS following an aqua regia digestion, with a lower detection limit of 0.1 ppb and an upper detection limit of 100 ppb.

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil</td>
<td>1.5</td>
</tr>
<tr>
<td>Soil</td>
<td>2</td>
</tr>
<tr>
<td>Fresh sulphide CRM</td>
<td>2720</td>
</tr>
<tr>
<td>Soil (memory effect)</td>
<td>32.1</td>
</tr>
<tr>
<td>Soil (memory effect)</td>
<td>7.5</td>
</tr>
<tr>
<td>Soil</td>
<td>3.4</td>
</tr>
<tr>
<td>Soil</td>
<td>2.5</td>
</tr>
<tr>
<td>Soil</td>
<td>2.3</td>
</tr>
<tr>
<td>Soil</td>
<td>2.2</td>
</tr>
<tr>
<td>Soil</td>
<td>1.5</td>
</tr>
<tr>
<td>Soil</td>
<td>1.3</td>
</tr>
</tbody>
</table>

References

Join us for Exploration ‘17
October 21-25, 2017, Toronto, Ontario, Canada

Exploration ‘17 is the sixth of the very successful series of Decennial Mineral Exploration Conferences which have been held in the seventh year of every decade starting in 1967. The theme of the Exploration ‘17 conference is “Integrating the Geosciences: The Challenge of Discovery”, featuring a multi-national, multi-disciplinary technical programme, exhibition, workshops and field schools.

Web site: http://www.exploration17.com
Minutes of the 2015 Annual General Meeting of the Association of Applied Geochemists, held at the 27th International Applied Geochemistry Symposium, Tucson, Arizona, USA, 20 April 2015

I. Call to Order – Establishment of Quorum

President Leybourne called the Annual General Meeting (AGM) to order at 6:00 PM local time. More than 30 AAG Fellows were present, exceeding the necessary 15 required for a quorum.

II. President’s report (M. Leybourne)

President Leybourne thanked the AAG Executive, Council, and Regional Councilors for their contributions to AAG during the time since the 2014 AGM. He extended a special thank you to Gwenda Hall for her tremendous contribution to AAG as Editor of GEEA since its inception (Volume 1, Number 1 being published in February 2001) to 2015. He also welcomed Kurt Kyser as the new Editor of GEEA. He thanked Beth McClenaghan (Editor) and Pim van Geffen (Business Manager) for their contributions to the AAG newsletter EXPLORE. He also extended thanks to Patrice de Caritat for serving as AAG’s liaison with Elements magazine for the past few years and announced that Dennis Arne would be taking over those responsibilities.

Bruno Lemière and Gemma Bonham-Carter were recognized for their outstanding contributions to AAG’s website and Al Arseneault for his dedication to AAG as the Association’s Business Manager. Lastly, President Leybourne thanked Erick Weiland, Rob Bowell, Sarah Lincoln, and Rick Schwarz for their hard work as the Local Organizing Committee for the 27th International Applied Geochemistry Symposium.

President Leybourne announced that Daniel Layton-Matthews of Queen’s University, Kingston, Ontario, Canada, will be AAG’s Distinguished Lecturer for 2015–2016.

III. Vice President’s report (R. Noble)

Vice President Noble reported on progress in the publication of Bob Boyle’s book on the history of geochemistry and cosmochemistry. An editorial team is now in place and it is hoped this book might be ready for the next IAGS in 2017.

During this year, AAG has received three updates from Regional Councilors. Neal Breward has stepped down as Regional Councilor for the UK and Republic of Ireland. Vice President Noble extended his thanks to Neal for his service to the Association.

Vice President Noble recognized Peter Bradshaw who reported on progress of the book about the contributions of Tony Barringer to the field of geochemistry. The first draft is largely edited and the first two chapters have been print set. When complete, the book will be available for purchase on the AAG website.

Lastly, Vice President Noble announced that Steve Cook will be AAG’s new Vice President beginning in January 2016.

IV. Treasurer’s report (G. Hall)

In 2014, AAG successfully accomplished all the paperwork necessary to continue its non-profit status under the new Canada Not-for-Profit Corporations Act.

Our investment holdings at 3 Macs for March 31, 2015: $615,301.29 in Cdn $ (7% of that is cash) and $89,514.85 in US$ cash (soon to be invested).

As of March 31, our accounts are:
- CIBC Cdn $25,539
- CIBC US $15,303

V. GEEA (G. Hall)

AAG’s share of the profit from GEEA for 2014 was US$43,797. The rejection rate for submitted manuscripts is about 64%.

VI. EXPLORE (B. McClenaghan and P. van Geffen)

B. McClenaghan thanked all the corporate sponsors and advertisers for EXPLORE. In 2014, we lost one corporate sponsor. The newsletter operated at a small profit in 2014.

VII. Awards and medals (B. Eppinger)

Colin Dunn (2014) and Ravi Anand (2015) will be receiving AAG’s Gold Medal during the IAGS. Beth McClenaghan will be receiving the Silver Medal. Requests for nominations for 2016 will be sent to AAG members soon.

VIII. Symposia (D. Cohen)

The bid to hold the 2017 IAGS in Florence, Italy was rejected by Council because of concerns about some of the cost estimates. The Association is currently investigating holding the 2017 IAGS in Canada. More information will be available in the next few months.

IX. Other business

President Leybourne opened the meeting to questions from the attending AAG Fellows. A variety of topics were discussed that were related to other sections of the minutes and concluded.

X. Adjournment

President Leybourne thanked all the participants for attending the 2015 AGM and declared the meeting adjourned at 6:47 PM local time.
Recently Published in Elements

Volume 11, no. 4 Social and Economic Impact of Geochemistry

The August edition of Elements focused on the many ways that applied geochemistry impacts society. It starts with an overview of the impact of geochemistry (Ludden, Albarède & Coleman), looks at how geochemistry is used in mineral exploration (Kyser, Barr & Ihlenfeld) and then at new challenges and materials in the field of environmental mineralogy (Calas, McMillan & Bernier-Latmani). An article based on a case study from the City of London examines how geochemistry can be applied to urban planning (Ludden, Peach & Flight), whilst another explores the use of stable isotopes in forensic geochemistry (Ehleringer, Chesson, Valenzuela, Tipple & Martinella). The final contribution explores the uses of metal stable isotopes in medicine (Rakovan & Pasteris). The AAG Society News included a summary of the successful 27th IAGS by Erick Weiland and an abstract of Bob Garrett’s thought-provoking article on QA/QC plots that appeared in Explore 167. There certainly should be something for nearly every geochemist in this volume!

Volume 11, no. 5, Supergene Metal Deposits

The October edition of Elements focuses on supergene metal deposits. It begins with an overview of the geological and economic significance of supergene metal deposits (Reich & Vasconcelos), explores supergene alteration of ore deposits (Dill), paleoclimatic signatures of this deposit type (Vasconcelos, Reich & Shuster), the use of Cu isotopes in understanding supergene processes (Mathur & Fantle), predicting geological corrosion with electrodes (Renock & Shuller-Nickles), and finishes with an examination of the geomicrobiology of supergene metal deposits (Zammit, Shuster, Gagen & Southam). The AAG Society News included a short obituary for Eric Hoffman, as well as citations for the winners of the 2014 and 2015 gold and silver medals. This is certainly an issue for those involved in regolith geochemistry and with an interest in supergene mineral deposits.

Dennis Arne

Eric L. Hoffman Memorial Scholarship

In loving memory of Dr. Eric Hoffman, Ph.D, PGeo, the Eric L. Hoffman Memorial Scholarship has been established at the University of Toronto, Canada. This Earth Sciences graduate scholarship will be able to help future students advance a field that Eric was so passionate about. Dr. Eric Hoffman was the President and founder of Activation Laboratories Ltd. (Actlabs), with headquarters in Ancaster, Ontario, Canada, specializing in contract analytical services to many industries including: Minerals, Metallurgy, Petroleum, Life Sciences, Environmental, Forensics, Materials Testing, and Agriculture. Eric dedicated his career to advancing Actlabs and the geochemical field and quickly became a respected and valuable contributor to the geochemistry community. Eric was a strong supporter of collaborative industry-University research supporting both undergraduate and graduate students while providing project guidance and contributing to hundreds of research publications.

Even in his absence, Actlabs will continue to provide industry-leading innovative technologies and high quality services and support students through Actlabs and the Eric L. Hoffman Memorial Scholarship. Eric’s memory will never be forgotten and his legacy will live forever.

To contribute to the scholarship, visit the webpage on the University of Toronto web site:
https://donate.utoronto.ca/give/show/85
If you have any questions regarding the Memorial Scholarship or have memories or comments about Eric that you would like to share, contact: ahoffman@actlabs.com
Research carried out by students of applied geochemistry usually involves geochemical analysis, the cost of which can be onerous. Recognising this fact, the Association of Applied Geochemists (AAG) instituted a Student Support Program in 2011, in which analytical laboratories offered support to applied geochemistry students in the form of free analyses. This program has been implemented by the AAG for over two years. Due to the downturn in the mineral exploration sector, participating laboratories were not being able to sustain their involvement and the program was suspended in 2014. However, all participating laboratories (ALS, Ultratrace, Genalysis, Becquerel) and AAG agreed that the aim of the program was sound, and the program has been revised. Actlabs, ALS-Australia, Intertek-Genalysis, and Bureau Veritas Ultratrace have agreed to be part of this revised version of the Student Support program.

In its revamped form, participating laboratories do not have to pre-commit funds to the program, but can choose whether they will offer support – and to what level – on a case-by-case basis. This revision means that laboratories are not obliged to support all projects offered to them, but also that projects endorsed by AAG’s Education Committee may not receive support, or may only receive partial support. These changes to the program have not, however, affected the application process. Applications can be made using the form available on the Students page of the AAG website (www.appliedgeochemists.org). Following submission of the completed form to AAG’s Education Committee (education@appliedgeochemists.org), the merit of the application is assessed, and those worthy of support are recommended to participating laboratories. In making the application, it is useful to look at the scope of work that is offered by participating laboratories as set out in their schedule of services available on their respective websites. These schedules also provide analytical costs: in making the application, it is more likely that an application will receive support from AAG’s Education Committee and commitment from laboratories if the scope of work requested is strongly aligned with applied geochemistry and realistic in terms of costs.

Examples of geochemical research supported by AAG’s Student Support Program include projects carried out by Andy Lucas and Xin Du, both of whom received in-kind analytical support from Intertek-Genalysis. Both Andy and Xin fulfilled their obligations from the AAG Student Support Program by publishing in EXPLORE:

Currently, students Marcus Phua (University of Melbourne) and Enerst Tata (University of Buea, Cameroon) have received support for their research. Marcus’s work involves the petrogenesis of gabbroic intrusions hosting Ni – Cu – PGE mineralization in Western Tasmania (supported by Bureau Veritas – Ultratrace), and Enerst’s PhD thesis deals with granite-hosted gold mineralization from southeast Cameroon (supported by Intertek-Genalysis).

If the AAG Student Support Program is of interest to you as a supervisor, or as a student of applied geochemistry, please visit the Student page of the AAG website (https://www.appliedgeochemists.org) to find out more about this program, and download an application form.

Paul Morris
Chair, AAG Education Committee

Treatise on Geochemistry. Edition No. 2

This extensively updated new edition of the widely acclaimed Treatise on Geochemistry has increased its coverage beyond the wide range of geochemical subject areas in the first edition, with five new volumes which include: the history of the atmosphere, geochemistry of mineral deposits, archaeology and anthropology, organic geochemistry and analytical geochemistry. In addition, the original Volume 1 on "Meteorites, Comets, and Planets" was expanded into two separate volumes dealing with meteorites and planets, respectively. These additions increased the number of volumes in the Treatise from 9 to 15 with the index/appendices volume remaining as the last volume (Volume 16). Each of the original volumes was scrutinized by the appropriate volume editors, with respect to necessary revisions as well as additions and deletions. As a result, 27% were republished without major changes, 66% were revised and 126 new chapters were added.

For more information please go to on: http://www.researchandmarkets.com/publication/me5b86z/treatise_on_geochemistry
Student-Industry mineral exploration workshop

In an effort to attract more students into the mineral exploration industry, the Prospectors and Developers Association of Canada (PDAC) convened its 9th annual Student-Industry Mineral Exploration Workshop (S-IMEW) from May 1-15, 2015. Twenty-six senior geoscience students from universities and colleges from across Canada converged on Sudbury to participate in lectures, presentations and hands-on sessions covering exploration techniques, mineral deposits, geophysics, geochemistry, environmental, health and safety and corporate social responsibility issues. The two-week, all expenses-paid gathering provided the students with an opportunity to experience the many facets of the mineral exploration industry.

‘Geochemistry Day’ is one of the highlights of the workshop each year and was organized and taught this year by Stew Hamilton, Richard Dyer, Andy Bajc, and Sarah Hashmi of the Ontario Geological Survey and Beth McClenaghan from the Geological Survey of Canada. They introduced students to exploration geochemical techniques and provided hands-on field and lab experiences that students were unlikely to receive at university, including organic lake sediment sampling, soil profiles and till sampling, and the microscopic world of indicator minerals.

The workshop was a great opportunity for students to learn about the wide variety of career opportunities in mineral exploration, gain experience with exploration techniques not typically taught to undergraduate students and experience some of the adventures of being a geoscientist.

Information about the PDAC’s S-IMEW program is available at this weblink: http://www.pdac.ca/programs/students/s-imew/

Beth McClenaghan
Geological Survey of Canada

Students examining indicator minerals during Geochemistry Day lab exercise.

New AAG Members

Voting Members

David Murphy
Anglogold Ashanti Ltd.
Principal Geochemist
19 Whitfield St.
Floreat, WA
AUSTRALIA 6014
Membership no. 3675

Pertti Sarala
Geological Survey of Finland
P.O. Box 77
Rovaniemi,
FINLAND 96101
Membership no. 3893

Regular Members

Stephen De Wit
Consulting Geologist
3020 Meadow Drive
Nanaimo, B.C.
CANADA V9R 7C6
Membership # 4307

Susan Drieberg
Principal Geochemist, Rio Tinto
224 N 2200 West
Salt Lake City, UT
USA 84116
Membership # 4308

Evgenia Lebedeva
Geochemist, Intertek
156 Canning Highway
South Perth, WA
AUSTRALIA 6151
Membership # 4310

Douglas C. Menzies
Consulting Geologist, Geoinsite
16 Cullen Drive
Kiama, NSW
AUSTRALIA 2533
Membership # 4311

Student Members

Jasmine A. Moertle
California State University, Long Beach
6750 E. Rosebay St.
Long Beach, CA
USA 90808
Membership # 4309
MINERAL EXPLORATION LABORATORY SERVICES

With over 36 years of experience and more than 1,200 employees, AGAT Laboratories offers Precise, Accurate and Reliable analytical services nationwide.

MINERAL EXPLORATION SERVICES
- Full Service Geochemical Analysis
- Sample Preparation and Storage
- Precious Metals Fire Assay
- Core handling and cutting
- Multi Element by ICP

THE AGAT LABS ADVANTAGE
- Expert Client Project Management
- Fast Turnaround Times
- Sampling Supplies
- Accurate Results
- Reliable Service

AGAT LABS IS ACCREDITED
- Canadian Association for Laboratory Accreditation (CALA):
 - ISO/IEC 17025 Standard
- Standards Council of Canada (SCC):
 - Tests within our scope of accreditation

Canadian Science and Technology in Action Coast to Coast
CALENDAR OF EVENTS

International, national, and regional meetings of interest to colleagues working in exploration, environmental and other areas of applied geochemistry. These events also appear on the AAG web page at: www.appliedgeochemists.org.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-28 JANUARY</td>
<td>Mineral Exploration Roundup. Vancouver BC Canada.</td>
<td>amebc.ca/roundup</td>
<td>Website: aamebca.ca/roundup</td>
</tr>
<tr>
<td>5-6 FEBRUARY</td>
<td>Atlantic Geoscience Society Annual Colloquium. Truro NS Canada.</td>
<td>www.acadiau.ca/~raeside/ags2016/</td>
<td></td>
</tr>
<tr>
<td>6-9 MARCH</td>
<td>Prospectors and Developers Association of Canada Annual Convention. Toronto ON Canada.</td>
<td>www.pdac.ca/convention</td>
<td></td>
</tr>
<tr>
<td>16-18 MAY</td>
<td>7th Geochemistry Symposium with International Participation. Side Turkey.</td>
<td>jeokimya.anarka.edu.tr/en</td>
<td></td>
</tr>
<tr>
<td>1-3 JUNE</td>
<td>GAC/MAC Annual Meeting. Whitehorse YT Canada.</td>
<td>whitehorse2016.ca/</td>
<td></td>
</tr>
<tr>
<td>10-13 JULY</td>
<td>9th International Conference on Environmental Catalysis. Newcastle Australia.</td>
<td>tinyurl.com/pts5mtv</td>
<td></td>
</tr>
<tr>
<td>27 AUGUST</td>
<td>35th International Geological Congress</td>
<td>www.35ige.org</td>
<td></td>
</tr>
<tr>
<td>4-7 SEPTEMBER</td>
<td>IAP 2016: Interfaces Against Pollution. Lleida Spain. Website: www.iap2016.org</td>
<td>www.35ige.org</td>
<td></td>
</tr>
<tr>
<td>5-7 SEPTEMBER</td>
<td>13th International Nickel-Copper-PGE Symposium. Fremantle WA Australia.</td>
<td>www.35ige.org</td>
<td></td>
</tr>
<tr>
<td>11-15 SEPTEMBER</td>
<td>2nd European Mineralogical Conference. Rimini Italy. Website: emc2016.socminpet.it/</td>
<td>www.35ige.org</td>
<td></td>
</tr>
<tr>
<td>9-13 OCTOBER</td>
<td>World Water Congress & Exhibition. Brisbane QLD Australia. Website: tinyurl.com/pgrbkwu</td>
<td>www.35ige.org</td>
<td></td>
</tr>
</tbody>
</table>

Please let us know of your events by sending details to:

Steve Amor
Geological Survey of Newfoundland and Labrador
P.O. Box 8700, St. John’s, NL, Canada, A1B 4J6
Email: StephenAmor@gov.nl.ca Tel: +1-709-729-1161
THE ASSOCIATION OF APPLIED GEOCHEMISTS
P.O. Box 26099, 72 Robertson Road, Ottawa, Ontario K2H 9R0 CANADA • Telephone (613) 828-0199
www.appliedgeochemists.org

OFFICERS
January - December 2015

Matt Leybourne, President
Department of Earth Sciences and
Mineral Exploration Research
Laurentian University
935 Ramsey Lake Road
Sudbury, ON P3E 2C6, Canada
TEL: 1-705-675-1151 ext. 2263
email: mleybourne@laurentian.ca

Ryan Noble, Vice-President
CSIRO
P.O. Box 1130
Bentley, Australia 6102
TEL: +61 8 6436 8684
email: ryan.noble@csiro.au

David B. Smith, Secretary
U.S. Geological Survey
Box 25046, MS 573
Denver, CO 80225, USA
TEL: (303) 236-1849
email: dsmith@usgs.gov

Gwenda E.M. Hall, Treasurer
110 Aaron Merrick Drive
Merrickville, ON K0G 1N0
Canada
TEL: +1-613-269-7980
email: gwendyhall@gmail.com

COUNCILLORS

2014-2015
Alejandro Arauz
Dennis Arne
Stephen Cook
Mel Lintern
Paul Morris
Peter Simpson
Bob Epping, Ex Officio

2015-2016
Dave Cohen
Ray Leit
Tom Molyneux
Juan Carlos Ordoñez Calderón
Peter Rogers
Peter Winterburn

Brazil
João Larizzatti
joao.larizzatti@cprm.gov.br

Chile
Brian Townley
btownley@ing.uchile.cl

China
Xueqiu Wang
wangxueqiu@igge.cn

Northern Europe
Pertti Sarala
pertti.sarala@gki.fi

Southern Europe
Benedetto De Vivo
bdevivo@unina.it

Southeast Asia
Iftikar Malik
malik.iftikhar@gmail.com

Southern Africa
Theo Davies
theo.davellsphr@gmail.com

UK and Republic of Ireland
Kate Knights
k.knights@hotmail.com

AAG COMMITTEES

New Membership
Nigel Radford, Nigel.Radford@newmont.com

Awards and Medals
Bob Epping
eppping@usgs.gov

Chris Benn
Pertti Sarala
Romy Matthis

Customer Service
CustomerService@actlabs.com
www.actlabs.com

Actlabs adds value to your projects:
- Precise and Accurate Results
- Fast Turnaround
- Responsive and Knowledgeable Customer Service

A global company with a local full laboratory presence.

Paid Advertisement