President's Message

By now you have seen and formed your own opinion on our newly formatted newsletter, EXPLORE, and I am confident you were pleased. From the many telephone conversations I had with Chet Nichols and Clark Smith, I know a great deal of effort went into its preparation. On behalf of our membership, I would like to thank them and their helpers, particularly Mary Allen, for this effort in Reno and for the newsletters which will follow.

As part of your contribution to becoming involved in the AEG, I am asking for your observations, viewpoints, compliments, and criticisms regarding the Journal of Geochemical Exploration which is the flagship of the AEG. Please write to Dr. Don Runnells (see page 19 of this issue) so that he can compile your comments for our editor, Dr. Eion Cameron, and for the AEG council.

Certain actions have already been taken, such as ensuring regular publication of issues and prompt notification if you will not be receiving an issue for non-payment of current year dues (see last page of October EXPLORE). But other issues might be of concern to you such as the type of papers being published or the range of subject matter being presented. It is a duty of an organization like the AEG to critically review itself and its organs on a regular basis and to initiate changes where needed or mandated by its membership. Please help Dr. Runnells and Dr. Cameron in this endavor.

Another subject worthy of critical review is that of the actions (or inactions) of your council on your behalf. I encourage submissions on how you believe the interests of the organization can be improved, particularly at this time when candidates are being nominated for the 1988-1990 term.

I believe the structure of the AEG council should be modified to ensure analytical and environmental representation, and if individuals make themselves and their concerns known to me, we can work together to form a better council. For those who are considering the council of the AEG, please do so only if you have enough time to become actively involved. The profession sorely needs leadership from the AEG if geochemistry is to deliver to its potential.

Stan Hoffman

CONTENTS

Technical Notes
Microbial Exploration Methods
El Rea/ito Gold Prospect
Pearl Harbor File
Meeting Reports
First Brazilian Geochemical Congress

Information Requested
New Members
Council Minutes
Recent Papers
Membership Application

20
21
25

Gold in Moss-Mat Sediments and Stream Sediments

An article in the last issue of EXPLORE presented current geochemical programs of the British Columbia Geological Survey Branch. Preliminary results for the northern Vancouver Island Regional Geochemical Survey orientation project have just been received, showing some exciting possibilities for the use of stream sediments trapped in moss-mats as a sampling medium in cool, humid, mountainous regions where sandy sediment is not abundant.

As part of the project, which was initiated to compare traditional and innovative sampling techniques, moss-mats were scraped from boulders and logs within the active channel well away from the banks. At each site, 1 to 2 kg of both moss-mats and sandy stream sediments were collected. Collection of moss-mats was very rapid as suitable sample sites are extremely abundant.

In the laboratory, samples of both types were dried at 60°C and moss-mats were hand-pulverised to release the entrapped sediment. Half gram splits of the -80-mesh (-177 µm) fraction from both the sandy sediments and moss-mat sediments were digested with aqua regia.

Thirty elements were determined directly by ICP-ES while Sb, As, Se, Ge, Bi and Te were determined by ICP-ES following reduction to their hydrides. Gold was determined by aqua regia digestion of a 10-gram split, followed by MBK pre-concentration and graphite furnace AAS finish.

The weight of -80-mesh material obtained from each sample immediately shows a potential advantage of moss-mat samples. Moss-mats typically yielded 50 grams of the fraction which contrasts with an average of 15 grams obtained from sandy sediments.

Optimally, the Branch's Regional Geochemical Surveys require 23 g of sediment for the determination of 17 elements by a variety of analytical techniques as well as analysis of two 10-g splits for gold. Fifty-three percent of the conventional stream sediment samples yielded too little material to meet survey standards whereas all moss-mats yielded enough material for analysis in the current project as well as a remainder for future analysis of other elements.

Gold results for two areas of contrasting geology and physiography show the differing responses of moss-mat sediments and stream sediments. The Zeballos Au-Ag-Pb-Zn-Cu mesothermal vein camp is located in very wet, rugged mountains on the west coast of Vancouver Island; Red Dog molybdenum-copper stockwork deposit is one of several similar occurrences exposed in the till-blanketed lowlands toward the northern tip of Vancouver Island. Results are very similar for moss-mat sediments and conventional stream sediments from Goldvalley Creek continued on page 4
Notes from the Editor

Journal of Geochemical Exploration Volume 27, number 1-2 (October 1987) and number 3 (December 1987) have been issued since the last newsletter. Write Ines S. Filicetti at P.O. Box 523 (Metropolitan Toronto), Rexdale, Ontario, M9W 5L4, Canada about discrepancies.

Members who have not sent in 1988 dues will receive EXPLORE but not the Journal of Geochemical Exploration.

The AEG mailing list has been updated as of the latter part of January to show current payment of dues. If your mailing label does not say PAID-88 please write Ms. Filicetti at the address in the paragraph above.

The form at the back of the Newsletter endeavors to become a more informational source.

Advertising submitted as a technical contribution is eligible for the following discounted schedule:

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Full Page</th>
<th>Half Page</th>
<th>Quarter Page</th>
<th>Eighth Page</th>
<th>Business Cards*</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. $400</td>
<td>$200</td>
<td>$100</td>
<td>$150</td>
<td>$100</td>
<td>U.S. $50</td>
</tr>
<tr>
<td>U.S. $800</td>
<td>$400</td>
<td>$200</td>
<td>$300</td>
<td>$200</td>
<td>$150</td>
</tr>
<tr>
<td>U.S. $1200</td>
<td>$600</td>
<td>$300</td>
<td>$450</td>
<td>$300</td>
<td>$250</td>
</tr>
<tr>
<td>U.S. $1500</td>
<td>$750</td>
<td>$375</td>
<td>$562.50</td>
<td>$375</td>
<td>$250</td>
</tr>
</tbody>
</table>

Advertising rates are on a per-issue basis (4 issues per year). Frequency discounts and rates for color separations are available. Only camera-ready copy is accepted. Please direct advertising inquiries to P.O. Box 9777, University Station, Reno, Nevada 89507-9777.

The Editor reserves the right to insert the word "Advertisement" on all ads. Advertising and technical contributions should be submitted by March 15, June 15, September 15 and December 15 for publication in the following month.

The newsletter needs Assistant Editors located in major exploration centers and universities to solicit and prepare extended abstracts for publication and represent the Association in their respective professional communities. Please contact C.E. Nichols at Suite 290, 680 Greenbrae Drive, Sparks, Nevada 89431.

Issue number 61 was distributed to approximately 3,700 different professionals from the combined membership lists of the Association of Exploration Geochemists, Society of Economic Geologists, Denver Regional Exploration Geologists Society, Geological Society of Nevada, and attendees at the April 1987 GSN Symposium at Reno.

The distribution of this issue is planned for approximately 4000 to include geologists of the Northwest Mining Association and most libraries with geologic collections.

The next issue will be distributed by the NWMA to a compilation of lists without duplicate names estimated at about 7000.

Considering the dozens of other such illustrious groups of explorationists in the world which are listed in the Directory of Geoscience Organizations (Geotimes October 1987), there are many more people who should be interested in future issues of EXPLORE besides AEG members. We hope to maintain large promotional mailings, and certainly we would appreciate a set of mailing labels from other appropriate international, national, regional, and local organizations.

There have been so many requests for additional copies of the October issue that a reprinting is being considered. If you or your organization is interested, please write EXPLORE indicating the number of issues wanted at $1.25 US each plus $5.00 per order for handling and shipping. Please respond by March 31.

A few of our bretheren have taken it upon themselves to conduct a membership campaign on behalf of the Association. Of these, the most notable is

Information for Contributors to Explore

Scope In addition to contributions on exploration geochemistry, material on multidisciplinary applications, environmental geochemistry and analytical technology is encouraged. Of particular interest are extended abstracts on new concepts for guides to ore, model improvements, exploration tools, unconventional case histories, and descriptions of recently discovered deposits.

Format Manuscripts should be double-spaced and include illustrations where possible. Meeting reports may have photographs, for example. Text is preferred on paper and 5½-inch IBM-compatible computer diskettes with ASCII (DOS) format, which can go directly to typesetting.

Length Extended abstracts may be up to approximately 1000 words or two newsletter pages including figures and tables.

Quality Submittals are copy-edited as necessary without reexamination by authors who are asked to assure smooth writing style and accuracy of statement by thorough peer review.

Deadlines Copy should be received by EXPLORE at Reno, Nevada before the middle of March, June, September and December to expect space in the next newsletter. Items of immediate interest may be accepted until the time of typesetting.
Stan Hoffman who sponsored ten of the new voting members listed in this newsletter. Runner-ups are Al Sinclair with four, Ivor Elliott and Pedro Herman with three, and K. Fletcher, Jane Plant, Graham Closs and Larry James with two each. If these busy and productive people have this time for the association, perhaps you do too. Please feel free to reproduce the membership form at the back of this issue.

Chet Nichols

A Note from the Secretary

At this time of the year we are once again faced with sending membership dues to the organization. I thought it might help "ease the pain" a bit if there were some explanation about why we collect the dues when we do and why we are so insistent about receiving payment for the current year before the end of the current year. The reason for this is that Elsevier (our publisher) establishes our total membership on December 31 of each year. This is the number of members used as the basis for substantial royalty payments to the organization. Any memberships for the previous year that are received after December 31 are not recognized by Elsevier as members and are considered as the Association buying a "back issue". As a result, we get no royalty for those members and the royalties are what helps fund your organization. It is very important that your organization receive your dues as early in the current year as possible.

Much of my mail concerns the status of individual members and their receipt (or not) of our publications. In the past it has taken an inordinate amount of time for the Council to approve new members and then notify them of their status. This is an ongoing problem that we are trying to resolve and we hope to be much more responsive to the membership, especially the new membership.

Sherman Marsh

PERSONAL

Information on Association members is received from around the world. To keep others informed of items such as moves and promotions, send a notice, preferably with photo, to EXPLORE.

Lloyd James wishes to inform members that he is now operating as an independent geochemical consultant. He may be contacted at 6170 E. Briarwood Circle, Englewood, Colorado 80112, U.S.A., (303) 741-5199.

Dr. Nigel W. Radford is now Supervising Geologist (Exploration) with Metana Minerals at 161 Great Eastern Highway, Belmont, WA. 6104, Australia.

POSITIONS WANTED

Ph.D. Geologist/Geochemist with 15 years experience in a major old-line mining company and 6 years consulting in Reno proposes to organize and manage a gold exploration and/or mining program in Nevada at a time of unusual opportunity. Call 702-331-4223.

Notices of positions wanted are published without charge to current members. Organizations may also list vacancies without charge by sending the appropriate copy with or without camera-ready logo to EXPLORE.

LETTERS

Nordic Countries Report

At present a local meeting of Nordic geochemists on reconnaissance and interpretation is planned for August 1988. Another meeting of semi-local character (with invited foreigners) on environmental aspects is planned for the first half of 1989. I will let you know more as planning progresses.

I will also set up a system of reporters in response to the request for local news.

Alf Bjorklund
Department of Geology
Abo Akademi
SF-20500 Abo, Finland
Phone: 358-0-298 8297

New Format of Explore

I thought that I should write and congratulate you on a fine effort — both in content and format — represented by EXPLORE. I know that this does not come easy.

Yours sincerely,
Eion M. Cameron
Department of Geology
University of Ottawa
Ottawa, Ontario
KIN G5S Canada

Misprints Corrected

The newsletter EXPLORE no. 61 October 1987 page 4, "The Analysts Couch" has my name misprinted. L. Kothny is either my brother or my daughter. Also the country of the undersigned is misprinted (Zambia?).

Very truly yours,
E.L. Kothny, Ph.D
20 Rheem Boulevard
Orinda, CA 94563 U.S.A.

AEG-NWMA JOINT MEETING

CALL FOR PAPERS

Multidisciplinary Exploration Case Histories
Spokane, Washington • November 30 to December 2, 1988

The AEG will be co-sponsoring the annual general meeting of the Northwest Mining Association (NWMA) in Spokane, Washington on the topic of multidisciplinary exploration case histories. The meeting will focus on the use of geology, geochemistry and geophysics in the search for Au and Pt volcanogenic massive sulphides and other types of deposits. The annual NWMA meeting is probably the premiere event within the exploration community in the United States and should be placed on your calendar of events worth attending.

Papers are being requested where the use of a multidisciplinary approach can be described and its effectiveness commented upon. It is likely that the meeting will attract many gold papers, but submissions will be accepted on any commodity. Organizers hope to attract papers on many deposit types from North America as well as on other parts of the world.

But time is short. If you would like to contribute a technical paper (or papers), please direct your intentions to the address below by April 15. Extended abstracts of about 500 words are due June 1, 1988. It is our intention to publish a proceedings volume of papers submitted for that purpose and meeting standards established by an editorial board. It is requested that papers be submitted by October 15, 1988 so that copies can be made and distributed to interested convention participants.

A premeeting geochemical short course is planned for November 28-30 (2½ days). Field trips are also being considered. Look for more information in the April issue of EXPLORE. Cost for the short course will be $425.00. Cost for the convention itself will be $75.00 for AEG and NWMA members, or $105.00 for non-members.

For more information and for submission of abstracts, please contact:
Jerry D. Lewis • Convention Chairman • 414 Payton Blvd. • Spokane, Washington 99201 U.S.A.
near Zeballos (Figure 1). Here Au is thought to occur predominantly as coarse, native gold particles (as indicated by erratic results for duplicate analyses of 5 gram splits of conventional sandy sediments).

By comparison, duplicate gold analyses of 5 gram splits of sandy sediments from Red Dog Creek are fairly consistent, suggesting that gold occurs as relatively abundant fine particles. Nevertheless, gold is almost an order of magnitude more abundant in moss-mat sediments than in sandy sediments (Figure 2). In this case, gold concentrations in moss-mat sediments have the advantage of being considerably above the detection limit (1 ppb), providing greater geochemical contrast (relative to background defined as the detection limit) and better analytical precision.

Other elements in the 103-site survey indicate that concentrations in moss-mat sediments and stream sediments are comparable for many elements including Mo, Cu, Pb, Co, Fe, As and Hg. However, stream sediments generally show greater concentrations than moss-mat sediments in Zn, Ni and Mn.

At this stage of the study, results are tentative. More analytical results are expected shortly, and next year a site-specific study is planned to investigate the causes of observed differences in trace element concentrations in moss-mat and sandy sediments.

Further information can be obtained from:
P.F. Matysek, S.J. Day or J.L. Gravel
British Columbia Geological Survey Branch 300-756 Fort Street Victoria, British Columbia V8W 1X4 Canada Telephone: (604) 387-3234
Microbial Methods of Mineral Exploration

The idea of prospecting for mineral deposits using microorganisms is not new. The Soviets in the late 1950's were the first to investigate whether the distribution of sulfur metabolizing bacteria in soils could be used in mineral exploration. Since then others have shown that several sulfur metabolizing microorganisms, Thiobacillus spp. and Desulfovibrio spp., are useful in locating ore. Although sulfur-utilizing bacteria may show promise in locating sulfur-rich deposits, such as sulfide and native sulfur ore, these organisms are not useful indicators of sulfur-poor deposits.

Alternatives to using sulfur-metabolizing microbes in mineral exploration have been twofold: the development of assays that determine metal and antibiotic resistances in soil bacterial populations associated with mineralized bedrock, and the development of a Bacillus cereus assay in which increases in populations indicate the presence of metalliferous terrain.

Although the former method has shown some promise in delineating metalliferous terrain, it is the latter method that has received the most attention primarily because of the cost effectiveness of the technique and the ease with which it can be applied. The B. cereus method was introduced in 1982 by John Watterson of the U.S. Geological Survey in Denver.

Watterson's interest in the distribution of B. cereus originated as a result of a study by Timoney and others in 1978. They were the first to show that heavy metals in the environment can selectively enhance antibiotic resistance in bacteria. This study led Watterson to investigate whether antibiotic resistances in soil bacterial populations coincide with the location of metalliferous soils associated with subsurface mineralized bedrock.

Results from his study in which soils were collected above the Poorman Creek porphyry deposit in Montana, show that penicillin resistance in total Bacillus spp. correlates significantly with soil metal content and that the most numerous of the Bacillus species displaying this resistance phenomenon was Bacillus cereus. It was concluded that either penicillin resistance in total Bacillus species or increases in B. cereus might be useful as an exploration method.

Since the introduction of the new microbial method to the exploration community, many surveys have been conducted over a variety of gold deposits: gold-quartz veins in the Empire District, Colorado; the Reid deposit veins near Redding, California; and disseminated gold deposits at Mesquite, Hemlo, and Hog Ranch.

Survey results from soils collected at the Hog Ranch deposit are illustrated in the Figure. Both soil gold and concentrations of B. cereus populations show anomalous values displaced slightly downslope from the known location of ore. Anomalous gold concentrations are subtle in comparison to B. cereus populations which increase to as much as 40,000 times local background. Results from the survey at Mesquite show that the greatest advantage over other exploration methods is that B. cereus populations are able to delineate ore as deep as 300 feet in extremely arid climates.

The need to integrate microbial surveys with geochemistry is evident, especially in areas where outcrop exposure is common. Geochemical and B. cereus correlations to date will hopefully stimulate research in the field of microbial ecology as we now realize the amount of information available by looking at biological systems in relation to geologic problems.

Dr. Nancy L. Parduhn
Cereus Exploration Technologies Inc.
36 Glen Carron Circle
Sparks, Nevada 89431
Phone: (702) 331-3013

Plot of Bacillus cereus per gram of soil and ppm Au in soil overlying disseminated gold mineralization at the Hog Ranch deposit in Washoe County, Nevada.

GEOCHEMICAL MAPPING & STATISTICAL SERVICE

An invaluable aid in studying the geochemistry of your properties.

Quality maps produced for all your elements, quickly and economically.

For a detailed brochure write or call:

NEW HORIZON SOFTWARE
1110 Howse Place, Coquitlam, B.C. Canada V3K 5V7
(604) 936-9008
Geochemical Signature of the El Realito Gold Prospect, Sonora, Mexico

Heap leach Au potential along an oxidized mesothermal vein system has been investigated recently by the Luz del Oro S.A. de C.V. joint venture at the El Realito concession which lies 130 kms ESE of Hermosillo, Sonora, Mexico in the San Antonio Mining District near San Antonio de la Huerta. Geochemistry has augmented geology in rugged terrain with few outcrops. Initial exploration indicates from 400,000 to 800,000 tonnes of 2.5 grams per tonne Au in vein gossans. Au and Ag veins and Au placers have been exploited in the district since Spanish colonial times.

Vein wallrocks at El Realito include hornfelsed west-dipping shales, calcareous siltstones, sandstones, and conglomerates of the Upper Triassic Barranca Formation. Metamorphism and mineralization may be related to abundant local granite and granodiorite intrusives. Pebbles of intrusive rocks in middle Tertiary conglomerates suggest a Laramide age for intrusion.

The 25 sq. km San Antonio District shows geochemical zoning characteristic of porphyry Cu systems. Zoning is centered on the Luz del Cobre Mine — a breccia pipe which has produced 200,000 tonnes of 3% Cu, and which contains 4,000,000 drill-proven tonnes of 1.4% Cu. The district is one of several spaced at approximately 10 km intervals along a 50 km ENE-trending regional zone of Cu-Pb-Zn-W-Au-Ag mineralization.

The district is characterized by a swarm of pyritiferous veins cutting, and extending 4 kms WSW from, the Luz del Cobre pipe. Intense oxidation has reduced veins and nearby wallrocks to gossans of silica, clay, and limonite. Au and electrum — as well as Pb, Zn, Mn, and Cu oxides, native Ag, and barite — can be panned from these gossans. From 1982 to 1984, small pits along the veins at Chalate, Promotorio, Golfo de Oro, and California (Figure 1) yielded 100,000 tonnes of 3.0 gpt Au ore. The San Antonio District also contains important placers. Veins, generally less than 1 meter thick, are accompanied locally by sheeted, multistranded, enechelon veinlet swarms in zones 5 to 30 meters wide. Gossany material also occurs along the veins in stockworks, in breccias, and along bedding laminae of favorable sedimentary units. Best Au values and the strongest vein, stockwork, and breccia development occur along veins where they are intersected by cross-faults (Figure 1).

The base of sulfide oxidation, exposed in canyon walls at El Realito, gradually rises to the west. This profile, not parallel with the modern arroyo profile, is parallel with, and possibly related to, a profile defined by elevations of ridgespurs. Thus, the veins were probably oxidized during a time of valley formation earlier than the present geomorphic cycle, and are mostly being dissected at present.

Rock-chip geochemical data from a 0.5 sq. km grid of the district (figures 2, 3, & 4) show a zoned distribution of base metals and Ag — with boundaries of "anomalous" envelopes defined by assay average plus one standard deviation. Centered on the
Luz del Cobre breccia pipe, a 10 ppm Mo envelope is approximately surrounded by an envelope of 250 ppm Cu. This zone is surrounded by a halo showing plus 100 ppm Pb, 2000 ppm Zn, and 1000 ppm Mn. The 1 ppm Ag isograd overlaps and appears to be more peripheral than the Mn, Zn, and Pb anomalies. For the 61 samples taken, Au was below spectrographic and AA detection limits.

In a district-wide survey of arroyo sediments (Figure 5), each of 256 samples reflects a drainage area of not more than 0.5 sq. km. Samples were sieved to minus 80 mesh and analyzed for Au, Ag, and As. Excepting very high assays invariably down-drainage of current or historic workings, Au shows values up to 2.59 ppm, with an average at 0.37 ppm. Ag ranges up to 15.4 ppm, with an average at 2.75 ppm. As ranges up to 500 ppm, with an average at 153 ppm.

Soil samples (Figure 6) were taken at 10 m spacings along fences 50 m apart crossing the vein trends. A total of 1388 samples were sieved to minus 80 mesh and analyzed for Au, Ag, and As. Values for Au ranged to 2.86 ppm, with an average at 0.22 ppm. Values for Ag ranged to 4.80 ppm, with an average at 1.29 ppm. Values for As ranged to 450 ppm, with an average at 96.27 ppm.

In past economic climates, location of Au in placers and veins was used with hypogene and supergene zoning concepts to point towards possible porphyry Cu deposits. At the El Realito survey, metal distribution patterns in a porphyry Cu system has focused and encouraged exploration for heap leach Au potential.
Pearl Harbor File

The Pearl Harbor file is planned as a regular column in EXPLORE to publicize problems, deficiencies, omissions, and otherwise total disasters encountered by our readers on geochemical programs. We hope that by sharing real exploration experiences all can learn something from them. I have agreed to act as assistant editor for these case histories, and would appreciate your submissions.

I believe it is too simple to just present a Pearl Harbor file study in a narrative format. Rather, I think much more interest would be generated if the readership is first given a chance to consider the case history, identify one (or more) deficiency(ies) and recommend what remedial action(s) you would take if the project were yours. Readers are asked to define the anomalies, rate them by priority, and plan an appropriate followup program. The following is a case history of a recent soil survey from an exploration program looking for volcanogenic massive sulphide deposits (VMS) in Newfoundland, Canada.

The survey area lies within central Newfoundland. The landscape is gently rolling and covered by a boreal forest. The climate is cool with a yearly rainfall of about 75 cm. Snow covers the ground from December through April. Contour interval on the accompanying geochemical maps is 18 m (50 feet), rising to a hill in the southwest. Accumulations of organic material are locally significant, and "holes" in the sampling plan denote areas where bogs could not be penetrated by a 1.3 m soil auger, the device used for soil sampling on the property.

Soils are normally podzols, except in boggy areas. Following the soil horizon nomenclature of Chapter 3, Reviews in Economic Geology, Volume 3, a typical profile comprises:

- 0-20 cm LH black, leaf-humus layer
- 20-40 cm AE white, leached A horizon
- 40-50 cm BF black, zone of organic and Fe/Mn accumulation
- 45-60 cm BF medium red-brown, zone of Fe enrichment
- 60+ cm BM medium olive brown horizon

The red brown BF is the horizon sampled.

Overburden comprises glacial till of variable thickness with outcrop exposed over perhaps 1% of the landscape. Overburden thickness from limited drilling in the area appears to be about 8-10 m. The area lies near a centre of ice accumulation during the Pleistocene, and ice flow appears to have been either to the northwest or to the southeast.

Figure 1 presents geochemical data for Cu, Zn and Pb superimposed on a topographic and geologic (bold screened lines) base. The three elements are part of the 30-element suite determined on the minus 80-mesh fraction with aqua regia digestion. Results are part of a larger grid and anomalous conditions, representing at least contiguous pairs of anomalous samples, are outlined by the unscreened contour lines (an anomaly number label is attached). These highlight 5 to 10% of the survey area, which is about 3 times larger than that depicted on Figure 1.

Based on the data presented, which anomalies (if any) would you propose to followup and what procedures would you use? Recognizing that it is not possible in an article such as this to give you all the information you might need, is there any critical information you would require? Let me know so that I can incorporate your ideas in my response in the next issue of EXPLORE.

To give you a flavour of why this example is in a Pearl Harbor file, I will summarize discussions relating to precious metals exploration during the GEOEXPO/86 mine tour in Montana. Soil profiles were examined in view of questions raised regarding
the applicability of constant depth sampling for routine surveys. A standard profile could be described as having a thin (<1 cm) leaf humus (LH) surface horizon, underlain by a 2 to 6 cm A horizon with humus (AH), a non-descript B zone (BM) and a calcareous C horizon parent material (CA). The BM horizon would normally be sampled for routine work.

Soils examined near Montana Tunnels and Jardine suggested that a potential problem exists. Topographic depressions and gullies often contain accumulations of AH material up to 60 cm and greater in thickness. Soil sampling at constant depth would have the effect of collecting BM material most of the time and AH material some of the time.

Table 1
Selected trace element content (ppm) from two soil profiles near Montana Tunnel

<table>
<thead>
<tr>
<th></th>
<th>Profile 1</th>
<th></th>
<th>Profile 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mo</td>
<td>Cu</td>
<td>Pb</td>
</tr>
<tr>
<td>AH</td>
<td>8</td>
<td>330</td>
<td>2100</td>
</tr>
<tr>
<td>BM</td>
<td>8</td>
<td>100</td>
<td>2400</td>
</tr>
<tr>
<td>CA</td>
<td>17</td>
<td>159</td>
<td>4100</td>
</tr>
</tbody>
</table>

Au in ppb, Fe in %

Table I from the Montana Tunnels area illustrates the character of some of the interhorizon trace element variations. There is evidence that, at least locally for some elements, the AH horizon is a zone of accumulation.

Suppose a routine survey were completed using samples taken at a constant depth, and the samplers were unaware that recognition of soil horizon was important. Deep development of the AH horizon in a shallow valley could produce a linear geochemical pattern following the valley. This anomaly would likely be interpreted as related to a geological structure, due to its linear shape. A drill or trench target might be identified in a depression as a consequence of coincidence of a very strong geochemical anomaly in the AH horizon and a mineralized structure, as in the case of profile 1.

By contrast, a more subtle geochemical anomaly in the BM horizon, also related to bona fide mineralization, as in the case of profile 2, might be missed. As a further complication, a false anomaly may be created as an artifact of sampling the AH horizon, with a resulting waste of time and money spent following it up.

How might this precious metal anecdote relate to the VMS example? I would appreciate your ideas and suggestions. Feel free to summarize a work program on an overlay to Fig. 1. The VMS example is to be continued in the next issue of EXPLORE. Please address your comments and/or your own case histories for following issues to:

Stan J. Hoffman
BP Resources, Mining Division
#700-890 West Pender Street
Vancouver, B.C. V6C 1K5
Canada

Ed. note: We promise not to embarrass anyone.

Our development of the ADVOL (Absorbed Volatiles) geochemical method just might be as important to your exploration department as the development of modern heap leaching methods has been to your production department.

Our clients tell us they have used ADVOL successfully in areas of:
- POSTMINERAL and PREMINERAL COVER
- COLLUVIAL, SEDIMENTARY, and VOLCANIC COVER
- DEEP (600 feet BELOW THE SURFACE) MINERALIZATION

The Method — Clay is separated from surface soil samples, then any absorbed gases of hypogene and/or supergene origin are thermally desorbed from the clay and analyzed by a quadrupole mass spectrometer.

Analytical Data — Organic and inorganic sulfurs; organohalides; hydrocarbons and heterocompounds; CO₂.

Uses — Identifications of those geophysical anomalies related to sulfides. Areal extent of drilling targets.

We invite your inquiries.

CALEXCO, INC.
2200 W. Berry Avenue
Littleton, Colorado 80120 (303) 794-8389
Advol Geochemistry Photogeology

Looking for Blind Orebodies?
Exploration 87

The Exploration 87 convention held in Toronto, Canada between September 26 and October 1, 1987 was attended by 970 delegates from 77 nations. The symposium was convened to examine and review technological advances in the fields of exploration geophysics and exploration geochemistry in the 10 years since the Exploration 77 meeting was held in Ottawa, Canada. Exploration 87 was the third in a series of meetings, the next of which is expected to be held in 1997.

In a world where numerous technical symposia are held each year, these decennial events are indeed unique, firstly for their international audience and secondly for their review nature. Think back to the norms of exploration 10 years ago. Exploration technology has seen an enormous expansion in data production; for example in readily available routine multi-element analysis using ICP and DCP determination methods, and in data management using micro-computers.

Geophysics has seen the miniaturization of field equipment and become a colourful science, with computer colour graphics now the norm for data presentation. These are but a few of the many significant advancements which are giving us new tools with which to do our jobs better as explorationists.

The convention, with its oral presentations and poster displays, was preceded by field schools for both geochemical and geophysical training. During the meeting itself, evening discussions were held to review the contents of sessions held on the first two days. At the second of these discussions, a fundamental structural flaw in contemporary exploration philosophy became the focus of debate, that of the widespread failure of the various exploration disciplines to integrate with each other. Exploration 87 was structured for geophysicists and geochemists, and, although a geological thread held the program together, geologists were not mentioned by name.

An early geophysical topic, how to best represent IP data in pseudosection format, appeared to be very complicated, and the mathematical implications held geophysicists and others in awe. The mystery was shattered when Phil Haloff explained that the most commonly accepted format was the norm simply because graph paper was readily available to display the data, the reason being no more complicated than that!

These discussions highlighted the fact that geophysicists could talk in a spirited fashion to each other, but exactly how the implication of these discussions would affect drill target selection was lost on the audience. Undoubtedly, geophysicists could also have become involved in an esoteric discussion on some minor technical point to the distraction of the exploration theme.

Within the exploration industry it has long been recognized that the three main disciplines employed in the search process (geology/prospecting, geochemistry, geophysics) more often than not compete for funds rather than cooperate for progress. An example of this counterproductive attitude concerned whether or not airborne radiometric surveys are geophysical or geochemical surveys.

It is a pity that geochemists and geophysicists do not realize just how much they have in common. This is particularly true of the electrical and magnetic techniques of geophysics and the whole-rock alteration studies of geochemistry. Both are looking at changes in rock compositions. What is a magnetic survey but an expression of the relative abundance of iron and its oxidation state? Similarly, changes in resistivity and/or chargeability can be due to water reactions, potassic metasomatism, silicification, and sulphidation reactions in rock. Both disciplines need to cooperate to provide the best possible interpretation of survey data. The radiometric example is surely a case in point.

Within my own career, I have seen various methods of operation. The most effective approach, in my opinion, was generated by an exploration geophysicist with a company who was able to commission more geochemical surveys than I could ever have achieved on my own, simply by asking a project manager one question: "What criteria do you need to define a drill target?". With the answer to the question in mind, the exploration process can then establish the most cost effective route to achieve the objective.

In this particular case, previous experience had indicated that a large number of geophysical anomalies would result from a geophysical survey covering a large area, and not all anomalies could be tested by drilling. The most effective way to establish a priority for targets was a geochemical survey. If there were no geochemical anomaly, then money could be saved by not conducting the more expensive follow-up geophysical survey. If anomalies were outlined, then a more restricted geophysical survey coverage could be planned, also saving money.

I predict that, over the next 10 years, this much-needed cooperation will be one of the main advances initiated by Exploration 87. In that regard, I would encourage more geophysically-oriented individuals to join the association and authors to include geophysical aspects to case histories submitted.

AEG 1989 ANNUAL GENERAL MEETING

CALL FOR PAPERS

13th International Geochemical Exploration Symposium
Rio de Janeiro, Brazil • October 2-4, 1989

This symposium is jointly sponsored by the Association of Exploration Geochemists and the Brazilian Geochemical Society. It will consist of three days of technical sessions, pre-symposium workshops, and field excursions both before and after the scheduled technical sessions.

Principal themes for the symposium include:

1) Geochemical exploration in humid and tropical areas
2) New techniques in geochemical exploration for Au and PGE
3) Geochemical exploration for petroleum
4) Analytical techniques with emphasis on the precious metals
5) Computer applications in exploration geochemistry

Brazil has a well-developed minerals industry and a number of interesting, world-class ore deposits. Preliminary contacts with mining companies are now being made to arrange excursions to some of these, and possible technical visits include:

1) The Carajas Mineral Belt (Fe, Al, Mn, Cu, Au, Sn deposits)
2) The Minas Gerais Alkaline Complexes (world's largest Nb reserves and large Ti and phosphate deposits)
3) Jacobina-Witswatersrand-type Au deposits
4) The Iron Quadrangle — Quadrilatero Ferrifero Au and Fe deposits of Minas Gerais
5) The Au and Ni deposits of Goias State

In addition to the technical program, a worthwhile social program is being arranged for accompanying guests and for time available outside of the technical sessions. A first circular announcing the 13th IGES will be sent out shortly.

Please contact:
Dorival C. Bruni • Sociedade Brasileira de Geociência • R. O. Box 2432 CEP 20010 • Rio de Janeiro, BR RJ
• Two major laboratories each designed to prepare and analyse over 1000 gold samples per day.
• Unique sample preparation equipment that allows 2-20 lb. of sample to be pulverized to 150 mesh.
• Gold grade control assay reported within 24 hours.
• Exploration gold (fire assay 50g charge) reported within 72 hours.
• BLEG gold analysis (4 lb. or 10 lb. leach gold reported to 0.1 ppb).

George Burke
Sparks, Nevada
1500 Glendale Avenue
(702) 356-0606

John O'Neill
Elko, Nevada
2320 Last Chance Road
(702) 738-9100
The First Brazilian Geochemical Congress

At the end of October and the beginning of November of 1987, the first Brazilian Geochemical Congress was held in the city of Porto Alegre, Rio Grande do Sul, the southernmost state in the country.

An enthusiastic turnout of over 400 delegates made the congress a great success in terms of attendance alone. Of the 82 papers given at the Congress, 75 were published in the proceedings distributed at the meeting, a tribute to the worthwhile efforts of the organizing committee and staff. Papers were published on the following topics:

- Analytical geochemistry (21)
- Rock geochemistry (16)
- Environmental geochemistry (13)
- Exploration geochemistry (11)
- Rare earth element geochemistry (5)
- Superficial weathering geochemistry (5)
- Isotope geochemistry (4)

Apart from these presentations, Art Rose, Al Sinclair, and K. Fletcher gave a number of invited talks on new trends in exploration geochemistry, data interpretation approaches, and experiences in drainage geochemistry surveys.

Field trips covered areas of local geological interest including the Camaqua Cu deposit, the Santa Maria Pb-Zn orebody, and the Santa Catarina fluorite deposits.

Apart from the technical sessions, delegates experienced some of the southern Brazil "gaucho" hospitality at the social events.

Both a merry and informative time was had by all. The Congress went a long way toward establishing the Brazilian Geochemical Society, now with over 600 members and barely three years old, as a dynamic presence here.

Paul Talufen
Amcongen-Rio
APO Miami, Florida 34030-3090

Wilderness Impact Research Foundation

Preservationist organizations aim their information at both government and the general public. Users of the land generally aim their information and influence regarding wilderness only at government, and the impact of specific users is generally not coordinated with other users to demonstrate the accumulative impact of proposed wilderness.

There has been ninety million acres of wilderness already designated and over one hundred and twenty million acres of land are presently under wilderness study area status in the United States. This combined acreage is equivalent to a strip of land 200 miles wide on the east coast from Maine to Florida or the entire states of California, Nevada and nine-tenths of Utah.

Congress has had no oversight hearings or studies conducted to determine the impact of the present ninety million acres of federally designated wilderness to determine whether it is wise to place additional lands into wilderness status.

The stated justification for federal wilderness designation by the preservationist movement, with a total membership of 5.8 million, is that it is beneficial to wildlife and the land. As the preservationists make their demands for additional multi-millions of acres, they present no proof that the previous designations were beneficial to the wildlife and the land.

The United States' largest conservationist-hunter organization, the National Rifle Association with 3 million members, and the
GET ON THE TREND WITH YOUR DRILLING

The trend is toward better multielement analysis

Experience the best . . .
• GSI Multielement Packages

Special complimentary statistical analysis with each job
• Means, variances
• Contours
• Correlation matrix
• Histograms
• Multivariate analysis
. . . and more (inquire)

Geochemical Services, Inc.

Main Laboratory: 2741 Toledo St., Suite 201 • Torrance, California 90503 • 213/320-3660 • FAX: 213/320-9480
Fire Assay Laboratory: 55 Glen Carran Circle • Sparks, Nevada 89431 • 702/359-6600
Sample Preparation: 1800 S Frazer Avenue • Sparks, Nevada 89431 • 702/356-1568
SPECIAL NOTES

continued

largest agricultural organization, the American Farm Bureau
with 3.5 million members, both directly challenge the assumption
by the preservationists that "no management" is best to the
wildlife and the land.

The National Rifle Association states in its 1987 Resolution on
wilderness, that "These arbitrary and capricious regulations in
fact do not promote the interests of wildlife conservation." The
American Farm Bureau agrees, stating in their Resolution, "Ex­­
perience has shown that the 'no management' concept
applied... under the Wilderness Act of 1964 has resulted in the
serious degradation of the resource."

All the preservationist organizations (Sierra Club, etc.) na­na­ationally have a total membership of less than 5 million with a
total budget of $113 million. The combined membership of only
the NRA and Farm Bureau at 6.5 million is larger, and their
combined budgets are larger. Our job is to stir them into action.
If we can motivate the NRA, the Farm Bureau and other affected
groups such as the VFW and American Legion to action we can
win the war.

The objectives of the Wilderness Impact Research Foundation
are to conduct research to determine the impact of
presently designated federal wilderness, develop projections on the
future impact of wilderness, and distribute results of the re­­
search to the public and directly to the government.

The Foundation also presents information to the membership of the preservationists' groups as it has been demonstrated that
reasonable people within those organizations, when presented
with the facts, often will either work to modify the positions of their organizations or will leave the organizations entirely and
join other organizations in opposing excessive wilderness.

To support this effort, please send $15 for your 1988 mem­­­�

International Geochemical Mapping

The development of methods for the international correlation of regional geochemical surveys.

OBJECTIVE

The purpose of the project is to encourage and facilitate the compilation of an international series of systematic surficial
geochemical maps by national and/ or international organizations, based on the most appropriate types of sample material.
The maps will show abundance levels, delineate regional trends and geochemical provinces, and permit the recognition of large scale anomalous features. They will complement existing international geological and geophysical map series, and will be published at scales suitable for direct comparison. To the greatest extent possible, primary data will be stored in digital form to facilitate its reproduction at different scales in a variety of formats, for mineral resource, general geological and environmental studies.
The data will be related to bedrock geochemistry wherever possible.

WORK PLAN

These preliminary plans are based on discussion at a working group meeting held in Toronto in October 1987. They are subject to approval and/or revision at the first meeting of a full Steering Committee, to be held at The Goldschmidt Symposium in Baltimore, Maryland during May 1988.

1988/1989: There are four components in the first phase of the project.
(a) Prepare and circulate information about the project. Request national organizations to designate a liaison officer.
(b) Prepare and distribute a questionnaire to national organizations to gather comprehensive information about existing publicly available geochemical survey data e.g.: purpose of surveys, materials and elements analysed, sampling and analytical methods, use of standards etc. "GSC Map 1661A, Index to National Geochemical Reconnaissance Surveys, 1973-1986" can serve as a model.
(c) Request participating national organizations to provide examples of published regional geochemical complications, with an interpretation of their significance, as a demonstration of their utility.
(d) Use the information supplied to identify major problems for international correlation.
1989/1990: Establish working groups to provide practical recommendations on:
(a) the correlation and normalization of data from different sample media and analytical methods.
(b) preferred sampling and analytical procedures for different geologic/climatic environments, including consideration of sample spacing.
(c) specifications for international data sets, including international map formats to facilitate the correlation of new data.
1990/1992: Participating organizations to prepare examples of demonstration maps, incorporating the above recommendations so as to achieve international comparability.

RESULTS

The project will provide evidence of the extent to which different portions of the earth's crust are characterized by distinctive geochemical assemblages and patterns. In conjunction with other geological and geophysical evidence, the data will assist in correlating areas separated through tectonic plate displacements.
The project will also:
(a) provide an inventory of existing publicly available geochemical survey data, with complementary information.
(b) provide surficial geochemical data for Zn, Cu, Pb, Ni, Co, Mn, Fe, Mo and U, which can be correlated with information concerning known mineral occurrences and deposits and be used to guide exploration; other elements will be added as the database is expanded.
(c) permit the correlation of mineral data on an international basis; 1.2 million is an appropriate map scale, already adopted in a number of countries.
(d) provide improved criteria by which the quality and accuracy of geochemical survey data bases can be evaluated.
(e) stimulate the preparation of publications describing the applications of regional geochemical map data.
(f) provide baseline geochemical information of use in global-change, environmental, agricultural and health studies as well as geological research.

FUTURE ARRANGEMENTS
Ongoing involvement and interest by a small number of key geochemists and analysts from national laboratories and/or universities in the participating countries will be essential to the success of the project. They will be required to:
(a) take time to participate in meetings, consider the problems involved and prepare reports;
(b) undertake limited sample collection and analytical work for comparative purposes;
(c) assist in the supply and/or analysis of standard samples;
(d) provide data compilation/recompilation facilities;
(e) undertake campaign work to publicize objectives and benefits to be derived from the project;
(f) provide advice to developing countries to enable them to obtain geological surveys which meet internationally recognized standards.

There will be the greatest prospect for progress if the project can be implemented on a regional basis.

Building on the success of the Nordkalott Project, which undertook geochemical mapping in Northern Pennoscandia in 1980-1983, an Inter-European Geological Survey Committee is currently planning geochemical mapping of Western Europe, with Dr. Bolviken of Norway as leader. This proposal was conceived independently, but clearly the aims are similar. The European initiative can be regarded as one of several potential contributions to a longer-term global objective.

The project has already been the subject of constructive discussion amongst interested parties thanks to the organizational support of the IAGC, the AEG and the International Atomic Energy Agency.

It is intended to identify International Geochemical Mapping as an IGCP-UNESCO project to bring it to the attention of as many organizations and individual scientists as possible, particularly in developing countries.

The project is potentially suitable for implementation in every country, irrespective of the details of its geology. Correlation is an essential element in the project because many geochemical surveys undertaken in the past, regrettably, have lacked this consideration.

The initial areas selected to demonstrate the significance of regional geochemical data compilations are those where good data bases are already known to exist and a relatively small amount of work would make it available so that it could become more widely known and discussed, viz.: Norway-Sweden-Scandinavia; Germany-France; Canada-Greenland; China; USSR.

More work will be required to compile data from the following larger areas: Western Europe; North America, including USA; China and USSR; Thailand-Malaysia-Indonesia; Brazil; Australia; Nigeria.

Undoubtedly, revisions will be required and more possibilities will open up as the project becomes more widely known.

FUTURE MEETINGS
A meeting of the Steering Committee for the International Geochemical Mapping Project is tentatively scheduled in conjunction with the Goldschmidt Symposium in Baltimore during May 1988.

A Canadian Workshop is arranged to coincide with the Geological Association of Canada Annual Meeting in Newfoundland, also in May 1988. On this occasion it is intended to show recent data to demonstrate a geochemical correlation between Labrador and southwest Greenland.

A Workshop in conjunction with the International Geological Congress in Washington in 1989 can provide the opportunity to display the first demonstration maps from several continents to a broad geological audience.

A.G. Darnley
Geological Survey of Canada

Publicity Committee Report
The committee wishes to thank Stephen Bolivar for his kind offer to provide a circulation list of departments of geology at U.S. universities. The committee is still searching for volunteers who can act as contacts in government institutions, the exploration industry and libraries. In particular, we are looking for members living in the major mining centres who are willing to liaise between the Association and their community. This would involve advising industry, government, and academic institutions of upcoming Association events and acting as local contacts to promote membership in the Association.

Additionally, the committee needs volunteers who are members of other associations in related fields (like geologists, analysts, environmentalists, soil scientists) and who are willing to assist our Association in reaching new markets.

Please contact:
John Gravel or Stephen Day
B.C. Geological Survey Branch
300-756 Fort Street
Victoria, B.C. V8V 1X4, Canada
Telephone: (604) 387-3322

The Journal of Geochemical Exploration
Earlier this year your president asked me to summarize the activities of the Journal of Geochemical Exploration (JGE) for the benefit of Council Members. More recently, Chet Nichols suggested that this be included in the Newsletter.

HISTORY
The JGE was started in 1971 as a joint venture of Elsevier Science Publishers and the AEG. In terms of subscriptions, it has been in the top one or two of Elsevier's journals for several years. At the outset, submissions came mainly from North America. Today, most of the submissions come from outside this region.

COMPOSITION
There are three types of publication: regular papers, special issues on selected topics, and proceedings volumes. This mix was arrived at after careful consideration. Special issues have had a good response from readers and are a major ingredient in our success. The proceedings issues provide a well-established means of publication for AEG symposia held throughout the world and are received by the AEG membership at no extra cost.

ASSOCIATE EDITORS
It is important that the JGE should not be the product of one person; instead, its activities are delegated as widely as is practical.

The first Associate Editor (although we did not describe it as such at the time) was John Hansuld. As Business Editor he is one of the chief reasons for there being a viable journal today. It was not easy to establish the journal. There was more than one crisis early on which John helped to resolve with skillful negotiation. He included a
exploration geochemistry

Charles Butt was our first regional editor. Australia has a highly developed exploration geochemistry community. It seemed logical that they could handle their own affairs, rather than send m/s across thousands of miles of ocean. Charles has complete autonomy to arrange for the review and acceptance of m/s. I believe that he has done an outstanding job and Australian papers are among the best that we publish.

This concept was expanded to include Al J.S. Bjorklund as regional editor for Fenno-Scandinavia and, more recently, by Louis Coetzee for southern Africa and Xie Xuejing for China.

Some Associate Editors are responsible for special topics. Peter Bradshaw initiated the Case History series, which have been outstandingly popular. Brian Hitchen served admirably as the editor responsible for Petroleum Exploration until he resigned to form his own journal.

Biogeochemistry has been one the burgeoning fields of exploration geochemistry and Robert Brooks is widely regarded as its principal exponent. He is responsible for m/s published in this field.

More recently, Steve Kessler has taken charge of the use of Gases in Mineral Exploration and we look forward to a special issue on this topic in the near future.

Like other Associate Editors, Steve has an opportunity to have major influence on the development of a field within exploration geochemistry.

Last, but not least, is Art Rose to whom this journal owes many debts. More than once he has stepped in when we have had a problem. He edited the Hannover volume when it seemed that it would not be published and acted as chairman of the publications committee during a formative time in the history of the journal. More recently he has served as a strongly activist Book Reviews Editor.

EDITORIAL BOARD

Probably the single most important task of the Editor-in-Chief is to invite persons to join the Editorial Board. More often than not each manuscript is reviewed by one member of the Editorial Board, including associate editors as well as by other referees.

Authors who submit papers have the right to expect that their work will be judged by persons who publish fairly frequently themselves and who write well first time. Moreover, the reviews should be prompt, careful and fair. Initially, persons are asked to review papers and, from time to time, some of these are invited to join the Editorial Board. We try to keep a reasonable geographic balance.

EDITOR-IN-CHIEF

Contrary to perceptions, I do not spend most of my time editing. The editor is akin to a CEO of a small international company and 70% of my time is spent on administrative matters. For example, each special issue generates a file of correspondence. In terms of editing, most time is spent on borderline m/s and on m/s where reviewers disagree. The editor is jointly appointed and re-appointed by AEG and Elsevier.

EDITORIAL OFFICE

The biggest single improvement in our operations was to establish an independent office outside of the GSC. Mrs. Anne Brown is a superb colleague and, with her help, we can offer a far more timely service to authors. Before, in retrospect, it was a shoestring operation.

I am a member of the faculty at Ottawa University and the successive chairman of the Geology Department. Brian Rust and Bill Fyson, have been very kind in allocating scarce space to our office. Moreover, the University provides financial and mailing services which greatly aid our work. If we had to pay cost for any of this it would amount to a tidy pension.

FINANCE

Seemingly the least well understood issue throughout AEG history is the net or real cost of the journal to the membership. The gross cost per member at $22.50 has not changed since inception. However, contracts with Elsevier have included a royalty schedule to benefit the AEG in proportion to the financial success of the JGE.

While the royalty payment changes from year to year because of such variables as exchange rates, it has shown a secular increase, which is directly applied to lowering our payments to Elsevier.

In recent years the royalty per member has been around $15, which has reduced the net cost per member to about $18. Since the other costs of the AEG have risen, this has permitted the AEG subscription to remain stable.

Most of the royalty payments are derived from the institutional subscribers, who pay much more than AEG members.

Added to the net decrease in subscription costs, the number of volumes per year has recently increased by 50% at no increase in cost. The additional payments by institutions for this extra volume will likely generate further royalty payments. In sum, since inception, the JGE has increased considerably in size, while the net cost to the association during a strongly inflationary period has almost halved.

NEW INITIATIVES

Marketing a scientific journal is not very different from marketing any other product. Our market niche are persons and organizations who are interested in exploration for minerals. This is narrow relative to some competing journals. We serve this niche by providing information on the science of geochemistry applied to mineral exploration. But we have captured as readers only a minority of this market.

We have not attracted many papers that use geochemistry in various forms to study ore deposits. Such work is expanding rapidly and is of increasing interest to economic geologists to permit construction of con-
ICP-AFS WIZARDRY

Since the installation of our new ICP-AFS, or inductively coupled plasma - atomic fluorescence spectrometer, we have been able to consistently deliver accurate **platinum, gold and palladium** determinations for much less than the price of a regular platinum assay.

Fire assay preconcentration

The analysis of your precious metals begins with a customized fire assay preconcentration of 20 grams of material. The resulting doré bead is digested and then analyzed with the ICP-AFS, which employs a hollow cathode lamp-excited spectrometer.

Wizardry explained

The ICP-AFS spectrometer is based on the principle of atomic fluorescence (in contrast to the ICP-AES which utilizes atomic emission). The spectrometer employs an inductively coupled plasma as the sample atomization cell and hollow cathode lamps (HCL) operated in the pulsed current mode as excitation sources. Generated atomic fluorescence signals pass through optical interference filters located in front of the separate photodetectors and are then measured and quantified. The system is automated from sample changing to computer transfer of data resulting in both time and cost savings.

Why an ICP-AFS for platinum, gold and palladium?

The instrument retains the principal advantages of atomic absorption, which are freedom from spectral interferences and simplicity of operation. Many features of the ICP-AES including simultaneous multielement analysis capability and large linear dynamic ranges are also inherent in the ICP-AFS. And compared to conventional atomic absorption, the ICP-AFS has better detection limits for Pt (5 ppb), Au (2 ppb) and Pd (2 ppb) based on superior optical and baseline stability.

Why not apply the ICP-AFS advantage to your precious metals exploration programs?

Chemex Labs

212 Brooksbank Avenue, North Vancouver, B.C., Canada

994 Glendale Avenue, Unit 7, Sparks, Nevada

V7J 2C1 Telephone: (604) 984-0221 Telex: 04-352597

Fax: (604) 984-0218

Mississauga, ON — Pasadena, NF — Rouyn, PQ — Elko, NV

(416) 880-0310 — (709) 686-2119 — (819) 797-1922 — (702) 738-2054

ceptual models to assist in exploration.

This summer I discussed with Elsevier and brought to the attention of your president my intention of more actively soliciting papers in this area. The first major initiative was to arrange for the special issue on epithermal gold around the Pacific to be published in the latter part of 1989. The editors (Jeff Hedengquist of DSIR, New Zealand; Noel White of BHP, Australia; and Gordon Siddelley of St. Joe, USA) hope to blend genetic considerations with practical exploration technology into one volume. I expect that Steve Kesler's special issue on gases will also straddle these two aspects.

QUALITY
One of the facts of life in operating an international journal is the wide variation in experience of exploration geochemistry around the world and practice in preparing English language manuscripts. Many international journals resolve this problem by restricting publication to an elite of scientists, mostly from well-developed countries, and with a good command of English. We have tried, very deliberately, to expand our service to all parts of the world. This inevitably leads to extra work for reviewers and editors. Scientific writing is not simple, but it does become easier with practice.

We recognize that many of the papers submitted to this journal will be by persons whose primary job is not to publish scientific papers.

All of this contributes to some variance in "quality" of articles published, and I hear about this from time to time. Last year one of the members of the Editorial Board wrote to me on this topic. The comments were made in a helpful manner and I took them seriously.

I thought it worthwhile to survey the opinion of others. Mrs. Brown sent lists of the papers that we have published over the last several years to all Associate Editors and members of the Editorial Board. They were asked to rate the papers that they had read from "outstanding" through to "should not have been published".

The response showed an even greater variance than I had expected. It ranged from one editor who felt the majority of the articles he read were outstanding to an editor who felt that a significant percentage were marginal to poor. Judgement of quality, like that of beauty, depends very much on the perspective of the person making the evaluation. We have a relatively high rejection rate, and, for better or worse, we represent the present status of exploration geochemistry in the world.

As will be apparent from the above, the Journal of Geochemical Exploration is a "community project" to which many within and outside the AEG have contributed. In particular, the successive Councils have given unstinting support. This has helped to make my job both rewarding and pleasurable.

Eion Cameron
Ottawa, Ontario

Exploration Geochemistry Bibliography

I have just sent off the typescript for the next Supplement to the AEG Bibliography. I don't know how long it will take to get it printed and distributed, but I guess we can hope it will be out in April or May.

I worked up the enclosed statistics on this Supplement, which I thought might be of general interest to the AEG membership.
Certified Reference Materials Questionnaire

The heads of the Provincial Geological Survey Laboratories of Quebec, Ontario, and British Columbia met recently in Victoria. They decided to present the need for control reference materials for trace elements such as rare earths, precious metals, and others, to officials of the Canadian Certified Reference Material Program in CANMET. In order to receive as much input as possible before approaching CANMET, it was decided to send out a questionnaire to give industry an opportunity to comment on its requirements.

Please fill out and forward this questionnaire to one of the following as soon as possible:

Dr. Marc Pichette, Directeur
Direction de l'Analyse minerale
Centre de Recherches minerales
2700 rue Einstein
Sainte-Foy, Quebec, G1P 3W8

Dr. Chris Riddle, Chief Analyst
Geoscience Laboratories
Ontario Geological Survey
Ministry of Northern Development and Mines
77 Grenville St.
Toronto, Ontario, M7A 1W4

Dr. Wes Johnson, Chief Analyst
Analytical Sciences Section
Geological Survey Branch
Ministry of Energy, Mines and Petroleum Resources
541 Superior St.
Victoria, B.C. V8V 1X4

AEG 1988 Annual General Meeting

V. M. GOLDSCHMIDT CONFERENCE
Baltimore, Maryland
Hunt Valley Inn
(conference headquarters)
Noon, Thursday, May 12, 1988

The AEG is a co-sponsor of the V. M. Goldschmidt Conference in Baltimore where the Annual General Meeting will be conducted. A full day symposium sponsored by the AEG on Thursday, May 12 will feature 17 papers on Platinum-Group Element Geochemistry and a keynote address by Norman Page of the U.S. Geological Survey. During the morning of Wednesday, May 11 there will be a half-day session of 8 papers on International Geochemical Mapping. These symposia are just 2 of the 14 that make up this milestone conference, taking place from 11 to 13 May.

For further information contact Donna Ricketts, Conference Coordinator
409 Keller Building, The Pennsylvania State University
University Park, PA 16802, U.S.A.
Phone: (814) 863-1743

For detailed information on the PGM session call Colin Dunn (613) 996-2373 and for the Geochemical Mapping session, call Arthur Darnley (613) 995-4909.

Journal of Geochemical Exploration

The Journal represents one of the main benefits of your annual dues in the Association. Commencing with the 1987 volume, its size increased from a historical 800 pages per year to 1200 pages per year.

From time to time it is worth reflecting on the contents of our Journal and determining if there are ways to make it a better scientific forum more relevant to the needs of the membership. The council of the AEG feels now is a good time to encourage comments from our members so that we can work towards providing a better journal in the future.

Over the years readers have undoubtedly formed opinions, as I have. I have recently written to Elsevier to encourage more regular publication (an issue should appear every two to three months) and more timely printing of submitted papers. I feel confident that Elsevier will recognize the need to enhance the Journal and will assist in the process.

I have asked Don Runnells to compile your suggestions on behalf of the Association. Please address any comments, observations, issues of concern, or recommendations to:

Dr. D. D. Runnells,
Department of Geological Sciences,
Campus Box 250,
Boulder, Colorado
80309-0250
Telephone: (303) 492-8323

Stan Hoffman
President, AEG

GEOEXPO/86 Proceedings Returned

The following individuals have paid for their copy of GEOEXPO/86, but it has been returned as undeliverable by the post office. Owners or friends of the owners are asked to send the correct address to claim the volume.

Stephen Butrenchuk
Port Coquitlam, B.C.

J.B. Murowchick
Edmonton, Alberta

Gordon Richmond
Calgary, Alberta

Rhyolite Resources
Saskatoon, Sask.

E. W. Yarrow
Vancouver, B.C.

W. H. Myers
Vancouver, B.C.

Robert Dickinson
Vancouver, B.C.

Murray McLaren
Vancouver, B.C.

Names of the following candidates have been recommended by the Admissions Committee and have been approved by Council. According to the Association's bylaws, the names of candidates are to be published for consideration by the membership. If you wish to comment on any of the candidates, please do so in writing to the secretary within 60 days. The Association apologizes to those on this list whose applications have been delayed.

Editor's note: Council has decided that all new applicants will receive the...
journal and the newsletter upon application for membership. The process of application to the Toronto office, recommendation by the Admissions Committee, review by Council, and publication of applicant's names in the newsletter remains unchanged.

MEMBERS
Burlinson, K.G.
Geochemical Consultant
Australia

Busche, F.D.
Geochemist
Shell Mining Co.
Texas, U.S.A.

Collins, J.A.
Exploration Manager
Cominco Ltd.
Belgium

Downey, P.J.
Western Energy Co.
Montana, U.S.A.

Font, X.
Professor
Univ. of Barcelona
Spain

Hall, G.E.M.
Section Head
Anal. Meth. Dev.
Ontario, Canada

Herzberg, W.
Geological Survey
South Africa

Laskowski, K.A.
Geologist
Newmont Exploration
Minnesota, U.S.A.

Lippitt, C.R.
Geologist
Billiton Exploration
Washington, U.S.A.

Locutura, J.
Mining Engineer
Dept. Min. Res. (IGME)
Spain

Loredo, J.
Professor
Oviedo Sch. Mines
Spain

Pelletier, M.
Geochemist
Geochemex Enr.
Quebec, Canada

Schwab, R.G.
Professor
University F.A.U.
Germany

Shei, E.N.
Geologist
Min. Mines & Power
Cameroon

Viladevall, M.
Professor
Univ. of Barcelona
Spain

Wang, G.
Assoc. Professor
Xinjiang Eng. Instit.
Urumqi, China

Zuker, J.S.
Geological Consultant
Colorado, U.S.A.

AFFILIATE MEMBERS
Birk, D.
Geofuel Research Inc.
Nova Scotia, Canada

Christensen, L.
Consultant
Washington, U.S.A.

Dean, L.S.
Geol. Surv. Alabama
Alabama, U.S.A.

Dixon, D.
Quantar Trace Lab., Inc.
British Columbia, Canada

Dixson, S.
Coeur-Rochester Inc.
Nevada, U.S.A.

Docherty, B.
Ontario, Canada

Enders, D.L.
Loring Laboratories Ltd.
Alberta, Canada

Flynn, J.S.
Prospector
New Hampshire, U.S.A.

Foster, J.R.
Galveston Explorations Ltd.
British Columbia, Canada

Hahn, R.J.C.
Consulting Geologist
Montana, U.S.A.

Holman, R.M.
Geologist
Rossing Uranium Ltd.
Namibia

Koch, J.D.
Monitor Geochem. Lab Inc.
Nevada, U.S.A.

Lahr, M.
District Geologist
Amer. Copper & Nickel Co.
Nevada, U.S.A.

L'Orsa, A.T.
Consulting Geologist
British Columbia, Canada

Margeson, G.B.
Geologist
Callahan Mining Corp.
Michigan, U.S.A.

Melzer, H.
Shangri La Minerals Ltd.
British Columbia, Canada

Moskal, W.I.*
Geologist
Min. North. Dev. & Mines
Ontario, Canada

Olver, F.A.S.
Librarian
Inst. Min. & Metall.
Great Britain

Querol, F.
Chief Geol. Researcher
Cia Fresnillo
Chihuahua, Mexico

Shea, J.J.
Gam Rad West Inc.
California, U.S.A.

Thiede, D.S.
Tellis Gold Mining Co.
Colorado, U.S.A.

Vasconcellos, P.
Univ. Texas, Austin
Texas, U.S.A.

Winters, R.A.
Geologist
U.S. Bur. Mines
Washington, U.S.A.

*Application for Member pending receipt of referee reports.

COUNCIL MINUTES

Actions of December 10, 1987
Council Meeting

1. Council discussed the first issue of EXPLORE and a motion was passed unanimously to continue with this design, format, and printing.

2. Nominations to Council for 1988 were discussed and a listing of candidates will be sent to the membership.

3. A motion to admit 55 new members to the AEG was passed unanimously. (The list in this issue of EXPLORE includes three members under a new membership status.)

4. A motion was passed to make the official deadline for paying dues December 31 of the year for which the dues are owed (see NOTE FROM THE SECRETARY, this issue).

5. It was moved and passed that the 1990, 14th international meeting of the AEG be held in Prague, Czechoslovakia. The 1991 meeting in Reno then becomes the 15th International Geochemical Exploration Symposium.

6. Council discussed the regularity of publication of the Journal of Geochemical Exploration and agreed unanimously that the publication should be at regular intervals throughout the year.

7. The Council discussed the possibility of changing the bylaws to add 3 new non-voting Councilors who would be specialists in: (1) the analytical field, (2) the computer field, and (3) the environmental field. At present the chances for representation in these fields is low.

The Council welcomes any input from the general membership about matters discussed or any other matters of import to the organization. Please address your comments to the Secretary:

Sherman P. Marsh
U.S. Geological Survey
MS 973, Denver Federal Center
Denver, Colorado, USA

Querol, F.
Chief Geol. Researcher
Cia Fresnillo
Chihuahua, Mexico

Shea, J.J.
Gam Rad West Inc.
California, U.S.A.

Thiede, D.S.
Tellis Gold Mining Co.
Colorado, U.S.A.

Vasconcellos, P.
Univ. Texas, Austin
Texas, U.S.A.

Winters, R.A.
Geologist
U.S. Bur. Mines
Washington, U.S.A.

*Application for Member pending receipt of referee reports.

ARTHUR L. LARSON
Consulting Mining Geophysicist

RECONNAISSANCE PROGRAMS
PROJECT MANAGEMENT
INTERPRETATION
DOMESTIC & FOREIGN

80 SOUTH HOLMAN WAY
GOLDEN, COLORADO 80401
(303) 279-4216
In addition, recently approved names received by EXPLORVE without further information include: G. Voyer for member; J. Biggs, C. G. Costa, J. A. Kantor, J. Kronfeld, L. A. Landefeld, G. Loman, R. R. Price, D. Reid, R. S. Tolbert and D. R. Webb for affiliate member; and D. Craig and T. Wakefield for student member.

Recent Papers on Exploration Geochemistry

This list comprises titles that have appeared in major publications since the compilation in Newsletter No. 61. Journals routinely covered and abbreviations used are as follows: Economic Geology (EG); Geochemistry (GC); Cosmochimica Acta (GCA); The USGS Journal of Research (USGS JR); Circular (USGS CIR); and Open File Report (USGS OFR); Geological Survey of Canada Papers (GSC Paper) and Open File Report (GSC OFR); Bulletin of the Canadian Institute of Mining and Metallurgy (CIM Bull); Transactions of Institute of Mining and Metallurgy: Section B: Applied Earth Sciences (Trans IMM). Publications less frequently cited are identified in full. Compiled by L. Graham Closs, Department of Geology and Geochemical Engineering, Colorado School of Mines, Golden, Colorado 80401. Member of the AEG Bibliography Committee. Please send new references to Dr. Closs, not to EXPLORVE.

Brown, G.C. et al. (1987). Geochemistry of granites beneath the North Pennines and their role in ore field mineralization. Trans. IMM 96: B65-B76.

8th Symposium on Prospecting in Areas of Glaciated Terrain

Halifax, Nova Scotia • August 28 to September 3, 1988

TECHNICAL SESSIONS will be held on Friday, September 2nd and Saturday, September 3rd. Papers will discuss aspects of exploration in glaciated regions of North America and Europe. Sessions will cover till prospecting, stream sediment geochemistry, case histories on gold, lake sediment geochemistry, biogeochemistry, data integration, data interpretation, and case histories other than gold.

FIELD TRIP on Geology and Mineral Deposits of Eastern Nova Scotia will be held August 29-30th. It will feature bedrock and surficial geology and mineral deposits of mainland Nova Scotia. Stops include a developing gold mine, a drumlin coastal section, the Wisconsinan formation of the principal salt. A symposium volume will be mailed to registrants before the conference begins.
Symposium of the Applications of Geophysics To Engineering and Environmental Programs

First Symposium on Geophysics in Environmental and Groundwater Problems
Denver, Colorado • March 28-31, 1988

The society of Engineering and Mineral Exploration Geophysicists is presenting the symposium at the Colorado School of Mines in Golden and at the Sheraton Hotel and Conference Center, Lakewood, Colorado.

The main focus is on the capabilities and cost effectiveness of geophysical methods in geological engineering, hydrology, environmental pollution monitoring, and waste disposal problems. It is crucial to disseminate the latest developments in technology, products, and applications to bridge the communications gap and increase their own effectiveness.

The symposium is presented in cooperation with the United States Geological Survey, the National Water Well Association, the Colorado Section of the American Society of Civil Engineers, the Colorado Ground Water Association, and the Geophysics Department of the Colorado School of Mines. Pending formal approval, the U.S. Environmental Protection Agency will also participate.

For further information please contact either:

Jack D. Corbett
General Program Chairman
4045 Nipomo Way
Denver, Colorado 80237
Phone: (303) 759-8747

or

Chuck Bierley
Symposium Coordinator
122 Zang Court
Lakewood, Colorado 80221
Phone: (303) 988-2849
Ten dollars well spent...

gives you this comprehensive gold reference chart
plus a 500-title bibliography.

Bondar-Clegg's "Geochemistry in Gold Exploration" chart is a full color, illustrated 27" x 39" display that will serve as invaluable reference for planning and discussion of the geochemical aspects of gold exploration.

Compiled from a wide variety of authoritative sources, geochemical aspects covered include:

- Gold Bearing Deposits Classified by Host Rock Lithology and Geological Features
- Genetic Models
- Mineralogy of Gold
- Geochemistry of Gold
- Wall Rock Alteration
- Elemental Association Applications
- Guides to Representative Sampling
- Improving Data Reliability in Geochemical Gold Exploration

With the chart, you receive a selected bibliography. It is keyed by numbers to the chart, and provides over 500 technical references.

To order one or more copies of Bondar-Clegg's "Geochemistry in Gold Exploration" chart, complete and mail the adjacent coupon to:

Bondar-Clegg & Company Ltd.,
5420 Canotek Road,
Ottawa, Canada K1J 8X5.

Mines stakes its reputation on our analyses...as it has for 25 years.

Yes, please send me your Bondar-Clegg "Geochemistry in Gold Exploration" chart(s).

Quantity ______ x $10.00
(postage included) ______

Please complete or attach your business card. Make your cheque payable to:
Bondar-Clegg & Company Ltd.

Name __________

Title __________

Company __________

Address __________

To order one or more copies of Bondar-Clegg's "Geochemistry in Gold Exploration" chart, complete and mail the adjacent coupon to:

Bondar-Clegg & Company Ltd.,
5420 Canotek Road,
Ottawa, Canada K1J 8X5.
APPLICATION FOR AFFILIATE MEMBERSHIP

The Association of Exploration Geochemists (AEG) is a professional non-profit organization promoting interest in the application of geochemistry to the mineral industry and related fields. The AEG encourages membership and contributions from individuals or organizations working with or providing geochemical data for a variety of uses including mineral exploration, analytical technology, computer processing, environmental monitoring, geobotany, biogeochemistry, and other applications.

Advances in geochemical technology are presented regularly in symposia, short courses, distinguished lecturers' workshops, field trips, the Journal of Geochemical Exploration (1200 pages annually), this quarterly newsletter, and Special Volumes published or cosponsored by the AEG. Membership in the AEG offers many benefits. The most important of these is the forum by which the exchange of information is facilitated. Annual membership dues of US$42.50 U.S. include the Journal of Geochemical Exploration, EXPLORE, bibliography updates, discounts on most Special Volumes, and discounts on registration fees for symposia or short courses.

Your Name and Address:

NAME	--------------------------	
TITLE	_______________________	
EMPLOYER	--------------------	----------------------
ADDRESS	___________________	----------------------
TELEPHONE	___________________	----------------------
TELEX	___________________	----------------------
FACS	___________________	----------------------

Annual dues payable, all classes of member

| US $ 42.50 |

Student membership (note that students must have this form signed by a member of the academic staff to verify their full time student status)

| $ 20.00 |

Corporate member

| $100.00 |

☐ Check here if you do not want your name and address released as part of the A.E.G. mailing list.

TOTAL A

Please note that Cheques, International Money Orders, UNESCO Coupons, international Postal Orders, VISA and Master Card are acceptable. All payments are in U.S. FUNDS. For users of VISA or Master Card, minor variations in your billing may reflect currency exchange rate fluctuations at time of bank posting. Please note that cheques drawn on overseas banks require that an additional $12.00 U.S. be submitted to reimburse the AEG for bank charges.
The following Special Volumes are available from the AEG on a post-paid basis (surface mail) to all. Both member and non member prices are listed.

<table>
<thead>
<tr>
<th>Sp. Vol. No.</th>
<th>Description</th>
<th>Member Price</th>
<th>Non Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Application of Probability Plots in Mineral Exploration (A.J. Sinclair)</td>
<td>$ 6.00</td>
<td>$ 10.00</td>
</tr>
<tr>
<td>7</td>
<td>Geochemical Exploration 1978 Proceedings of the Denver Geochemical Symposium (ed. J.R. Waterson and P.K. Theobold)</td>
<td>20.00</td>
<td>40.00</td>
</tr>
<tr>
<td>10</td>
<td>Gold-81, Precious Metals in the Northern Cordilleran (ed. A.A. Levinson)</td>
<td>7.50</td>
<td>18.00</td>
</tr>
<tr>
<td>11</td>
<td>Exploration Geochemistry Bibliography to January 1981 (compiled by H.E. Hawkes)</td>
<td>7.50</td>
<td>20.00</td>
</tr>
<tr>
<td>11.1</td>
<td>Exploration Geochemistry Bibliography Supplement 1 to Oct., 1984 (compiled by H.E. Hawkes)</td>
<td>7.00</td>
<td>15.00</td>
</tr>
<tr>
<td>12</td>
<td>Writing Geochemical Reports (S.J. Hoffman)</td>
<td>5.00</td>
<td>7.00</td>
</tr>
<tr>
<td>14</td>
<td>PROBPLOT, An Interactive Computer Program to Fit Mixtures of Normal (or Log normal) Distributions with Maximum Likelihood Optimization Procedures (C.R. Stanley)</td>
<td>25.00</td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td>Graphic card type _________; (e.g., CGA, EGA, Hercules)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8087 chip (Y/N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 + 14</td>
<td>Combination offer</td>
<td>30.00</td>
<td>55.00</td>
</tr>
<tr>
<td></td>
<td>GEOEXPO 86, Proceedings of an exploration symposium focussing on Cordilleran environments held in Vancouver May 12-14, 1986 (ed. I.L. Elliott and B.W. Smee)</td>
<td>32.50</td>
<td>32.50</td>
</tr>
<tr>
<td></td>
<td>Reviews in Economic Geology Volume 3, Exploration Geochemistry; Design and Interpretation of Soil Surveys (W.K. Fletcher (ed.))</td>
<td>19.00</td>
<td>19.00</td>
</tr>
<tr>
<td></td>
<td>This volume was cosponsored by the SEG.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Journal of Geochemical Exploration for 1987</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for 1986</td>
<td>42.50</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>for 1985</td>
<td>50.00</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>for 1985</td>
<td>50.00</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Payment of annual dues automatically makes the payee an affiliate member. If you would like to become an active (i.e. voting) member of the A.E.G., please indicate that you would like the appropriate forms. □

Please note that Cheques, International Money Orders, UNESCO Coupons, International Postal Orders, VISA and Master Card are acceptable. All payments are in U.S. FUNDS. For users of VISA or Master Card, minor variations in your billing may reflect currency exchange rate fluctuations at time of bank posting. Please note that cheques drawn on overseas banks require an additional $12.00 U.S. to be submitted to reimburse the AEG for bank charges.

Charge: Master Card □ VISA □
Credit Card Account
Number Here: ____________________________ Inter Bank #
Expiration date ____________________________
Signature ____________________________
* SPECIAL BOOKS OFFER *

The following books, published by Elsevier Science Publishers, are available from the A.E.G. on a post-paid basis. Members are entitled to a 50% reduction on the normal price.

<table>
<thead>
<tr>
<th>Author/Title</th>
<th>Non-Member Price</th>
<th>Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bárdossy, G., Karst Bauxites</td>
<td>$122.00</td>
<td>$61.00</td>
</tr>
<tr>
<td>Björklund, A.J. (ed.), Geochemical Exploration 1983</td>
<td>$139.00</td>
<td>$69.50</td>
</tr>
<tr>
<td>Boyle, R.W., Geochemical Prospecting for Thorium and Uranium Deposits</td>
<td>$122.00</td>
<td>$61.00</td>
</tr>
<tr>
<td>Geochemistry, 4: Australia</td>
<td>$100.00</td>
<td>$50.00</td>
</tr>
<tr>
<td>David, M., Geostatistical Ore Reserve Estimation</td>
<td>$80.50</td>
<td>$40.25</td>
</tr>
<tr>
<td>Davy, R. and J.H. Mazzucchelli (eds.), Geochemical Exploration in Arid</td>
<td>$128.00</td>
<td>$64.00</td>
</tr>
<tr>
<td>and Deeply Weathered Environments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>De Kun, N., Mineral Economics of Africa</td>
<td>$102.50</td>
<td>$51.25</td>
</tr>
<tr>
<td>Fettweis, G.B., World Coal Resources</td>
<td>$128.00</td>
<td>$64.00</td>
</tr>
<tr>
<td>Fletcher, W.K., Analytical Methods in Geochemical Prospecting</td>
<td>$90.00</td>
<td>$45.00</td>
</tr>
<tr>
<td>Govett, G.J.S., Rock Geochemistry in Mineral Exploration</td>
<td>$156.00</td>
<td>$78.00</td>
</tr>
<tr>
<td>Gulson, B.L., Lead Isotopes in Mineral Exploration</td>
<td>$78.00</td>
<td>$39.00</td>
</tr>
<tr>
<td>Gupta, H.K., Geothermal Resources: An Energy Alternative</td>
<td>$94.50</td>
<td>$47.25</td>
</tr>
<tr>
<td>Howarth, R.J. (ed.), Statistics and Data Analysis in Geochemical Prospecting</td>
<td>$136.00</td>
<td>$68.00</td>
</tr>
<tr>
<td>Kornprobst, J., Kimbolites. Vol. 1: Kimbolites and Related Rocks</td>
<td>$80.50</td>
<td>$40.25</td>
</tr>
<tr>
<td>Kornprobst, J., Kimbolites. Vol. 2: The Mantle and Crust-Mantle Relationships</td>
<td>$75.00</td>
<td>$37.50</td>
</tr>
<tr>
<td>Kuzvar, M., Industrial Minerals and Rocks</td>
<td>$117.00</td>
<td>$58.50</td>
</tr>
<tr>
<td>Kuzvar, M. and M. Böhm, Prospecting and Exploration of Mineral Deposits</td>
<td>$147.00</td>
<td>$73.50</td>
</tr>
<tr>
<td>Kwak, T.A.P., W-Sn Skarn Deposits</td>
<td>$119.50</td>
<td>$59.75</td>
</tr>
<tr>
<td>Lazznicks, P., Empirical Metallogeny</td>
<td>$264.00</td>
<td>$132.00</td>
</tr>
<tr>
<td>Parslow, G.R. (ed.), Geochemical Exploration 1982</td>
<td>$130.50</td>
<td>$65.25</td>
</tr>
<tr>
<td>Rich, R.A., H.D. Holland and U. Petersen, Hydrothermal Uranium Deposits</td>
<td>$75.00</td>
<td>$37.50</td>
</tr>
<tr>
<td>Rose, A.W. and H. Gundlach (eds.), Geochemical Exploration 1980</td>
<td>$211.00</td>
<td>$105.50</td>
</tr>
<tr>
<td>Rudawsky, O., Mineral Economics</td>
<td>$72.00</td>
<td>$36.00</td>
</tr>
<tr>
<td>Shuey, R.T., Semiconducting Ore Minerals</td>
<td>$97.00</td>
<td>$48.50</td>
</tr>
<tr>
<td>Sumner, J.S., Principles of Induced Polarization for Geophysical Exploration</td>
<td>$75.00</td>
<td>$37.50</td>
</tr>
<tr>
<td>Taylor, R.G., Geology of Tin Deposits</td>
<td>$111.00</td>
<td>$55.50</td>
</tr>
<tr>
<td>Trendall, A.F. and R.C. Morris (eds.), Iron-Formation: Facts and Problems</td>
<td>$161.00</td>
<td>$80.50</td>
</tr>
</tbody>
</table>

TOTAL PAYMENT ENCLOSED US $____________

To qualify for the discount all orders must be received by AEG before 31st October 1988. Orders must be accompanied by payment. Orders will be shipped by surface mail.

Send orders to AEG at P.O. Box 523 (Metropolitan Toronto), Rexdale, Ontario, M9W 5L4, Canada.

Please note that cheques, International Money Orders, UNESCO coupons, International Postal Orders, VISA and Mastercard are acceptable. All payments are in US funds.

For users of VISA or Mastercard, minor variations in your billing may reflect currency exchange rates at time of bank posting. Please note that cheques drawn on overseas banks require an additional US$ 12.00 to be submitted to reimburse the AEG for bank charges.

Charge MasterCard □ VISA □
Credit Card Account Number here:

Inter Bank #

Expiration date___________________________

Signature_______________________________
Your 1988 dues renewal form has been included on page 25 of this newsletter. The cost of running the Association is such that we would appreciate payment of annual dues as soon as possible.

In order to facilitate payment we will accept VISA and MASTERCARD charges. Your cooperation is requested, as determining the size of our membership early each year facilitates our planning process and helps to determine what new projects may be undertaken.

A label prepared from AEG files is affixed to your membership renewal form. If it indicates that dues are still unpaid for 1987, please consider paying dues for two years. All 1987 issues of the *Journal of Geochemical Exploration* may be received by paying 1987 dues before December 31 of this year. Previous issues are available to members through the Rexdale office (see below) at U.S. $50 per year.

Our past methods of reminding existing members of their membership status have been lax, and, if this has adversely affected your subscription to the Journal, please accept our apologies. Elsevier operates on a prepayment basis, and they must receive monies from the Association (as we receive the dues from you) before journal issues are mailed.

Issues of the *Journal of Geochemical Exploration* will not be mailed by Elsevier for 1988 until dues are paid. I have asked our publisher to notify members in arrears at the time that the first two or three journals are mailed out each year.

Please contact the association offices at P.O. Box 523, (Metropolitan Toronto), Rexdale, Ontario, Canada M9W 5L4, if Elsevier's records appear to be at variance to yours. Remember that there is probably a month to six weeks delay period from your mailing of annual dues to us until our notice to Elsevier is received and acted upon by Elsevier.

You will receive our newsletter for the February and April issues, even if your dues are not current. The address label will indicate if we have received your annual dues. After those two issues the newsletter mailings will be discontinued.

We appreciate your membership which is needed to keep the organization strong. The cost of running the Association has been maintained at $42.50 U.S. per capita for 13 years. We intend to increase our membership and maintain this reasonable cost to you.

Stan Hoffman
President