The new title was selected as the outcome of a conclusive debate on 1 Jan 2000 following the termination of the present publishing contract with Elsevier. In addition the Council will shortly be completing arrangements for the publication of the new journal. The journal title was selected following an extended period of discussion in which suggestions for the new title were passed freely among the Councillors, Regional Councillors and individual Members who had the opportunity to make an input into the discussions, and many of them did so.

The final decision was taken by the Council on the 16th September 1998 during one of the telephone conferences which take place at two or three month intervals and the twelve Councillors who were present were therefore well prepared to make a decision based on a consideration both of the many interesting and innovative proposals which had been submitted for discussion by Councillors and the membership, and also from their own personal preferences. Our new Secretary, Dave Smith who has taken over this important role from Sherman Marsh, our previous Secretary who has recently retired after longstanding service to the AEG, has provided a detailed account of the debate in Council as it unfolded. The record shows that one hundred and twenty individual contributions or comments were recorded in the course of this discussion, which is a good measure of the importance and the interest which this topic has attracted.

The Council took the view that since the matter is one which is of great concern and importance to all those who publish in and read the AEG’s official publications the decision should be made by Council who have been elected by the membership to undertake such important duties on their behalf. The new title was selected as the outcome of a conclusive debate in which many aspects of this important topic were reviewed and discussed.

The discussion commenced with an invitation to all Councillors to indicate their preferred title and it was clear from the outset that a high degree of unanimity existed since only a limited number of possible titles were proposed from the extensive list of possibilities originally suggested. The primary objectives of the selection process were to identify a title which will be instantly recognisable in hard copy on the library bookshelf, accurately reflect the editorial goals, and stimulate readers, authors, academic and industrial organisations and advertisers to take note of and contribute to the contents. However, and perhaps even more importantly for a future which is likely to be increasingly dominated by electronic publication,
Information for Contributors to EXPLORE

Scope This Newsletter endeavors to become a forum for recent advances in exploration geochemistry and a key informational source. In addition to contributions on exploration geochemistry, we encourage material on multidisciplinary applications, environmental geochemistry, and analytical technology. Of particular interest are extended abstracts on new concepts for guides to ore, model improvements, exploration tools, unconventional case histories, and descriptions of recently discovered or developed deposits.

Format Manuscripts should be double-spaced and include camera-ready illustrations where possible. Meeting reports may have photographs, for example. Text is preferred on paper and 5- or 3-inch IBM-compatible computer diskettes with ASCII (DOS) format that can go directly to typesetting. Please use the metric system in technical material.

Length Extended abstracts may be up to approximately 1000 words or two newsletter pages including figures and tables.

Quality Submittals are copy-edited as necessary without re-examination by authors, who are asked to assure smooth writing style and accuracy of statement by thorough peer review. Contributions may be edited for clarity or space. All contributions should be submitted to:

EXPLORE
c/o J.T. Nash, Box 25046, MS973, Denver Federal Center
Denver, CO 80225, USA

Information for Advertisers

EXPLORE is the newsletter of the Association of Exploration Geochemists (AEG). Distribution is quarterly to the membership consisting of 1200 geologists, geophysicists, and geochemists. Additionally, 100 copies are sent to geoscience libraries. Complementary copies are often mailed to selected addresses from the rosters of other geoscience organizations, and additional copies are distributed at key geoscience symposia. Approximately 20% of each issue is sent overseas.

EXPLORE is the most widely read newsletter in the world pertaining to exploration geochemistry. Geochemical laboratories, drilling, survey and sample collection, specialty geochemical services, consultants, environmental, field supply, and computer and geoscience data services are just a few of the areas available for advertisers. International as well as North American vendors will find markets through EXPLORE.

The EXPLORE newsletter is produced on a volunteer basis by the AEG membership and is a non-profit newsletter. The advertising rates are the lowest feasible with a break-even objective. Color is charged on a cost plus 10% basis. A discount of 15% is given to advertisers for an annual commitment (four issues). All advertising must be camera-ready PMT or negative. Business card advertising is available for consultants only*. Color separation and typesetting services are available through our publisher, Vivian Heggie, Heggie Enterprises.

Full page 254h x 178w mm (10h x 7w in) US $ 880
Half page 254h x 86w mm (10h x 3-3/8w in) US $ 480
Third page 124h x 178w mm (4-7/8h x 7w in) US $ 480
Quarter page 254h x 58w mm (10h x 2w in) US $ 380
Eighth page 124h x 86w mm (4-7/8h x 3-3/8w in) US $ 270
Business Card* 51h x 86w mm (2h x 3-3/8w in) US $ 70

Please direct advertising inquiries to:
Owen Lavin
NEWMONT EXPLORATION
10101 East Dry Creek Road
ENGLEWOOD, CO 80112
USA
TEL: (303) 708-4140
FAX: (303) 708-4060

President's Message continued from Page 1

it is essential to have a title which will be readily identified and retrieved by electronic search engines. For this to succeed, relevance and simplicity are a priority.

The final choice therefore took full account of all these objectives and it was unanimously proposed by Council that the title be a single word modified by a subtitle to provide the necessary focus:

GEOCHEMISTRY

Exploration Environment Analysis.

The subtitle can be considered from one perspective as the subject matter of a Venn diagram in which various possible combinations of these three topics could form the main thrust of publications in the new journal. However, the order of topics in the subtitle is also important since exploration geochemistry is the principal unifying theme of our association, with environment and analysis providing important links to related disciplines. This will help to overcome the difficulty some of our members have had in the past when selecting a suitable journal to publish the results of their work, especially where there is a significant environmental impact arising from the results of geochemical exploration.

The next edition of EXPLORE will contain details of the arrangements for publication of this new journal.

Peter Simpson
British Geological Survey
Keyworth, Notts, NG12 5GG, UK
Tel Int +44 115 9363532
Fax Int +44 115 9363200
Email: p.simpson@bgs.ac.uk
Email: pre Simpson@msn.com (business and private)
Experimental

The cleaning methods used were as follows:

1. **Simple rinse**
 - Bottle and cap were simply rinsed three times with water before filling or charging with acid.

2. **Modified EPA**
 - This basic procedure is outlined in EPA Method 1638, "Determination of trace metals in ambient waters by ICP-MS" (EPA 821-R-96-005). However, since the Cl\(^-\) ion is undesirable in the measurement of some elements by ICP-MS, the step of soaking in 1 M HCl was eliminated. Method 1638 (p. 28) does allow for modification to the complete cleaning procedure if results prove satisfactory. Briefly, the modified method involves:
 - Bottle is filled with reagent-grade 16M HNO\(_3\), placed and heated in a water bath at 50 °C for 2 h. This was not carried out for the PETG bottles as they are not resistant to this concentration of acid and melt in the bath. Therefore, the PETG bottles were filled with 5% (v/v) HNO\(_3\) instead and heated.
 - Bottle is rinsed thoroughly with water and filled with water. Each bottle is double-bagged in polyethylene and stored in a Class 100 Cleanroom.

HNO\(_3\) wash

As described in “Quality Assurance Project Plan for Clean Metals” (Dec ’96) by the Office of Water Quality Assessment and Planning, Virginia Dept of Environmental Quality.

1. **Bottle is filled with 5% (v/v) HNO\(_3\), capped and placed in a water bath for 24 h at 50 °C.**
2. **Bottle is well rinsed with water, re-filled with 0.5% (v/v) HNO\(_3\), capped and placed in a water bath for 24 h at 50 °C.**
3. **Bottle is rinsed three times with water and re-filled with water to which 250 l of Seastar (double-distilled, CA-01-02-1000; Sidney, BC) conc. HNO\(_3\) are added. Bottle is capped and set aside for 24 h.**
4. **Bottle is rinsed with water and filled with water until usage (again double-bagged and stored in Class 100 Cleanroom).**

Thus, the two cleaning procedures are similar in that they focus on the use of HNO\(_3\), but the EPA method employs concentrated (12M) acid, whereas the Virginian method (designated as HNO\(_3\), hereafter) uses a much lower concentration of 5% (v/v) with a subsequent step employing only 0.5% HNO\(_3\).

The EPA method incorporates an initial wash with a soap solution.

The suite of bottles cleaned by each method was divided into two. One group of five bottles was filled to 125 ml with 0.4% HNO\(_3\) (Seastar Chemicals Inc., double sub-boiling distilled, CA-01-02-1000). To the other five bottles, a charge of 1 ml of 8M HNO\(_3\) (Seastar) was added. Care was taken to use the same lot of Seastar HNO\(_3\) for both treatments. The suite of 10 HDPE\(_b\) bottles was treated in the same way (i.e. five were filled to 125 ml with 0.4% HNO\(_3\) and five were charged with 1 ml of 8M HNO\(_3\)).

These two approaches were used to imitate procedures used in industry: some companies pre-charge bottles with a small volume of concentrated acid, to which the sample is added later in the field, whereas others prefer to add the acid once the sample is collected. The concentration of 0.4% is used in GSC hydrogeochemical surveys and is a compromise between 0.1 and 1% HNO\(_3\), the range of preservative concentration indicated by a scan of reports and literature.

The bottles were allowed to stand for six days, whereupon the 65 bottles containing the 1 ml of 8M acid charges were filled with 124 ml of water. An aliquot was then taken from each bottle and poured into test-tubes ready for analysis. These test-tubes had been already investigated for their contamination levels. The method of direct ICP-MS used to determine Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Ti and Zn is described in Hall et al. (1996a). Calibration was carried out with standard solutions of 0.4% HNO\(_3\) (same Seastar source as used previously) spiked with known amounts of element standard solutions. Selenium required improved sensitivity by changing the method of introduction, from pneumatic nebulisation to hydride generation. This method is described in Hall and Pelchat (1997a, b). Only Se IV is reactive to form the gaseous hydride, and therefore any Se VI was prereduced to the IV valency state by heating in 6M HCl. A 5 ml aliquot of solution was added to 5 ml of 12 M HCl in a test-tube, capped, shaken and heated in a water bath for 35 minutes. On cooling, the solution was made up

Continued on Page 4
Technical Note

Continued from Page 3

to 15 ml with water and analysed by HG-ICP-MS.

RESULTS

The mean and standard deviation of element concentrations found in the 125 ml volume of water standing in each bottle are presented in Table 1. The instrumental detection limits (DL) shown are based on 'pure' solutions and consequently are the most optimistic: these would be degraded when analysing 'real' waters where oxide corrections would be made for certain elements (e.g., CaO, CaOH on Ni and Co). Values have not been truncated at the DL in order to view trends. Some general observations can be gleaned:

- 8M acid-charged bottles contribute much more contamination than their counterparts containing 0.4% HNO₃;
- FEP bottles are the most contaminating;
- the modified EPA method of cleaning is inferior to that proposed by the State of Virginia; and
- the precleaned HDPE bottles are inferior to their less expensive, untreated HDPE counterparts.

In greater detail, with reference to Table 1:

Al

The 'dirtiest' bottle by far is PP, with a maximum level of contamination of 4.2 ± 0.2 ppb being shown by the uncleaned, acid-charged bottle. Neither the EPA nor the HNO₃ method of cleaning is adequate to completely remove this contamination for the acid-charged bottle (B), though they are acceptable for the dilute acidified sample (A). The cleanest bottle is PETG, showing levels of Al all below the instrumental DL of 30 ppt. Both cleaning methods are satisfactory for FEP, though the level of contamination 'as is' (rinse only) is minimal (52 ppt for bottle A and 176 ppt for B). The HDPE bottle shows the same level of Al contamination, at 130-150 ppt, for bottles A and B, whereas the 'ordinary' HDPE bottle shows measurable levels of contamination only when in prolonged contact with the acid charge and then at a consistent 281 ± 19 ppt. Al in HDPE bottle A is below the DL of 30 ppt.

Cr

The HDPE, PETG and PP bottles all show negligible levels of Cr at several ppt, though the acid-charged bottle does display slightly higher levels, as does EPA cleaning (to ca 20 ppt). Compared to the HDPE bottle, the HDPE bottle A shows a higher level of Cr, at 35 ± 6 ppt, which increases to 102 ± 23 ppt for bottle B. Maximum contamination is observed for the FEP bottle B, at 218 ± 117 ppt, with the A counterpart indicating lower levels of 67 ± 32 ppt. These concentrations are reduced substantially by HNO₃ cleaning but the EPA method is slightly inferior, showing mean values of 44 and 74 ppt, respectively for bottles A and B.

Fe

Contamination by Fe is severe in the FEP bottle, at 1.9 ± 1.1 ppb, rising to 42 ± 60 ppb in the acid-charged bottle. This contamination in bottle B is random, the range being from several ppb to 140 ppb. Both cleaning methods decrease this level below 1 ppb in bottle A, though the acid-charged bottle still shows 1-2 ppb Fe (equivalent to the DL of the method). The other bottles show less than 1 ppb of Fe contamination with the exception of the acid-charged PETG bottle at 1.2 ± 0.9 ppb. Precleaned HDPE is not cleaner than HDPE in Fe.

Mn

The PETG bottle shows the highest degree of Mn contamination, at 67 ± 7 ppt in A and rising to 53.1 ± 1.1 ppb in the acid-charged bottle B. Both cleaning methods eliminate this contamination from bottle A but are not successful in doing so with bottle B, with the level of Mn remaining at the several ppb level. The other bottle of concern is the FEP, showing 162 ± 201 ppt Mn in the acid-charged bottle; however, cleaning by either method reduces this below 10 ppt. All HDPE and PP bottles show Mn levels below 10 ppt.

Co

Again, PETG bottles, followed by FEP, contribute most contamination. A high amount of Co is extracted from the acid-charged PETG bottle (9.1 ± 1.9 ppb, cf to 121 ± 12 ppb in bottle A). This potential contamination in bottle B is not removed by either the EPA or HNO₃ cleaning methods, though bottle A Co levels are reduced to several ppt. The difference in results between bottles A and B is less startling for the FEP material, at 30 and 69 ppt Co, respectively. However, the cleaning methods do not completely eliminate these contributions, especially in the acid-charged bottles. All HDPE and PP bottles show Co levels below 10 ppt.

Ni

FEP bottles show an unacceptable and random level of Ni contamination which is of the same magnitude in bottle A and B, at ca 500 ppt. Cleaning with HNO₃ eliminates this contribution of Ni (to <20 ppt) for treatment A but not B (remaining at a mean of 233 ppt). The EPA cleaning method is not adequate for either the dilute acidified sample A (126 ppt) or the acid-charged bottle B (245 ppt). Nickel contamination in other bottles is negligible.

Cu

FEP bottles again contribute high and varied levels of Cu
| Table 1 |
| Mean and standard deviation (n=5) of element concentrations found in 125 ml acidified water samples contained in different bottles precleaned in different ways; all data in ppt (ng H) except Fe and those with * which are in ppb. Data have not been truncated at detection limits. A represents bottle filled with 0.4% HNO₃ and B represents acid-charged bottle. |
| Treatment | Al | Cr | Fe* | Mn | Co | Ni | Cu | Zn | As | Mo | Ag | Cd | Sb | TI | Pb |
|-----------|----|----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| A | 30 | 10 | 5 | 20 | 20 | 20 | 20 |
| B | 30 | 10 | 5 | 20 | 20 | 20 | 20 |

No contamination above 10 ppt is evident for As in these bottles. Mo levels of B are below the DL of 3 ppt in precleaned and ordinary HDPE and PP bottles. PETG shows the highest contamination, at 3 ppt on average for bottle A and 14 ppt for bottle B. Neither cleaning method reduces this level adequately for the acid-charged bottle. TI all TI concentrations are below 1 ppt. Pb levels of Pb are below the DL of 2 ppt in HDPE, PETG and PP bottles. However, the HDPE shows 4 ± 2 ppt Pb in both treatments. The PP bottles are again the dirtiest, at 10 ± 11 ppt in bottle B and 64 ± 59 ppt in bottle B. These levels are reduced to several ppt by cleaning. Se all Se concentrations are below 4 ppt. Hg a completely separate set of experiments was carried out for Hg as this element requires a different preservation reagent. In summary, it was found that all bottle types - FEP, HDPE, PETG and PP - can be used without any cleaning (i.e. rinsing only) for the determination of Hg in waters down to levels of 1 ppt. None of the commonly used preserving agents (BrCl, HCl or K₂CrO₇ in HNO₃) appears to leach out detectable concentrations (<1 ppt) of Hg from the bottle material. Thus, the elaborate cleaning methods, EPA 1631 and 1638, can be avoided for Hg.

DISCUSSION AND CONCLUSION

The approach practiced by some laboratories - to add a charge of concentrated (8 M) HNO₃ reagent to the bottle hours continued on page 6.
Technical Note
Continued from Page 5

or days before water collection - is not acceptable. This strategy causes much higher levels of contamination (for all bottles) than is the case when acidifying during or after sample collection. This occurs in the uncleaned bottles for the elements Al (in FEP, PP, HDPE), Cr (FEP and precleaned HDPE), Fe (FEP, PETG and precleaned HDPE), Mn (PETG), Co (FEP and PETG), Ni (PETG), Cu (FEP), Zn (FEP and precleaned HDPE), Mo (FEP) and P (FEP). While the two cleaning methods tested serve to reduce these levels of contamination in the acid-charged bottles, they are not eliminated and elements are leached out during prolonged contact (six-day period used here) with the strong acid. Significant levels remain after cleaning for elements such as Fe and Ni in FEP, Mn and Co in PETG, and Al in PP and HDPE bottles. Thus, a 2-h soaking in 16M HNO₃ at 50 °C (EPA method) has not effectively removed these elements from these materials, and subsequent extended contact with 1 ml of 8M HNO₃ causes more element to be released. Time of contact between acid charge and bottle will clearly vary in a sampling program and thus contaminant level is not predictable.

In order to evaluate whether the contamination levels summarised in Table 1 are significant, we must know the minimum concentration of element to be expected in a natural water sample. Data from two stream surveys in Nova Scotia and Newfoundland carried out by the GSC (Hall, 1993; Hall et al., 1994) have been used to provide values of the mean and standard deviation of these elements in their 'dissolved' (defined as <0.45 m) form. Most of these 868 sites are second and third-order streams remote from industry or farming, sampled to assess the control of underlying geology on the water chemistry. These values, together with the lowest concentration measured in each survey, are presented in Table 2. These data have been used to estimate the method detection limit required ('MDL - geo') in hydrogeochemical surveys, thereby ensuring that the lowest element concentration expected in a survey could be determined with reasonable precision. Also given in Table 2 are the detection limits typically required by environmental regulations; two sets of criteria levels (those of the Canadian Federal and British Columbia Provincial Governments) are presented for reference. For the most part, as expected, the MDLs for environmental assessment purposes are significantly higher than those required to measure natural, geogenic levels of trace elements. However, there are several instances where these two limits are equivalent and this warrants examination. For example, the environmental MDL for Al, at 0.5 ppb, appears to be much too low when compared to the natural range of Al in surface waters. Only 2 samples out of 729 in the Nova Scotia survey contained Al below the analytical detection limit of 2 ppb. The value for the 25th percentile of this survey is 47 ppb and that for the median is 114 ppb. Thus, the requirement to be able to measure at 0.5 ppb for Al in environmental assessment projects seems overly stringent. Similarly, only 2 of the 729 samples contained Cu below the analytical detection limit of 0.1 ppb, the lowest level of measurement required in environmental work. However, the value for the 95th percentile is only 1.5 ppb Cu, demonstrating a much narrower range in natural levels than Al. The mean for Cu in the Newfoundland survey is considerably higher (2.7 ppb, cf. 0.7 ppb) due to some base metal mineralisation in the area. Although both environmental and geochemical MDLs for Cr and Cd are comparable, the natural levels of these elements are close to these limits and therefore the seemingly low environmental MDL may not be excessively rigorous.

The MDLs in Table 2 have been used to evaluate whether potential levels of contamination from the different bottles could be significant, in either a geochemical or environmental application. For each bottle type and cleaning treatment, the value for the 'mean plus two standard deviations' (taken from Table 1) has been compared with the MDL listed in Table 2. This exercise pertains only to the bottle filled with 0.4% HNO₃, not the acid-charged series. Table 3 indicates those elements where this value exceeds the MDL, and therefore where positive significant errors could be expected. Elements are not included where their mean, 'raw' values in Table 1 are below the analytical detection limit.

It is clear from this table that:
Table 2
Element concentrations found in stream water surveys used to estimate method detection limits (MDL) required for hydrogeochemical exploration; values in ppt except where designated as * to indicate ppb

<table>
<thead>
<tr>
<th>Element</th>
<th>MDL-env</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>Cr</td>
<td>0.05</td>
<td>20</td>
</tr>
<tr>
<td>Fe</td>
<td>1</td>
<td>300</td>
</tr>
<tr>
<td>Mn</td>
<td>1</td>
<td>50000</td>
</tr>
<tr>
<td>Co</td>
<td>0.05</td>
<td>2</td>
</tr>
<tr>
<td>Ni</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>Cu</td>
<td>0.05</td>
<td>2</td>
</tr>
<tr>
<td>Zn</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>As</td>
<td>0.05</td>
<td>10</td>
</tr>
<tr>
<td>Mo</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Ag</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Cd</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Sb</td>
<td>20</td>
<td>10000</td>
</tr>
<tr>
<td>Tl</td>
<td>50</td>
<td>6000</td>
</tr>
<tr>
<td>Pb</td>
<td>30</td>
<td>3000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean ± SD</th>
<th>142±114</th>
<th>207±145</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td><2</td>
<td><10</td>
</tr>
<tr>
<td>Maximum</td>
<td>>277±259</td>
<td>>234±441</td>
</tr>
<tr>
<td>Median</td>
<td>67±177</td>
<td>35±83</td>
</tr>
</tbody>
</table>

Table 3
Elements are shown where the value in the filled test bottle (0.4% HNO₃) for the 'mean plus two standard deviations' (taken from Table 1) is greater than the required method detection limit in hydrogeochemical and environmental surveys. Underlined indicates elements of particular concern (i.e. high contamination levels expected).

- The FEP bottles are by far the dirtiest and cleaning, for either application, is mandatory. Both methods of cleaning adequately reduce contamination by Cr, Fe, Co, Ni, Cu, Zn, Mo and Pb for environmental projects but concern remains for some of these elements (e.g. Cr and Ni) if geochemical mapping is the focus.
- Only the HDPE bottle performs well using this criterion of mean plus two standard deviations. The only element possibly of concern in uncleaned HDPE bottles is Ag, but this is due to one bottle which measured 3 ppt (analytical 3 detection limit is 2 ppt), the others registering less than 2 ppt. Cleaning does not demonstrate a real improvement and hence is probably unnecessary for HDPE bottles. In fact, Al levels are raised slightly in these bottles after cleaning by the EPA method.
- The 'precleaned' HDPE* bottles are definitely not worth the added cost (at least double) as they are, indeed, inferior to their uncleaned counterparts and show a startling increase in Zn contamination, to 739±195 ppt (cf. 7±4 ppt). Higher levels of Al, Cr, Ni and Pb are also evident.
- The unwashed PETG bottles show significant levels of Co, Cu, Zn and Sb but the bottles cleaned using 5% HNO₃ (note PETG does not withstand concentrated HNO₃ and heat) show acceptably low levels of all elements.
- The only element of concern for environmental studies in the unwashed PP bottles is Al, at a contamination level of 594±40 ppt. Cleaning by either method reduces this consistent level of contamination to insignificance. For hydrogeochemical purposes, contamination by Cu, Ag and Sb in the unwashed bottles is almost acceptable and is easily removed by cleaning.

ACKNOWLEDGEMENTS
This work carried out by the Analytical Method Development Laboratory of the GSC was partially funded by the Aquatic Effects Technology Evaluation (AETE) Program.

REFERENCES
COUNCIL ELECTION

Once again it's time to elect a new slate of Councilors for the 1999-2001 term. Fellows of the Association are asked to vote for five Councilors for this term and this year we have seven highly qualified candidates to choose from. Ballots must be returned to the Secretary before January 1, 1999 in order to be counted in the election. In past years we have received about 50% response to the Council election and this year we would like to encourage all Fellows to vote and help get the response over that 50% mark. Your Council and Executive are in the process of making some significant decisions that will have lasting effects on the Association so it is important to vote for Councilors that will reflect your ideas. Please return your completed ballot as soon as possible.

ANNUAL GENERAL MEETING

The Association of Exploration Geochemists normally holds its Annual general meeting during the year at some symposia or jointly sponsored meeting where a number of AEG members are present. This year (1998) there has been no appropriate meeting for our AGM and we are planning to try something different. We will hold our AGM on December 16, 1998 via telephone conference call at 3:00 PM mountain standard time (US). For those members who wish to join the conference call and attend the AGM, please contact the Secretary or the Business Office (email, FAX, phone, or "snail" mail) and let us know that you wish to be included on the conference call and the phone number where you can be reached. You will be called at the appropriate time on the day of the meeting and will be included in the conference call. All members are encouraged to attend the 1998 AGM of The Association of Exploration Geochemists.

The 1999 AGM will be held in conjunction with the 19th IGES in Vancouver, BC in April. Those members planning to attend the symposium should put the 1999 AGM on their agenda.

Don Runnels, former President of Association of Exploration Geochemists, has been appointed by President Bill Clinton to the U.S. Nuclear Waste Technical Review Board. Runnels, professor emeritus of geology at the University of Colorado and currently Vice-President of Shepherd Miller, Inc. of Fort Collins, Colorado, brings his geologic, geochemical, and hydrochemical expertise to the eleven-member board charged with evaluating the scientific and technical validity of activities undertaken by the U.S. Secretary of Energy to manage and dispose of the nation's commercial spent nuclear fuel and high-level nuclear waste. Don continues his activities as an environmental and engineering consultant.
The Association of Exploration Geochemists

is pleased to announce the

XRAL

1998 AEG
Student Paper Competition

The Association of Exploration Geochemists will hold its twelfth biennial Student Paper Competition this year. Papers eligible for the competition must address an aspect of exploration geochemistry and represent research performed as a student. The student must be the principal author, and the paper must have been published in any refereed scientific journal no more than five years after completion of the degree for which the research was performed. A nomination may be made by anyone familiar with the work of the student. Nominations must be accompanied by four copies of the paper.

The deadline for receipt of nominations is December 31, 1998.

Win $500

and receive a travel allowance to an AEG sponsored meeting

The prize consists of a $500 Canadian cash prize, donated by XRAL Laboratories, a Division of SGS Canada, a two-year membership to the Association of Exploration Geochemists with receipt of the Journal of Geochemical Exploration and EXPLORE, and up to US $500 for expenses to attend an AEG sponsored meeting. A photograph and curriculum vitae of the author and an abstract of the prize-winning paper will be published in EXPLORE as soon as possible after the announcement of the award.

Mail to: Dr. Ian D. M. Robertson
Chairman, Student Paper Competition
Cooperative Research Centre for Landscape Evolution and Mineral Exploration
c/o CSIRO Exploration and Mining
Private Bag P.O. WEMBLEY
WA 6014
AUSTRALIA
Phone: +61 8 9333-6748
FAX: +61 8 9387-8642
Email: i.robertson@per.dem.csiro.au

1. Full details are available from the Chairman of the competition (address above) or from the AEG Home Page (http://www.aeg/org/)
or, more specifically at http://leme.anu.edu.au/education/aegstudent.html
In July 1998, the Ontario Geological Survey (OGS) carried out an overburden drilling program at the “Shoot Zone”, an undeveloped gold deposit just east of Timmins, Ontario, Canada owned by St. Andrew Goldfields Ltd. The deposit is covered by approximately 30 m of glacial sediments and peat.

A geotechnical drill was used to core 3 inch diameter holes into bedrock at 3 locations to compliment existing plastic-cased boreholes on the property. Platinum electrodes were then installed in each hole at various depths in glacial sediments and bedrock. The electrodes were used to measure spontaneous potentials (ground voltages) in overburden in three dimensions over mineralisation and adjacent bedrock. The data were gathered to test for the presence of a chemically reduced “column” in overburden, which, according to a recent theory should be present over the gold mineralisation.

The theory proposed this year by the OGS attributes selective leach soil geochemical anomalies at the Shoot Zone and other sites in the Abitibi region to electrochemical processes. The results so far are very encouraging (see OGS Summary of Fieldwork, 1998, in press) and may have widespread implications for mineral exploration in glaciated terrain.
On October 1-3, Naples, Italy was the host city for a joint meeting of the IUGS/IAGC Working Group on Global Geochemical Baselines and the Forum of European Geological Surveys' (FOREGS) Geochemical Baseline Program. Representatives from twenty countries (Albania, Austria, Belgium, Canada, Czech Republic, Finland, France, Germany, Greece, India, Italy, Japan, Lithuania, The Netherlands, Norway, Slovakia, Slovenia, Ukraine, United Kingdom, and the United States) participated in two days of business meetings and presentations of ongoing baseline studies. The third day was devoted to a field trip to observe and discuss geochemical sampling methodologies used for the mountainous terrain of southern Italy.

The primary focus of the meetings was the FOREGS Geochemical Baseline Program (FGBP), which is Europe's contribution to the IUGS/IAGC Working Group. FGBP was established in 1996 to provide high quality environmental geochemical baseline data for Europe. Under the leadership of Dr. Reijo Salminen of the Geological Survey of Finland, FGBP has made remarkable progress toward its goal of a published geochemical atlas of Europe by 2001. The goals of this program are to 1) Collect, analyze, and archive multiple sample media (stream sediment, floodplain sediment, soil, water, and humus) from approximately 700 sub-sites based on the 160 km x 160 km grid cells of the Global Geochemical Reference Network as defined in the final report of IGCP Project 259 (Darnley and others, 1995); 2) Using data from the reference network samples, standardize national geochemical mapping data sets across national boundaries, and 3) Publish a geochemical atlas of Europe in 2001.

In 1998 and 1999, the following countries will be conducting sampling in support of FGBP: Albania, Austria, Belgium, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, The Netherlands, Norway, Portugal, Slovakia, Spain, Sweden, Switzerland, and the U.K. The complete sampling protocol has been published by the Geological Survey of Finland and is also available at their web site: www.gsf.fi. Analytical work is scheduled to be completed in 2000 and a geochemical atlas published in 2001.

A symposium will be sponsored by FGBP in September 1999 in Vilnius, Lithuania entitled The 2nd Conference on Environmental Geochemical Baseline Mapping in Europe.

David B. Smith
U.S. Geological Survey
Box 25046, MS 973
Denver, CO 80225
Phone: (303) 236-1849
FAX: (303) 236-3200
Email: dsmith@helios.cr.usgs.gov

Chemex Labs has always been in the forefront of using the latest communications technologies, whether for electronic data transfer, interbranch communications or client contact via e-mail. Now we have developed a comprehensive website which details all our analytical services, describes the latest innovation in our methods and provides assistance to clients in method selection. Dial up and take a look for yourself. You can find us at - www.chemex.com

Analytical Chemists • Registered Assayrs • Geochemists
Chemex Labs
CANADA: VANCOUVER • TORONTO • THUNDER BAY • TIMMINS • ROYUN U.S.A.: RENO • ELKO • TUCSON • BUTTE • ANCHORAGE • FAIRBANKS MEXICO: HERMOSILLO • GUADALAJARA • ZACATECAS • CHIHUAHUA
In Canada and the United States – Fax: 1-800-960-2436
Selective leaching — a tool in identifying an element’s provenance

Gwendy E.M. Hall, Geological Survey of Canada, Ottawa

Selective extraction schemes, where operationally-defined phases are dissolved using a sequence of suitable chemical reagents, are employed in the analysis of soils and sediments to provide information as to the binding sites of elements (metals and non-metals). The objective of selective leaching in the exploration context is to map specifically that fraction of an element which was previously in a labile (free) form and has been "trapped" or immobilised in the surficial environment. Controversy abounds as to the dominant mechanisms of transport of the element from oxidising mineralisation at depth, whether it be by gaseous or fluid movement through faults and fractures, under the influence of electrogeochemical cells and so on (J. Geochem. Explor., 1998, volume 61, special issue).

However, there is agreement that the principal resident sites in the secondary environment for these migrating elements comprise hydrous Fe and Mn oxides, humic and fulvic components of humus material, and clay minerals. Thus, leaches have been developed to extract these "phases" (used in a broad sense) in their entirety or to dissolve elements loosely sorbed to them. These phases are generally not discrete, but rather exist linked together as colloids. Furthermore, binding mechanisms are not simple, comprising physical and chemical adsorption at surfaces, occlusion within structures, chelation, complexation and coprecipitation. These factors confound the design of a selective extraction which is often based on changing the pH and/or Eh environment of the sample to promote specific dissolution. Thus, true specificity is almost impossible to achieve and the term "operationally defined" is used to describe more loosely the phase or form measured.

Though the advantages of selective leaches were certainly recognised in the 70s, inadequate detection limits using techniques such as AAS and ICP-AES and relatively high analytical cost limited widespread adoption until recently. Transfer of the analytical technique ICP-MS, generally more sensitive than ICP-AES by several orders of magnitude, from research-oriented laboratories to commercial labs in the 1990s has opened the door to high production, affordable selective analysis. It has also produced data for elements otherwise not usually determined, such as the halogens. Growth in the use of such leaches, alone or in sequential extraction schemes, is also evident in the sister discipline of environmental geochemistry. It is interesting that the tendency exists in environmental studies to attribute an anthropogenic source, particularly air-borne, to labile elements leached out early in these schemes, whereas the philosophy underpinning these selective extractions in exploration assumes a geogenic source from buried mineralisation.

Using mostly the work carried out at the GSC on leaches designed to measure labile elements, this presentation will focus on the:

- collection and preparation of the sample (e.g. medium’s homogeneity; size fraction; drying);
- design of a selective leach (selectivity; cost-effectiveness);
- pH control of the leach (e.g. influence of high carbonate samples);
- readsorption during the leach (e.g. particularly important for Au, Ps, oxyanions in acidic conditions, Pb in non-acidic solutions);
- stability of analyte in the leach awaiting analysis;
- analytical considerations such as calibration strategies;
- typical figures of merit to be expected in such datasets; and
- comparison of data between laboratories, for single and multiple extractions.

Finally, several applications of selective leaching, taken from both exploration and environmental projects, will be discussed.
The evaluation of filter systems concluded that optimum performance, in terms of contamination and ease of use, was achieved with the ion chromatography Acrodisc syringe filter with Supor membrane from Gelman, and the Sterivex syringe filter capsule with Durapore membrane from Millipore. However, the Durapore membrane was superior to the Supor brand in its significantly lower retention of colloidal species which should pass a 0.45 m filter size. These findings and others will be discussed in this presentation.
New Members Continued from Page 13

Brukhanov, Natalya N.
Geochemist
Institute of Geochemistry
Irkutsk, RUSSIA

Galeschuk, Carey
Project Geologist
Tantalum Mining Corp
Pinawa, MB, CANADA

Graves, Garth D.
Senior Geologist
Noranda Mining & Exploration
Santiago, CHILE

Jones, Richard
Consulting Geologist
Reno, NV, USA

Kumar, Suresh
Manager
ACC Rio Tinto Exploration
Thane, INDIA

Lahtinen Raimo
Senior Research Geologist
Geological Survey of Finland
Espoo, FINLAND

Raja, A. N. L.
Vice-President Geology, Environment and Mining
ACC
Thane, INDIA

Swensson, Carl
Executive General Manager Exploration
Normandy Mining
Norwood, SA,
AUSTRALIA

STUDENT

Cotter, Stephen
University of Canberra
Canberra, ACT, AUSTRALIA

Fowler, Grant
Carleton University
Ottawa, ON, CANADA

ALs

AUSTRALIA

Alice Springs
Bendigo
Brisbane
Charters Towers
Cloncurry
Kalgoorlie
Orange
Townsville
Perth

SOUTH AMERICA

Santiago
Copiapo
Arequipa
Lima
Mendoza
Las Flores

NEW ZEALAND

Tauranga

LAOS

Vientiane

ALs...

- Established over 20 years
- Convenient
- Personalised Service
- Cost competitive
- Geoanalytical experts

SERVICES...

- Fire assay Au and PGM's
- Low detection (sub-ppb) Au by Zeeman furnace AAS
- Bulk cyanide leach
- Aqua regia Au and base metals by AAS
- ICPAES multi-element
- ICPMS - trace and ultra trace multi-element
- MMI (Mobile Metal Ion Technology)
- Containerised sample preparation facilities
- Demountable laboratories
- Laboratory design and contract management

Deadlines for the Next Four Issues of EXPLORE

<table>
<thead>
<tr>
<th>Issue</th>
<th>Publication Date</th>
<th>Contributor's Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>January 1999</td>
<td>November 30, 1998</td>
</tr>
<tr>
<td>103</td>
<td>April 1999</td>
<td>February 28, 1999</td>
</tr>
<tr>
<td>104</td>
<td>July 1999</td>
<td>May 31, 1999</td>
</tr>
<tr>
<td>105</td>
<td>October 1999</td>
<td>August 31, 1999</td>
</tr>
</tbody>
</table>

Shea Clark Smith

MEG

MINERALS EXPLORATION & ENVIRONMENTAL GEOCHEMISTRY

Advanced survey, analytical and interpretational methods for exploration through exotic overburden.

Plant • Soil • Gas • Rock

P.O. Box 18325, Reno, Nevada 89511
2235 Lakeshore Drive, Carson City, Nevada 89704
Tel: (702) 849-2235 • Fax: (702) 849-2335

AEG PUBLICATIONS

The following special volumes are available from the AEG on a post-paid basis (surface mail) to all.
Both member and non-member prices are listed.

<table>
<thead>
<tr>
<th>Sp. Vol.</th>
<th>Description</th>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Application of Probability Plots in Mineral Exploration (A.J. Sinclair)</td>
<td>US $8.00</td>
<td>US $12.00</td>
</tr>
<tr>
<td>7</td>
<td>Combination offer</td>
<td>US $35.00</td>
<td>US $90.00</td>
</tr>
<tr>
<td>11.1</td>
<td>Exploration Geochemistry Bibliography Supplement 1 to October 1984</td>
<td>US $10.00</td>
<td>US $17.00</td>
</tr>
<tr>
<td>12</td>
<td>Exploration Geochemistry Bibliography Supplement 2 to October 1987</td>
<td>US $10.00</td>
<td>US $17.00</td>
</tr>
<tr>
<td></td>
<td>Digital bibliography - entire AEG bibliography through 1994, A *.dbf file on 3.5" diskette</td>
<td>US $10.00</td>
<td>US $30.00</td>
</tr>
<tr>
<td></td>
<td>GEOREXPO/86, Proceedings of an exploration symposium focussing on Cordillera environments held in Vancouver May 12-14, 1986 (ed. L. Elliot and B.W. Smee)</td>
<td>US $35.00</td>
<td>US $50.00</td>
</tr>
<tr>
<td>10</td>
<td>Reviews in Economic Geology Volume 3, Exploration Geochemistry, Design and Interpretation of Soil Surveys (ed. W.K. Flett)</td>
<td>US $20.00</td>
<td>US $25.00</td>
</tr>
<tr>
<td></td>
<td>1992 AEG Membership Listing and Directory of Exploration Geochemical and Environmental Services</td>
<td>US $10.00</td>
<td>US $20.00</td>
</tr>
<tr>
<td></td>
<td>Epithermal Gold Mineralization of the Circum-Pacific: Geology, Geochemistry, Origin and Exploration, Volumes 1 and 2</td>
<td>US $160.00</td>
<td>US $245.00</td>
</tr>
<tr>
<td></td>
<td>Soils of the World, Colour wall chart, 95 cm x 135 cm in size. Published by Elsevier</td>
<td>US $22.00</td>
<td>US $28.00</td>
</tr>
<tr>
<td>11</td>
<td>Practical Problems in Exploration Geochemistry, 1997. (A.A. Levinson, P.M.D. Bradshaw and T. Thomson) 299 pp.</td>
<td>US $35.00</td>
<td>US $80.00</td>
</tr>
<tr>
<td>11</td>
<td>17th IGES Extended Abstracts from "Exploring the Tropics", 15-19 May, 1985, Townsville Australia (for airmail add $20)</td>
<td>US $50.00</td>
<td>US $65.00</td>
</tr>
<tr>
<td>11</td>
<td>Geochemistry in Mineral Exploration (second edition, published 1979) (A.W. Rose, H.E. Hawkes, and J.S. Webb) - airmail US$10.00/international $20.00 additional</td>
<td>US $50.00</td>
<td>US $60.00</td>
</tr>
<tr>
<td>11</td>
<td>Journal of Geochemical Exploration in Subscription Years 1994 and earlier, whole year or part</td>
<td>US $70.00</td>
<td>N/A</td>
</tr>
</tbody>
</table>

NOTE: Members may order back issues or volumes for the usual membership fee. The member may elect to receive all issues of that subscription year or just the issues/volume desired (the price is the same). The 1995 subscription year will be "back issued" six months after completion (ca. Oct., 1995).

Notes for Short Courses on Biogeochemical Exploration. Each book comprises 200-250 pages of text, figures, tables, and photos. The content of each is similar, except different aspects are emphasized. All prices quoted are for surface mailing; if airmail is desired please add (US)$15.00.

	Biogeochemical Exploration, Simplified - with emphasis on arid terrains (C.E. Dunn, J.A. Erdman, G.E.M. Hill, and S.C. Smith)	US $50.00	US $50.00
	Note: this text includes geobotanical aspects in some detail		
	Applied Biogeochemical Prospecting in Forested Terrain (C.E. Dunn, G.E.M. Hill, and Scagel)	US $50.00	US $50.00
	Note: this text includes 42 page discourse on plants		
	Applied Biogeochemistry in Mineral Exploration and Environmental Studies (C.E. Dunn, G.E.M. Hill, R. Scagel, D. Cohen, P. Catt, and M. Lintem)	US $55.00	US $55.00

Note: This text is an expansion of the volume 'Applied Biogeochemical Prospecting in Forested Terrain' and includes several case histories from Australia. In Australia this volume can be obtained from Dr. David Cohen, Dept. Geology, Univ. New South Wales, Sydney, AUSTRALIA, for Aus$60.00.

Do you need a receipt? Include self-addressed envelope and US $2.00, otherwise your cancelled check or bank card statement is your receipt.

If your check is drawn on a bank outside U.S.A. or Canada?
Yes, add US $ 15.00.

Do you require airmail? If yes, add US $10.00 per volume, unless otherwise noted.
(Specify number of volumes)

TOTAL US$
CALENDAR OF EVENTS

International, national, and regional meetings of interest to colleagues working in exploration, environmental and other areas of applied geochemistry.

November 29-December 4, 1998, Northwest Mining Association 104th Annual Meeting and Exposition, Spokane, WA. INFORMATION: Hazel Hoeft, Northwest Mining Assoc, 10 N. Post St., Ste. 414, Spokane, WA 99201, TEL. 509-623-1241, E-mail: hhoeft@nwma.org.

December 2-4, 1998, The 1st Asia Pacific Symposium on Environmental Geochemistry, Hong Kong. INFORMATION: Dr. X. D. Li, Dept. of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. TEL 852-27666041, fax: 852-2334-6389, e-mail: cxldli@polyu.edu.hk.

January 24-27, 1999, Conference on Tailings and Mine Waste, Fort Collins, Colorado. INFORMATION: Linda Hinshaw, Dept. of Civil Engineering, Colorado State University, Fort Collins, CO 80523-1372, (970) 491-6081, fax 970-491-3584 or 7727, lhinshaw@engr.colostate.edu.

March 15-16, 1999, South-central Section, GSA, Lubbock, TX. INFORMATION: James Barrick, Dept. of Geosciences, Texas Tech University, Lubbock, TX 79409-1053, TEL. 806-742-3107. E-mail: ghjeb@ttu.edu.

March 22-24, 1999, Northeastern Section, GSA, Providence, Rhode Island. INFORMATION: Anne I. Veeger, Dept. of Geology, University of Rhode Island, 8 Ranger Rd., St. 2, Kingston, RI 02881, TEL. 401-874-2187. E-mail: veeger@uriacc.uri.edu.

March 25-26, 1999, Southeastern Section GSA, Athens, Georgia. INFORMATION: Mike Roden, Dept. of Geology, University of Georgia, Athens, GA 30602, TEL. 706-542-2416. E-mail: mroden@gly.uga.edu.

April 8-10, 1999, GSA Rocky Mountain Section Meeting, Quality Inn Pocatello Park Hotel, Pocatello, Idaho. INFORMATION: Paul Link, Dept. of Geology, Idaho State University, 785 South 8th Ave., Pocatello, ID 83209-8072, 208 236-3845. E-mail: linkpaul@isu.edu.

April 22-23, 1999, GSA North-Central Section Meeting, Chancellor Hotel and Conference Center, Champaign-Urbana, Illinois. INFORMATION: C. Pius Weibel, Illinois State Geological Survey, 615 Peabody Dr., Champaign, IL 61820, (217) 333-5108. E-mail: weibel@isgs.uiuc.edu.

May 26-28, 1999, Geological Association of Canada-Mineralogical Association of Canada Joint Annual Meeting, Sudbury, Ontario, Canada. INFORMATION: Dr. P. Copper, Dept. of Earth Sciences, Laurentian University, Sudbury, Ontario P3E 2C6, TEL. 705-675-1151 (ext. 2267), FAX: 705-675-4898, e-mail: gacmac99@nickel.laurentian.ca.

June 2-4, 1999, GSA Cordilleran Section Meeting, University of California, Berkeley, California. INFORMATION: George Brimhall, Dept. of Geology & Geophysics, University of California, Berkeley, CA 94720-4767, (510) 642-5868, e-mail: brimhall@socrates.

June 26-July 1, 1999, Clay Minerals Society 36th Annual Meeting, Purdue University, West Lafayette, Indiana. INFORMATION: Patricia Jo Eberl, Clay Minerals Society, P.O. Box 4416, Boulder, CO 80306, (303) 444-6405, fax 303-444-2260, e-mail: peberl@clays.org.

July 7-10, 1999, Geocongress ’98, University of Pretoria, South Africa. INFORMATION: P.O. Box 798, Pretoria, 0001 South Africa, fax: 012-841-1221, e-mail: eaucamp@geoscience.org.za.

August 22-25, 1999, Society for Geology Applied to Mineral Deposits 5th Biennial Conference, London, UK. INFORMATION: Dr. Chris J. Stanley, Associate Keeper of Mineralogy, Department of Mineralogy, Natural History Museum, Cromwell Rd., London, SW7 5BD, UK, Tel 44-171-938-9361. E-mail: cjs@nhm.ac.uk.

This symposium will be the last major Geochemical Exploration meeting of this Century. In keeping with the theme, *Exploration Geochemistry into the 21st Century*, the conference will aim to stimulate and disseminate new ideas and innovations.

If you would like to receive more information, please complete the Reply Form and mail or fax the IGES Secretariat Office.

TECHNICAL SESSIONS
Technical Sessions will be held on April 12-13, 15-16. April 14th will be a mid symposium break to give delegates and guests the opportunity of enjoying the many attractions offered by Vancouver and the surrounding area.

Topics include:
- Integrated exploration case histories - discoveries and disappointments
- Search for concealed deposits (including diamonds)
- New sampling methodologies at all scales
- Data presentation & interpretation
- Analytical methods (including quality control)
- Lithogeochemistry
- Envirogeochemistry related to the minerals industry

Anyone interested in submitting a paper for the 19th IGES should complete the Reply Form for more information.

SHORT COURSES
Short Courses will take place April 10 - 11th before the symposium.

FIELD TRIPS
Field trips will take place after the meeting, starting April 17th. The field trips are intended to complement short course and technical session themes by providing applied demonstration of methods and interpretation.
Calendar of Events Continued from Page 16

• November 3-5, 1999, International Symposium on Geochemical and Mineralogical Tracers in Mining Exploration, Santiago, Chile. The meeting will focus on the supergene environment. INFORMATION: Brian Townley, E-mail: btownley@tamarugo.cec.uchile.cl.

• April 24-28, 2000, 5th International Symposium on Environmental Geochemistry, Cape Town, South Africa. INFORMATION: SISEG, Department of Geological Sciences, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa, FAX 27-21-650-3783. E-mail: 5iseg@geology.uct.ac.za.

• May 12-14, 2000, Europe’s Major Base Metal Deposits, Galway, Ireland: INFORMATION: Leo Fusciardi, Irish Assoc. for Economic Geology, c/o Minorco Services Ltd., Killoran, Moyne, Thurles, Co., Tipperary, Ireland: FAX: 353-504-45344; E-mail: lfusciardi@minorco.ie

• May 15-18, 2000, Geology and ore deposits 2000: The Great Basin and Beyond, Reno/Sparks, Nevada, USA. INFORMATION: Geological Society of Nevada. 702-323-3500, fax 702-323-3599, e-mail: gsnsym@nbmg.unr.edu.

Please check this calendar before scheduling a meeting to avoid overlap problems. Let this column know of your events.

Virginia T. McLemore
New Mexico Bureau of Mines and Mineral Resources
801 Leroy Place
Socorro, NM 87801 USA
TEL: 505-835-5521
FAX: 505-835-6333
e-mail: ginger@gis.nm.gov

This list comprises titles that have appeared in major publications since the compilation in EXPLORE Number 100. Journals routinely covered and abbreviations used are as follows: Economic Geology (EG); Geochimica et Cosmochimica Acta (GCA); the USGS Circular (USGS Cir); and Open File Report (USGS OFR); Geological Survey of Canada Papers (GSC Paper) and Open File Report (GSC OFR); Bulletin of the Canadian Institute of Mining and Metallurgy (CIM Bull.); Transactions of Institute of Mining and Metallurgy, Section B: Applications Earth Sciences (Trans. IMM). Publications less frequently cited are identified in full. Compiled by L. Graham Closs, Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401-1887, Chairman AEG Bibliography Committee. Please send new references to Dr. Closs, not to EXPLORE.
Recent Papers Continued from Page 18

Continued on Page 20

ASSOCIATION OF EXPLORATION GEOCHEMISTS

SPECIAL BOOKS OFFER 1998

<table>
<thead>
<tr>
<th>Author/Title</th>
<th>Non-Member Price</th>
<th>Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augustithis, S.S. Atlas of of Metamorphic-Metasomatic Textures and Processes</td>
<td>254.00</td>
<td>152.40</td>
</tr>
<tr>
<td>Bardossy, G. and Aieva, G.J. Lateritic Bauxites</td>
<td>242.00</td>
<td>145.20</td>
</tr>
<tr>
<td>Butt, C.R.M. and Zeegers H. Regolith Exploration</td>
<td>267.00</td>
<td>160.20</td>
</tr>
<tr>
<td>Geochemistry in Tropical and Subtropical Terrains</td>
<td>184.00</td>
<td>110.40</td>
</tr>
<tr>
<td>Condie, K.C. Archean Crustal Evolution</td>
<td>124.50</td>
<td>74.70</td>
</tr>
<tr>
<td>David, M. Handbook of Applied Advances Geo-statistical Ore Reserve Estimation</td>
<td>219.00</td>
<td>131.40</td>
</tr>
<tr>
<td>Didier, J. And Barbarin, B. Enclaves and Granite Petrology</td>
<td>223.50</td>
<td>134.10</td>
</tr>
<tr>
<td>Govett, G.J.S. Rock Geochemistry in Mineral Exploration</td>
<td>274.50</td>
<td>164.70</td>
</tr>
<tr>
<td>**Gulson, B.L. Lead Isotopes in Mineral Exploration</td>
<td>393.00</td>
<td>235.80</td>
</tr>
<tr>
<td>Hale, M. And Plant, J.A. Drainage Geochemistry</td>
<td>219.50</td>
<td>131.70</td>
</tr>
<tr>
<td>Hedenquist, J.W., White, N.C. and Siddely, G. Epithermal Gold Mineralization</td>
<td>208.00</td>
<td>124.80</td>
</tr>
<tr>
<td>Howarth, R. J. Statistics and Data Analysis in Geochemical Prospecting</td>
<td>288.50</td>
<td>173.10</td>
</tr>
<tr>
<td>Kauranne, L.K., Salminen, R. And Eriksson, K. Regolith Exploration Geochemistry in Arctic and Temperate Terrains</td>
<td>146.50</td>
<td>87.90</td>
</tr>
<tr>
<td>Laznicka, P. Breccias and Coarse Fragmentites</td>
<td>196.50</td>
<td>117.90</td>
</tr>
<tr>
<td>Mysen, B.O. Structure and Properties of Silicate Melts</td>
<td>288.50</td>
<td>173.10</td>
</tr>
<tr>
<td>Naqvi, S.M. Precambrian Continental Crust and its Economic Resources</td>
<td>146.50</td>
<td>87.90</td>
</tr>
</tbody>
</table>

** This title will only be reprinted if there is a minimum number of requests
Recent Papers continued from page 19

Continued on Page 21
Recent Papers Continued from Page 20

THE ASSOCIATION OF EXPLORATION GEOCHEMISTS

Presents

Distinguished Lecturer 1998:

Gwendy Hall

Gwendy is an internationally renowned geochemist and a past President of the Association of Exploration Geochemists. She is a leading authority on partial and selective digestion methodologies for exploration and environmental applications, and is recognized as one of the foremost practitioners in application and method development for ICP-Mass Spectrometry in applied geochemistry. She is the author of numerous scientific papers as well as being co-editor of the recent JGE Special Issue “Selective Extractions”.

Two consecutive talks will be presented at each venue, preceded and separated by refreshments:

TALK 1: “Selective leaching - a tool in identifying an element’s provenance”

TALK 2: “Cost-effective protocols for the collection, filtration and preservation of water samples collected in hydrogeochemical surveys”

VENUES AND DATES

Perth

4:30 for 5-7 pm; CSIRO Auditorium, Car Brockway Rd and Underwood Ave Floreat; Enter through CSIRO reception on Underwood Ave.
(Inquiries D. Gray 9333 6751; L. Bettenay 0411230 979)

Melbourne

Friday 4th December, 1998. 5 for 5:30-7.30 pm; Fritz Loewe Lecture Theatre, School of Earth Sciences, The University of Melbourne. Level 2 (off main entrance foyer) Mc Coy Building, Corner Swanston and Elgin Streets, Carlton/Parkville
(Inquiries D. Lawie 0418 122 611)

Sydney

Monday 7th December, 1998. 4:00 for 4:30-6:30 pm; CSIRO Ground Floor Conference Room, Building 12, 51 Delhi Road, North Ryde.
(Inquiries D. Garnett 029 5432644)
AEG APPLICATION FOR NON-VOTING MEMBERSHIP*

to the Association of Exploration Geochemists

Please complete the section relevant to the class of membership sought and supply your address on this form.

Mail the completed application, together with annual dues, to the address below.

MEMBER

I wish to apply for election as a Member of the Association of Exploration Geochemists. I am presently employed by: ____________________________ as a ____________________________.

I am actively engaged in scientific or technological work related to geochemical exploration and have been so for the past two years. Upon receipt of the Code of Ethics of the Association I will read them and, in the event of being elected a Member, agree to honour and abide by them. Witness my hand this ______ day of ______ 19____.

(Signature of applicant)

STUDENT MEMBER

I wish to apply for election as a Student Member of the Association of Exploration Geochemists. I am presently engaged as a full-time student at ____________________________, where I am taking a course in pure or applied science. Upon receipt of the Code of Ethics of the Association and in the event of being elected a Student Member agree to honour and abide by them. Witness my hand this ______ day of ______ 19____.

(Signature of applicant)

Student status must be verified by a Professor of your institution or a Fellow of the Association of Exploration Geochemists. I certify that the applicant is a full-time student at this institution.

(Signature) ____________________________
(Printed Name and Title) ____________________________

NAME AND ADDRESS

(to be completed by all applicants)

Name: ____________________________
Address: ____________________________
Telephone: ____________________________
 bus: ____________________________
 fax: ____________________________
 home: ____________________________
 email: ____________________________

Annual Dues

All applications must be accompanied by annual dues. Select one or two below:

1 1998 member dues
2 1998 student member dues

If you require a receipt, include a self-addressed envelope and add

If your check is not drawn from a U.S.A. or Canadian bank, add

US$ 70 ______
40 ______
2 ______
15 ______
TOTAL ______

All payments must be in US funds. Payment by check, International Money Order, UNESCO Coupons, International Postal Orders, VISA and Master Card are acceptable. For users of VISA or Master Card, minor variations in your billing may reflect currency exchange rate fluctuations at time of bank transaction.

If you pay by charge card, please provide the following information: type: Master Card ______ VISA ______

Credit card account number: ____________________________ Expiration date: ____________________________

Name: ____________________________ Signature: ____________________________

Please note: Your completed form should be mailed to the Business Office of the Association and will be acknowledged upon receipt. The Admissions Committee reviews all applications and submits recommendations to Council, who will review these recommendations at the next Council Meeting or by correspondence. If no objection is raised the names, addresses and positions of candidates will be listed in the next issue of the Association Newsletter. If after a minimum of 60 days have elapsed following submission of candidate information to the membership no signed letters objecting to candidates admission are received by the Secretary of the Association from any Member, the Candidate shall be deemed elected, subject to the receipt by the Association of payment of required dues. Send completed application, together with annual dues to:

Association of Exploration Geochemists, P.O. Box 26099, 72 Robertson Road, Nepean, Ontario, CANADA K2H 9R0
TEL: (613) 828-0199, FAX: (613) 828-9288, email: aeg@synapse.net

*Application for voting membership requires the sponsorship of three voting members. Request a voting member application from the Association office.
THE ASSOCIATION OF EXPLORATION GEOCHEMISTS
P.O. Box 26099, 72 Robertson Road, Nepean, Ontario K2H 9R0 CANADA
Telephone (613) 828-0199

OFFICERS
January - December 1998

Peter R. Simpson, President
BGS Honorary Research Associate
British Geological Survey, Kingstony Dunham Centre
Keyworth, Nottingham NG12 5GG
UNITED KINGDOM
TEL: +44 1159 253552
Fax: +44 062 363 300
email: p.simpson@bgs.ac.uk

Erick F. Weiland, First Vice President
AGRA Earth and Environmental
5531 East Kelso Street
Tucson, AZ 85712
USA
TEL: (602) 256-3940
FAX: (602) 721-7431
email: 74761.614@compuserve.com

David B. Smith, Secretary
U.S. Geological Survey
Box 25046, MS 973
Denver, CO 80225
USA
TEL: (303) 236-1849
FAX: (303) 236-3200
email: dsmitth@helios.cr.usgs.gov

Gwendy E.M. Hall, Treasurer
Geological Survey of Canada
601 Booth Street, Room 702
Ottawa, ON K1A 0E8
CANADA
TEL: (613) 992-6425
FAX: (613) 996-3726
email: hall@gsnrrcan.gc.ca

COUNCILLORS

1997-1999
Robert Clark
William B. Coker (ex-officio)
John S. Cone
Stephen J. Day
Shea Clark Smith
Barry W. Smee

1999-2000
David Garnett (ex-officio)
Eric Hoffman
Ray Lett
M. Beth McClenaghan
J. Thomas Nash
David B. Smith

Awards and Medals Committee
Gwendy E. M. Hall, Chair 1995-1997
John S. Cone
Robert G. Garrett
Günter Matheis
Barry W. Smee

Bibliography Committee
L. Graham Closs, Chair
Robert G. Garrett
Richard K. Glanzman
Eric C. Grunsky
Gwendy E. M. Hall
Peter J. Rogers

Distinguished Lecturer Committee
Graham F. Taylor, Chair

Australian Geoscience Council
Representative
Graham F. Taylor

Bibliography Committee
L. Graham Closs, Chair
Robert G. Garrett
Richard K. Glanzman
Eric C. Grunsky
Gwendy E. M. Hall
Peter J. Rogers

Distinguished Lecturer Committee
Graham F. Taylor, Chair

Election Official
Ray E. Lett

Environmental Committee
Richard K. Glanzman, Chair
Cecil C. Begley
Peter H. Davenport
Gwendy E.M. Hall
Keith Nicholson

EXPLORE
J. Thomas Nash, Editor
Bob Eppinger, Asst. Editor
Sherman P. Marsh, Editor
Owen P. Lavin, Business Manager

Journal of Geochemical Exploration
Eion M. Cameron, Editor-in-Chief

Admissions Committee
Lloyd D. James, Chair
L. Graham Closs
Jaffrey A. Jaacks

Committees

Australian Geoscience Council
Representative
Graham F. Taylor

Central Geoscience Council
Representative
M. Beth McClenaghan

Awards and Medals Committee
Gwendy E. M. Hall, Chair 1995-1997
John S. Cone
Robert G. Garrett
Günter Matheis
Barry W. Smee

Bibliography Committee
L. Graham Closs, Chair
Robert G. Garrett
Richard K. Glanzman
Eric C. Grunsky
Gwendy E. M. Hall
Peter J. Rogers

Distinguished Lecturer Committee
Graham F. Taylor, Chair

Election Official
Ray E. Lett

Environmental Committee
Richard K. Glanzman, Chair
Cecil C. Begley
Peter H. Davenport
Gwendy E.M. Hall
Keith Nicholson

EXPLORE
J. Thomas Nash, Editor
Bob Eppinger, Asst. Editor
Sherman P. Marsh, Editor
Owen P. Lavin, Business Manager

Journal of Geochemical Exploration
Eion M. Cameron, Editor-in-Chief

Admissions Committee
Lloyd D. James, Chair
L. Graham Closs
Jaffrey A. Jaacks

Australian Geoscience Council
Representative
Graham F. Taylor

Central Geoscience Council
Representative
M. Beth McClenaghan

Awards and Medals Committee
Gwendy E. M. Hall, Chair 1995-1997
John S. Cone
Robert G. Garrett
Günter Matheis
Barry W. Smee

Bibliography Committee
L. Graham Closs, Chair
Robert G. Garrett
Richard K. Glanzman
Eric C. Grunsky
Gwendy E. M. Hall
Peter J. Rogers

Distinguished Lecturer Committee
Graham F. Taylor, Chair

Election Official
Ray E. Lett

Environmental Committee
Richard K. Glanzman, Chair
Cecil C. Begley
Peter H. Davenport
Gwendy E.M. Hall
Keith Nicholson

EXPLORE
J. Thomas Nash, Editor
Bob Eppinger, Asst. Editor
Sherman P. Marsh, Editor
Owen P. Lavin, Business Manager

Journal of Geochemical Exploration
Eion M. Cameron, Editor-in-Chief

Admissions Committee
Lloyd D. James, Chair
L. Graham Closs
Jaffrey A. Jaacks

Publicity Committee
Andrew Bourque, Chair
Sherman P. Marsh
J. Stevens Zuker
R. Steve Friberg

Regional Councillor Coordinator
David L. Garnett

Short Course Committee
Colin E. Dunn, Chair

Student Paper Competition Committee
Ian Robertson, Chair
Frederic R. Siegel
Arthur E. Soregaroli
Owen Lavin

Symposia Committee
Frederic R. Siegel, Chair
Gwendy Hall
Eion Cameron
Graham F. Taylor
Barry W. Smee

Betty Arseneault, Business Manager
P.O. Box 26099, 72 Robertson Road, Nepean, ON K2H 9R0 CANADA, TEL: (613) 828-0199 FAX: (613) 828-9288, e-mail: aeg@synapse.net
LIST OF ADVERTISERS

Acme Analytical Laboratories, Ltd .. 12
Activation Laboratories Ltd ... 4
AEG Publications .. 15
AEG - Special Book Offer ... 19
AEG 1009 Student Paper Competition .. 9
Australian Laboratory Services P/L ... 14
Becquerel Laboratories, Inc ... 6
BGA Services ... 16
Chemex Labs Ltd .. 11
Cone Geochemical, Inc .. 6
Distinguished Lecturer Tour ... 21
Intertek Testing Services ... 10
MEG Shea Clark Smith ... 14
19th International Geochemical Exploration Symposium 17
Symposium 2000 ... 18
XRAL - X-Ray Assay Labs ... 8