President’s Message

David Cohen

It is now just 12 months until the 24th International Applied Geochemistry Symposium in Fredericton, New Brunswick (Canada). We are looking forward to a good turnout of members and students. Some sessions at the symposium are being arranged by the International Association of GeoChemistry, which will hopefully boost attendance at the IAGS and provide some opportunity for the pure and applied sides of the geochemical coin to broaden each other’s horizons. We hope that the move will also assist AAG in fulfilling the Association’s aim of expanding its formal interests into areas of environmental chemistry linked to mining activities and beyond. This initiative may lead to further opportunities for the various scientific societies within our somewhat fragmented geochemical world (as indicated by the substantial list of organisations that sponsor Elements) to cooperate.

It also raises the question “what is the optimum size and scope for a scientific society?” There is, of course, no single correct model and the answer depends on the purpose and the intended geographical boundaries of a society. Some of the smaller societies draw on membership from a small area, others may be international in membership but focus on a very small discipline area. Some of the larger societies act as an umbrella under which smaller disciplinary groups exist. Increasing the size of a society by various methods, including more effective outreach and inducements to join or strategic mergers, can provide a number of advantages including the financial strength to better support central office facilities, transfer of some operational functions from volunteer members to paid staff, and a better flow of good quality manuscripts to journals. Disadvantages may include loss of focus for the society and reduced connection between members. Such issues will, no doubt, be the subject of debate over a few libations at Fredericton.

Revisions to the structure and registration of the Distinguished Applied Geochemists Fund, to ensure it will have charitable status for the purpose of tax deductibility of donations, is in the hands of Revenue Canada. Once we clear this hurdle, AAG will be renewing efforts to obtain further contributions from various sources to assist with initiatives to promote applied geochemistry, and especially to encourage and support more students to take up the discipline. The fund is chaired by Gerry Govett.

The deadline for submission of nominations for the next SGS Minerals Services 2008 AAG Student Paper Competition is the end of 2008. Readers of GEEA, members of AAG and especially supervisors, are invited to submit nominations. There are no forms to complete – just send me a note outlining the reasons why you thought the paper was of high quality/impact. The only proviso is that the paper must have been published (or been accepted for publication) in the last three years by GEEA.

continued on page 10

Exploration for Volcanogenic Massive Sulfide Mineralization along the Kermadec Arc—Havre Trough, New Zealand

INTRODUCTION

The discovery of hydrothermal venting on the Galapagos Spreading Center in 1977 resulted in considerable interest in mid-ocean ridge hydrothermal systems as analogues to ancient volcanogenic massive sulfide (VMS) deposits (Hannington et al. 1995; Herzig & Hannington 1995; Herzig 1999). Considerably less attention has been given to submarine arcs (de Ronde et al. 2001), despite evidence for significant mineralization related to geothermal systems on subaerial arc volcanoes, e.g. White Island, New Zealand (Hedenquist et al. 1993; Giggenbach et al. 2003) and Lihir, Papua New Guinea (Petersen et al. 2002; Kamenov et al. 2005). However, over the last decade, submarine arcs have started to receive greater attention, with the result that many have been found to be hydrothermally active (de Ronde et al. 2003; de Ronde et al. 2005; Stoffers et al. 2006; de Ronde et al. 2007).

Although useful as analogs of ancient VMS ore forming processes, mid-ocean ridge settings are difficult targets in terms of exploitation owing to their depth (typically ≥ 2,500 m). Furthermore, ridge settings are dominated by basaltic lava flows, whereas many large ancient VMS deposits are associated with intermediate to felsic pyroclastic rocks. Arc-associated systems are typically at shallower water depths compared to mid-ocean ridges, and the association with arc-volcanoes means that they may be longer-lived and more focused in terms of magma supply and heat production, potentially producing much larger deposits than are typical along mid-ocean ridges. Compared to mid-ocean ridge hydrothermal deposits, those on arcs also tend to have higher fO2, lower Fe and higher Au concentrations (Wright et al. 1998; de Ronde et al. 2005). Elevated Au contents makes such deposits more attractive for exploration and potential exploitation (Herzig 1999).

The Kermadec intra-oceanic arc is a 1,220 km long system formed by the subduction of the Pacific Plate beneath the Australian Plate (Fig. 1). The Kermadec arc is the most systematically explored submarine arc in the world for hydrothermal activity. Exploration over the last nine years has shown that the majority of the volcanoes and calderas along the arc are hydrothermally active, ranging from diffuse low-temperature venting

continued on page 2
Exploration for Volcanogenic Massive Sulfide Mineralization... continued from page 1

Figure 1. The Tonga-Kermadec subduction system; the Pacific Plate is being subducted westward underneath the Australian Plate. A) The active arc is denoted by triangles. B) Expanded view of the southern portion of the Kermadec arc, showing the location of important hydrothermally active submarine volcanoes and calderas. After Massoth and de Ronde (2006).

TABLE OF CONTENTS

President's Message ... 1
Exploration for Volcanogenic Massive Sulfide Mineralization
 along the Kermadec Arc—Havre Trough, New Zealand 1
The AAG Needs You as a Councillor 11
3D Geochemical and Mineralogical Model of the Sleeper
 Low Sulphidation Gold System, Nevada, U.S.A 12
GeoReM Web Page Information ... 16
AAG Student Paper Competition 17
24th IAGS .. 18
Calendar of Events ... 19
Introduction to Mineral Exploration 20
Recent Papers .. 21
New Members .. 24
Membership Application .. 25
IO Stipend ... 26
List of Advertisers ... 27

GEOLOGICAL SETTING

The Kermadec arc represents the southern half of the ~2,500 km long Kermadec-Tonga arc (Fig. 1),
formed by the subduction of the Pacific Plate westwards underneath the Australia Plate. Although there are about 57 submarine volcanic centers along the entire arc, most (33) occur along the 1,220 km-long Kermadec arc (de Ronde et al. 2005). The Kermadec arc represents the northeastward extension of the Taupo Volcanic Zone of the North Island of New Zealand, and varies from continental crust just offshore to oceanic crust in the north. The southern portion of the Kermadec arc front (south of ~ 32°S) is represented by submarine stratovolcanoes that occur west of the high-standing Kermadec Ridge (Fig. 1) (Wright et al. 1996). The southward transition from oceanic to continental crust, combined with subduction of continental-derived sediments and overthickened oceanic crust of the Hikurangi Plateau, results in a variety of magma source compositions that are reflected in the elemental and isotopic composition of erupted products along the arc, and likely the variability in the hydrothermal fluids and mineralization (de Ronde et al. 2001; Massoth et al. 2003; de Ronde et al. 2005; de Ronde et al. 2007).

The backarc to the Kermadec-Tonga comprises the Lau-Havre-Taupo backarc complex (Fig. 1), which is southward propagating and undergoing active extension. This backarc complex evolves from north to south from oceanic spreading in the central and northern Lau Basin, through rifting of arc crust along the southernmost Lau Basin and the Havre Trough to continental rifting within New Zealand (Wright et al. 1996). West of the Lau Basin and Havre Trough is the Colville Ridge, a remnant arc, which became isolated from active arc volcanism at ~ 5.5 Ma. The Lau Basin is undergoing more rapid extension compared to the Havre Trough, with rates as high as 159 mm yr⁻¹ in the northern Lau Basin, whereas extension is 15-20 mm yr⁻¹ in the Havre Trough. The transition from more rapid extension and oceanic spreading in the Lau Basin to rifting-dominated extension in the Havre Trough occurs where the trench-oblique Louisville Seamount Chain is subducted; subduction of this chain has progressively migrated southwards over the last 4 Ma (Wright et al. 1996).

METHODOLOGY

Prior to 1996, active hydrothermal activity along the submarine portion of the Kermadec was unknown (Wright et al. 1998). A series of research cruises using New Zealand, German, Japanese and American research vessels were undertaken to systematically explore the arc for hydrothermal activity and subsequently to undertake more detailed studies on volcanic centers shown to be hydrothermally active (Wright et al. 1998; de Ronde et al. 2001; Massoth et al. 2003; de Ronde et al. 2005; de Ronde et al. 2007). A variety of sophisticated technologies is utilized in order to carry out these studies. These methods involve the following: 1) conductivity-temperature-depth-optical (CTDO) sensor surveys, 2) remotely operated vehicles (ROVs), 3) manned submersibles, 4) autonomous underwater vehicles (AUVs), and 5) ship-based and shore-based geochemistry (elemental and isotopic).

The principle method of detecting and locating sites of hydrothermal venting is by mapping plumes that are formed in the water column above actively venting hydrothermal systems (Figs. 2A, 3); these provide a broad and widely dispersed exploration target. Hydrothermal plumes occur in both dissolved and particulate forms. Thus, exploration for plumes has relied on a number of chemical and physical parameters to determine the different styles of venting. Hydrothermal plumes along the Kermadec arc have been most successfully mapped in real-time using light-scattering detection (measured in ΔNTU), based on the presence of venting-associated particulates (primarily Fe- and Mn-oxyhydroxides), Eh, and CH₄ (de Ronde et al. 2001).
Exploration for Volcanogenic Massive Sulfide Mineralization... continued from page 3

Figure 3. Longitudinal profile of the southern-most part of the Kermadec arc, showing contoured results for light scattering (a) and helium isotopes (b). Light scattering is represented as ΔNTU, where NTU is nephelometric turbidity units, a nondimensional optical standard. Volcano names are: W = Whakatane, Ck = Clark, T = Tangaroa, L = Lillie, R5 = Rumble V, R3 = Rumble III, R2 = Rumble II East, S2 = Silent II, Ct = Cotton, H = Healy, B = Brothers. After de Ronde et al. (2001).

During plume mapping exercises using the CTDO (Fig. 2A), discrete water samples are also collected, permitting more detailed ship- and shore-based geochemical and isotopic characterization, including total dissolvable Fe and Mn, CH$_4$, H$_2$S, and He isotopes (Fig. 4). Results from the Kermadec arc show that hydrothermal plumes originate from focused high temperature and diffuse low temperature venting at discrete volcanic cones in addition to more complex caldera systems (de Ronde et al. 2001). For example, venting occurs from both the cone site and the NW caldera wall at Brothers caldera (Figs. 5, 6). Given that submarine arc volcanoes have

Figure 4. Depth profiles of pH for several basins in the Havre Trough (A) showing a typical background profile for pH. In contrast, over Brothers volcano, pH anomalies are evident, (B) in particular for the plume generated by venting at the cone site. Venting at the cone site and from the NW caldera site produces plumes that display clear anomalies in Fe concentration (C). Data collected during the 2007 ROVARK cruise (Leybourne et al., unpublished data).
depths to their summits ranging between > 1800 m and ~100 m, plumes occur predominantly in shallow and mid-water depths (Figs. 3, 5). The chemical composition of hydrothermal plumes along the Kermadec arc are different to those at mid-ocean ridges and commonly have elevated concentrations of Fe, H₂S and CO₂; Fe/Mn values range from 0.2 to 18, at the high end significantly greater than those typically found at mid-ocean ridges (Massoth & de Ronde 2006). In addition, because the depth of venting on arc volcanoes is typically shallower than occurs on the ridge crests, maximum venting temperatures are generally lower along arcs, constrained by the pressure-dependent boiling point of hydrothermal fluids. Although the frontal Kermadec arc has been systematically surveyed (critically, CTDO casts are performed between volcanic centers to properly define background values), only recently has exploration been extended into the Havre Trough with the 2007 ROVARK (NZASRoF’07) cruise.

Manned and unmanned submersibles have been deployed during a number of cruises to the Kermadec arc-Havre Trough over the last four years, including dives using Shinkai 6500 in 2004 and 2006, 23 Pisces V dives in 2005, and ROPOS in 2007. More recently, the AUV ABE (Autonomous Benthic Explorer) has been deployed at...
Exploration for Volcanogenic Massive Sulfide Mineralization... continued from page 5

Figure 6. Light scattering measurements (ΔNTU) based on CTDO profiling of Brothers volcano in 1999. Note the presence of plumes that originate from distinct sites on Brothers Cone and the NW caldera wall. The thin sawtooth line indicates the tow-yo path of the CTDO array as it was towed across the volcano.

Brothers volcano during the 2007 ROVARK cruise where it was used to map the caldera floor at a resolution (< 2 m) not previously undertaken for a submarine volcano (initial results of this work are available at: http://www.oceanexplorer.noaa.gov/explorations/07fire/welcome.html). ABE was also equipped with a magnetometer and Miniature Autonomous Plume Recorders (MAPRs) to map in high resolution the magnetic signature associated with hydrothermal activity and the precise location of vent fields.

DETAILED STUDIES OF MINERALIZATION

Following initial dredging of sulfide samples from Brothers and Rumble II West calderas in 1996 (Wright et al. 1998), samples of vent fluids and sulfide chimneys have been recovered from a number of vents sites along the Kermadec arc. The most extensive exploration to date has been carried out at Brothers caldera volcano (de Ronde et al. 2005). Brothers is host to two distinct styles of active venting: 1) gas-rich, low-temperature (typically < 70°C) emanations from the young cone in the southern...
Exploration for Volcanogenic Massive Sulfide Mineralization... continued from page 6

part of the caldera, and 2) high-temperature (max 302°C) metal-rich emanations from the NW caldera site (Fig. 7). At the NW caldera site, sulfides crop out over an area ~200 x 600 m, with numerous 1-5 m tall sulfide chimneys (Fig. 7) (de Ronde et al. 2005). Numerous active chimneys occur around a depth centered at ~1,650 m. The walls of the NW caldera site are steep, with the active chimneys commonly perched on intervening benches and typically aligned orthogonal to the slope of the walls.

Microscopy and X-ray diffraction studies of sulfide samples recovered from Brothers indicate that mineralization is dominated by pyrite, marcasite, chalcopyrite, and sphalerite, hematite, goethite, and barite (de Ronde et al. 2005). Less abundant minerals include epidote, titanite, albite, quartz, cristobalite, anhydrite, natroalunite, pyrrhotite, arsenopyrite, enargite, bornite, intermediate solid solution, chalcocite, covellite, galena, rutile, birennite, and native sulfur (Reyes et al. 2004; de Ronde et al. 2005).

Mineralization at Brothers is characterized by two dominant types: Cu-Fe-rich and Zn-Ba ± Pb-rich. In addition, mineralization at Brothers is relatively enriched in Au (especially with the Cu-rich mineralization), Ag, Tl, Ga, As, Sb, and Cd (de Ronde et al. 2005). Recent analytical developments have produced new techniques for age dating seafloor massive sulfide samples, based on 210Pb/226Ra and 226Ra/Ba (Ditchburn et al. 2004; de Ronde et al. 2005). Results from Brothers and Rumble II volcanoes indicate sulfide chimney ages on the order of months to 1,200 years (Ditchburn et al. 2004; de Ronde et al. 2005).

CHALLENGES AND FUTURE DIRECTIONS

More recently, other submarine volcanic arcs have been investigated for hydrothermal activity, in particular the Mariana arc (e.g., Embley et al. 2006), but none have been explored as systematically as the Kermadec arc has. GNS Science, along with scientists from NOAA and the Italian Istituto Ambiente Marino Costiero (IAMC-CNR), in late 2007 explored using CTDO and swath mapping for the first time the entire Aeolian arc in the Mediterranean Sea.

There are currently three exploration companies

continued on page 8
dedicated to exploring for seafloor massive sulfides: 1) Nautilus Minerals, which has greater than 370,000 km² of tenements off-shore of Papua New Guinea, Fiji, Tonga, the Solomon Islands and, as of 2008, in the Havre Trough in New Zealand waters; 2) Neptune Minerals, which has exploration licenses of greater than 278,000 km² along the Kermadec arc in New Zealand waters as well as in the waters of Papua New Guinea, the Federated States of Micronesia and Vanuatu; and 3) Blue Water Minerals, Inc. Challenges include difficulties of mining in an active submarine arc setting, in particular the environmental impact on vent-associated communities. Nautilus Minerals is in the mine planning stages to exploit Cu-Au mineralization (Solwara 1) in 1500 m water depth in the Bismarck Sea, near Papua New Guinea. Solwara 1 is a relatively small deposit by the standards of Cu-Au deposits mined on land, with indicated reserves of 870 kt @ 6.8% Cu, 4.8 g/t Au, 23 g/t Ag and 0.4% Zn and inferred resources of 1,300 kt @ 7.5% Cu, 7.2 g/t Au, 37 g/t Ag and 0.8% Zn (at a 4% Cu cut off; www.nautilusminerals.com). Future exploration will likely involve development of geochemical and geophysical techniques to explore in older, inactive portions of arc systems (e.g., Colville Ridge; Fig. 1).

Acknowledgments

Funding provided by the New Zealand Foundation for Research, Science and Technology (FRST) for GNS Science to stage the NZAPLUME and ROVARK cruises. Colleagues at PMEL/NOAA are thanked for helping organize and participating on various cruises, in addition to providing funds from Ocean Exploration program. Similarly, funds provided by German colleagues at IFM-GEOMAR were instrumental to the success of the ROVARK cruise. Beth McClennen and John Chapman are thanked for reviewing the manuscript.

References

ALS Laboratory Group
ANALYTICAL CHEMISTRY & TESTING SERVICES

Mineral Division - ALS Chemex

We are a global analytical testing company serving the mining and mineral exploration industry in 17 countries around the world.

We specialise in:
• Assaying and geochemical analysis for mining and mineral exploration projects
• On-site contract mine laboratory management
• Environmental monitoring for mining operations
• Acid mine drainage studies

Contact the ALS Chemex laboratory nearest to you to find out how we can help you with all of your project’s analytical needs. Detailed contact information for individual locations can be found on our website.

www.alschemex.com

Right solutions....
....Right partner
Exploration for Volcanogenic Massive Sulfide Mineralization...

continued from page 8

Matthew I. Leybourne and Cornel E.J. de Ronde
GNS Science,
P.O. Box 30-368,
Lower Hutt, New Zealand
Email: M.Leybourne@gns.cri.nz

Intertek Minerals Services

Offering Analytical Laboratory & Sample Preparation Services

- Australia
- Indonesia
- South Africa
- China
- Philippines
- PNG

www.intertek-cb.com/minerals

Intertek
Robotic Laboratories

Paid Advertisement
The AAG Needs You as a Councilor

Each year the Association of Applied Geochemists needs motivated and energetic AAG Fellows to stand for election to the position of “Ordinary Councilor”. Fortunately, each year some of our most outstanding Fellows are ready, willing, and able to meet this challenge. This is the annual article in EXPLORE summarizing the job and describing how one goes about getting on the ballot. It is our sincere hope that this might entice more Fellows to step forward for election to this most important position.

Job Description

The AAG By Laws state that “the affairs of the Association shall be managed by its board of directors, to be known as its Council”. The affairs managed by Council vary from reviewing and ranking proposals to host our biennial Symposium to approving application for new membership to developing marketing strategies for sustaining and growing our membership. These affairs are discussed and decisions made at Council teleconferences usually held 3-4 times per year. Each teleconference lasts about 90 minutes. In addition, there is often a running email discussion about a selected issue or two between each teleconference. So for a commitment of about 8 hours of your time per year, you can help influence the future of your Association. If you want to spend more than the minimum time required, there is plenty of opportunity to do so through committee assignments and voluntary efforts that greatly benefit the Association.

Qualifications and length of term

The only qualification for serving as Councilor is to be a Fellow in good standing with the Association. Please note the difference between being a Member of AAG and being a Fellow. A Fellow is required to have more training and professional experience than a Member. Consult the AAG web site, Membership section, for further details. If you are not currently a Fellow and have an interest in serving on Council, please go through the relatively painless process of converting to Fellowship status in AAG.

Each Councilor serves a term of two years and can then stand for election to a second two-year term. The By Laws forbid serving more than two consecutive terms, although someone who has served two consecutive terms can stand for election again after sitting out for at least one year. Elections are usually held in the fall of the year for a term covering the following two years. Our next election will be in the fall of 2008 for the term of 2009-2010.

How to get on the ballot

If you are interested in placing your name into consideration for election to AAG Council, simply express your interest to the AAG Secretary (Dave Smith, dsmith@usgs.gov) by August 31, 2008 and include a short (no more than 250 words) summary of your career experience. All that is asked is that you bring energy and ideas to Council and are willing to share in making decisions that will carry the Association forward into a successful future. We look forward to hearing from you.

David B. Smith
Secretary,
Association of Applied Geochemists
3D Geochemical and Mineralogical Model of the Sleeper Low Sulphidation Gold System, Nevada, U.S.A.

INTRODUCTION

Hydrothermal mineral systems, including low sulphidation gold systems in Nevada, are often zoned geochemically and mineralogically. This zonation creates the opportunity to use relationships in surface and drill-hole data to vector from the periphery of a mineralized system to the location of undiscovered ore within the system. Two analytical developments have made it possible to acquire the type of data needed to define these zonation relationships: 1) the inductively coupled plasma mass spectrometer spectrometer (ICP-MS), which provides inexpensive, multi-element data with low detection limits, and 2) the analytical spectral device (ASD), capable of identifying and estimating relative abundance of clay and other alteration minerals. The interpretation of these types of data, in excess of 60 variables, is facilitated by interpolating element or mineral distributions among drill holes using 3D gridding techniques to create 3D block models. In this form, data relationships and spatial patterns can be fully explored using 3D visualization exploration tools. Gocad 3D pattern recognition software provides a way to identify and illustrate zonation characteristics and to develop targeting vector criteria. The display of these features in relation to modeled and integrated 3D geology (lithologies, faults), 3D bodies generated from inversion of geophysical data, and surface data can further aid in identifying new exploration targets. An example of the wealth of information that can be derived from data modeling and 3D visualization is presented using data from the Sleeper deposit located in Nevada, U.S.A.

The Sleeper deposit is a low sulfidation, bonanza gold vein ore body enveloped by bulk tonnage, low grade disseminated gold ore (Wood & Hamilton 1991; Nash & Trudel 1994; Nash et al. 1995). It was a shallow, Nevada range-front, pediment discovery drilled by Amax in 1984 (Wood & Hamilton 1991). Open pit mining took place from 1986 to 1996, originally centered on the Sleeper Vein itself. Successful exploration lead to the discoveries of the Wood, Office, and West Wood Veins and the open pit was expanded to mine those ore bodies (Thomason et al. 2006, Wood & Hamilton 1991) (Fig. 1). Recorded mine production was 1.682 M oz Au, 2.8 M oz Ag (Thomason et al. 2006).
In 1996 X-Cal Resources Ltd. (X-Cal) optioned the property from Amax, combined it with their contiguous land holdings, and began exploration for additional mineralization related to the Sleeper gold system (Thomason et al. 2006). X-Cal drilled the X-Cal Discovery Breccia just outside the SW end of the pit (Fig. 1). A 2004 to early 2006 exploration joint venture of the property produced a large volume of exploration data that has recently been integrated and synthesized with the past mine data in 3D, utilizing Gocad pattern recognition software.

Datasets include: Au and Ag data from historic mine and recent exploration drill-holes; new multi-element, low detection ICP-MS data and spectral reflectance (ASD) mineralogical data on select holes; geophysical surveys (detailed air magnetics, pre-mine IP, CSAMT, gravity), and surface geochemistry (rocks, soils, soil gas). The 3D modeling provides new insight into the Sleeper deposit, mineralization controls, alteration patterns and exploration potential. This paper presents a refined geologic framework for the Sleeper system and newly recognized multi element and alteration mineral zoning patterns related to gold mineralization.

ACKNOWLEDGMENTS
Shawn Kennedy, President of X-Cal, is the force behind the Sleeper District exploration with his vision to fully realize the gold potential of the Sleeper district with the development of multiple open pits within the range-front pediment. He has assembled a team of experienced consultants whose observations, interpretations, and ideas have significantly contributed to the current understanding of the system. These include geologists, Dr. Ken Snyder, Robert Thomason, Winthrop Rowe, Larry Martin, Larry Kornze, Keith Blair, and geophysicist, Jim Wright. Dr. Richard Sillitoe and Dr. Jeffrey Hedenquist provided key insights and interpretations with respect to the geology and mineral potential based on site visits to the property.

LOCATION
The Sleeper deposit is located 51 miles by road, NNW of the town of Winnemucca in Humboldt County, central Nevada, U.S.A. (Lat. 41.336, Long. –118.051) on a NW extension of the Eureka, Cortez, Battle Mountain gold trend (Fig. 2).

GEOLOGY
Principle host rocks of the Sleeper veins are Sleeper rhyolite interbedded with volcaniclastic rocks deposited in a fault controlled basin along the range-front (Wood & Hamilton 1991; Nash & Trudel 1994; Nash et al. 1995). These rocks are part of a Miocene bimodal volcanic sequence dated at 16.5 Ma with mineralization and alteration in the range 14-16.5 Ma (Conrad et al. 1993). The Sleeper rhyolite has been interpreted as a flow dome complex (Conrad et al. 1993; Nash et al. 1995). A more recent interpretation based on logging of new holes and re-logging of past holes is that the Sleeper rhyolite is either a sill or an intrusive cryptodome complex (laccolith-like) within tuffaceous rhyolites (Sillitoe 2006). Metamorphic basement rocks of the Upper Triassic and Jurassic Auld Land Syn Group (Wilden,1964) are present beneath the volcanic sequence and are locally mineralized.

A distinctive mafic marker unit (pillow basalt) in the Miocene sequence is present beneath the Sleeper Rhyolite. Offsets on this contact provide evidence of the basin faults and recurrent faulting which controlled gold mineralization. Previous recognition of abundant and systematic relief on the hanging wall (HW) contact surface of the mafic marker unit (early cross sections of Oviedo 1998; Nash & Trudel 1994; Nash et al. 1995; Blair 2005) is clearly evident using 3D modeling (Fig. 3). The geometry (relief) of the HW contact surface is interpreted to reflect composite horst and graben structures controlled by intersecting NS, NE, EW and NW trending normal faults. Sleeper rhyolite and other subsequent Miocene
basin fill units were deposited into the horst, graben, range front basin and its associated sub-basins. Gold vein, breccia and disseminated mineralization is present along reactivated, basin controlling normal faults. Known bonanza gold veins mimic the geometry of reactivated basin growth faults along composite graben boundaries (Fig. 3).

ANALYTICAL METHODS AND DATA PROCESSING

Drill-hole samples were analyzed using a near total 4-acid digestion and ICP-ES/ICP-MS determination. Partial digest aqua regia data for some drill-holes were incorporated into the database for elements that could be satisfactorily leveled with the total digest. All analyses were completed by ALS-Chemex Ltd. The geochemical data were converted to log (base 10) units to facilitate display and spatial analysis. The occurrence and relative abundance of alteration minerals were determined for selected samples using ASD (spectral reflectance) analysis. Relative abundances were converted from presence or absence to numeric values of 1 and 0. Notations of trace, weak and strong were assigned values of 2, 3, and 4 respectively. The down-hole data were gridded with GOCAD 2.07 software to produce individual element block models (xyz cell dimensions of 50x50x5 m) using: 1) an inverse distance squared algorithm, 2) an unconstrained search radius of 150 m in all directions, and 3) a restriction of gridding to the region from the surface topography to a vertical depth of 30 m below the end of drill...
holes. The alteration minerals identified by ASD were gridded using a nearest neighbor categorical interpolation.

GEOCHEMICAL MODEL

The Sleeper low sulphidation Au-Ag system is related to vertical plumes in Au, Ag, and As concentration emanating from depth that trace out fluid pathways along high angle structures (Fig. 4). Within the large system plume, there is a general zonation east to west from more Ag dominated to more Au dominated. The basalts and, in some cases, the rhyolite, are altered in the area of the system plume as expressed in depletion of Na and other elements east of the deposit; Ca-Mg depletion is centered on the deposit and along a NW trending corridor, and enrichment in K and Rb occurs on the outer margin of ore to the west. The high grade Au veins are located along the western fringe of the system plume at the boundary between K-Rb and Na-Ca-Mg alteration signatures. The distributions of anomalous Ag, As, Ge, S, Se, Te, and Tl concentrations are similar to that of the Ca-Mg depletion alteration. The distributions of Sb, Mo, Re, and W are more closely associated with the K-Rb enrichment alteration.

High grade mineralization appears to have a strong elevation control that also has an expression in other elements. The base of high grade mineralization coincides with the bottom of a flat-lying, saucer-shaped zone of Zn depletion at 120-150 m depth. Above this boundary, Ba, and Mo concentrations are enriched while below it, As, S, and Zn concentrations are enriched. This feature is interpreted to be the reflection of hypogene oxidation related to a boiling horizon. The highest grade Au and Ag intercepts are generally restricted to the oxidized portion of the profile. The base of oxidation, visually, is generally at a similar depth to the lower limit of Zn depletion but can be as much as 50-60 m higher in the profile. The observed zonation sequence relative to the redox boundary is believed to be hypogene in origin as it differs significantly from that related to supergene oxidation (Jackson 2007). Supergene Au has been noted in the upper 30 m of bedrock (Saunders 1993) where a flat-lying Au layer is observed (Fig. 4).

MINERALOGIC ALTERATION MODEL

A zoned sequence of clay minerals is present from east to west in the order of illite \rightarrow kaolinite-buddingtonite-illite(NH4) \rightarrow montmorillonite \rightarrow nontronite (Jackson 2007). The boundaries between the various zones are more or less vertical or steeply dipping to the west and are observed to cross-cut stratigraphy. The high grade veins are positioned within the buddingtonite-illite(NH4) halo within the larger kaolinite zone. The distribution of buddingtonite resembles that of two vertical plumes that flatten out at higher elevations to encompass the high grade veins (Fig. 5). The location of at least one of these is spatially associated with a NW-trending structural corridor. The distribution of silica (quartz, opal, chalcedony) forms an outer boundary to the Au system and, in some areas,
3D Geochemical and Mineralogical Model... continued from page 15

underlies it. The eastern margin of the silica zone is located at approximately the same location as the eastern margin of the montmorillonite halo. Chalcedony is present within a NW structural corridor that cross-cuts the range-bounding structures whereas opal is distributed to the north and south of the chalcedony zone within the quartz halo. Another zoned sequence is that of jarosite → gypsum → CO₃-bearing minerals. The distribution of jarosite is centered on the high grade veins to a depth of about 100 m below them, locally deeper. Gypsum is present in a halo marginal to the jarosite zone both laterally and beneath it. Samples with CO₃ spectra occur within the gypsum halo but exclusive to samples with gypsum. A long string of CO₃-bearing samples is located at depth between the two buddingtonite plumes. The distribution of hematite is generally restricted to above the redox boundary. However, within the oxide zone, the distribution of abundant hematite is centered on the high grade veins with possible extensions along the NW structural corridor that intersects the range-bounding structures. This relationship is likely due to the higher concentration of sulphide minerals surrounding the structures. This relationship is likely due to the higher concentration of sulphide minerals surrounding the deposit that were subjected to oxidation. Associated with sulphide oxidation is the presence of alunite above the redox boundary in close proximity to the high grade veins.

3D SPATIAL DATA INTEGRATION AND PATTERNS

The distribution of high grade Au and Ag appears to reflect the concurrence of 3 main features: 1) a major lithologic contact, 2) high angle structures, and 3) a redox gradient. The coincidence of the oxidized zone (boiling horizon) with open high angle structures developed at the rhyolite/basalt contact created conditions favourable for the formation of high grade Au veins. Many of the alteration zones have a geochemical expression. The distribution of illite is most similar to that of Na depletion alteration. The relative abundance of illite is closely correlated with the intensity of Na depletion. The distribution of jarosite with its peripheral zone of gypsum is similar to that of depletion in Ca and Mg and anomalous concentrations of Ag, As, Ge, S, Se, Te, and Tl. The kaolinite-buddingtonite zone is generally coincident with anomalous K, Rb, Sb, Mo, Re, and W. The opal-chalcedony zone is the host for anomalous Bi concentrations. The hematite zone is located within the shallow saucer-shaped feature defined by Zn depletion. The Sleeper system lies within the boundary of a large magnetic low. In 3D, the limits of the Ca-Mg depletion anomaly correspond closely to the boundaries of the magnetic low. This pattern suggests that the alteration process resulted in both mafic mineral and magnetite destruction.

A NW trend to Au and As anomalies observed in the 3D model is traceable further to the south-east by weak Au and As anomalies in shallow soils covering the bedrock of the adjacent range. This feature is expressed as a disruption in the strong gravity response located along the margin of the range, possibly as a result of alteration.

CONCLUSIONS

The full integration of all geologic, geochemical, and geophysical data in 3D space has contributed to a better understanding of the Sleeper mineral system including mineralization controls, alteration patterns, and exploration potential. An important component of this integration was 3D modeled down-hole geochemical data and mineralogic ASD data.

Some key observations include: 1) mineralization is focused along basin-bounding normal faults; 2) Au, Ag and

continued on page 17
alteration patterns are larger scale than the discreet veins and graben bounding fault controls 3) the Au core within the Sleeper graben grades eastward to a Ag rich zone beyond the pit boundary; 4) trace element signatures and alteration mineralogy are zoned in relation to the deposit in a very systematic and predictive fashion; 5) high grade Au mineralization is floored by a saucer-like zone of Zn depletion and other redox related signatures reflecting hypogene oxidation due to boiling; and 6) mineral trends and alteration signatures relate well to features in other data sets such as airborne magnetics, gravity, IP, and soils.

References
BLAIR, K. 2005. 3D Model of Geologic Host Unit Contact Surfaces from Sleeper Mine and Recent Exploration Drill Hole Database utilizing Vulcan 3D software. Unpublished data for New Sleeper Gold, LLC surface dxf format computer files.

Robert G. Jackson
Consulting Geochemist
19 View St., Dartmouth, Nova Scotia, B2Y IV1 CANADA
Email: rgjackson@eastlink.ca

C. Victor Chevillon
Chevillon Exploration Consulting,
35 Killington Court, Reno, Nevada, U.S.A.
Email: vic_chevillon@yahoo.com

The Association of Applied Geochemists announces the
2008 AAG Student Paper Competition

Deadline for receipt of nominations is December 31, 2008.

The AAG is calling for nominations for the 17th biennial Student Paper Competition. The paper must address an aspect of exploration geochemistry or environmental geochemistry related to mineral exploration and represent research performed as a student. The student must be the principal author and the paper must have been published in geochemistry: exploration, environment, analysis no more than three years after completion of the degree. A nomination may be made by anyone familiar with the work of the student.

The winner will receive:
A cash prize of $1000CAD generously donated by SGS Minerals Services.
A 2-year membership of AAG, including the society’s journal (GEA), EXPLORE newsletter, publication of an abstract and CV of the winner, a certificate of recognition and $500US towards expenses to attend an AAG-sponsored meeting, courtesy of AAG.

Nominations and a digital copy of the paper should be sent to:
Dr David Cohen
Chair, Student Paper Competition
School of BEES
The University of New South Wales
UNSW, NSW, 2052
Australia
Email: d.cohen@unsw.edu.au

The results of the 2008 competition will be announced at the 24th IAGS in mid 2009.

Further details are available from the chair of the committee or the AAG Students’ page at http://www.appliedgeochemists.org/
24th International Applied Geochemistry Symposium, June 1-4, 2009. Hosted by the University of New Brunswick in Fredericton, New Brunswick CANADA. Contact Dave Lentz for more information: d lentz@unb.ca

Association of Applied Geochemists web site: appliedgeochemists.org

CALENDAR OF EVENTS

International, national, and regional meetings of interest to colleagues working in exploration, environmental and other areas of applied geochemistry. These events also appear on the AAG web page at: www.appliedgeochemists.org

2008

- **August 10-15, 2008. 9th International Kimberlite Conference (9IKC) Frankfurt, Germany.** Website: http://www.9ikc.uni-frankfurt.de/

- **August 18-22, 2008. 8th Symposium on the Geochemistry of the Earth's Surface: Joint Meeting of the IAGC, Minsoc and Natural History Museum, London, UK.** Contact: M.E. Hodson, m.e.hodson@reading.ac.uk

- **September 8-10, 2008. 9th International Congress for Applied Mineralogy, Brisbane, Australia.** Website: http://www.icam2008.com

- **September 14-18, 2008. 5th International Conference on Uranium Mining and Hydrogeology.** Freiberg, Germany. Website: URL: http://www.geo.tu-freiberg.de/umh

- **October 5-8, 2008. Geological Society of America Annual Meeting, Houston, Texas, USA.** Website: www.geosociety.org/meetings/index.htm

- **November 4–6 2008. 22nd Colloquium of African Geology and 13th Conference of the Geological Society of Africa.** Hammamet, Tunisia. E-mail: afric2008@gmail.com

- **December 15-19, 2008. American Geophysical Union Fall Meeting.** San Francisco, USA. Website: www.agu.org/meetings/fm08/

2009

- **May 24 - 27, 2009. Geological Association of Canada/Mineralogical Association of Canada Annual Meeting Toronto, Canada.**

- **June 1 - 4, 2009. 24th International Applied Geochemistry Symposium, Fredericton, New Brunswick, Canada Website: http://www.unb.ca/conferences/TAGS2009

- **August 17-20, 2009. Society for Geology Applied to Mineral Deposits 10th Biennial Meeting, Townsville, Australia.** Email: SGA2009@jcu.edu.au

2010

- **May, 2010. Geological Association of Canada/Mineralogical Association of Canada Annual Meeting Calgary, Canada.**

2012

Please let this column know of your events by sending details to:

Beth McClenaghan
Geological Survey of Canada
601 Booth Street, Ottawa, Ontario
CANADA K1A 0E8
Email: bmcclena@nrcan.gc.ca
613-992-7805

Website: www.ngwa.org/DEVELOPMENT/conferences/details/0810025019.aspx
This book aims to introduce to geologists the principles and some case studies of mineral exploration. It is divided, therefore, into two parts. The first part, of 11 chapters, explains the principles of individual subjects or knowledge fields involved in mineral exploration. The second part, of six chapters, demonstrates case studies of exploration for different types of mineral deposits. As any mineral explorationist is never an expert in all, but in some, of the knowledge fields involved in mineral exploration, this book is appropriately a volume of multi-authored chapters, in each of which an author or a group of authors contributes his or her expertise.

The first three chapters deal, respectively, with economics, mineralogy and geology of mineral deposits. Chapter 1, by Moon and Evans, provides a concise introduction to mineral economics. It begins with definitions of terms, such as ore (of either metallic or non-metallic mineral deposits). It then explains factors of economic mineral recovery, choice of exploration areas and, most importantly, the rationale of mineral exploration. Chapter 2, by Evans, discusses the importance of mineralogical examinations to the extraction of ore minerals. At the beginning, it aptly warns the [aspiring] mineral explorationist about the difference between ore and gangue, as ore minerals in some deposit-types may be gangue in other deposit-types and vice versa. It then explains various methods of mineralogical examinations to the extraction of ore minerals. Chapter 3, by Evans and Moon, provides a simple introduction to mineral deposit geology and models. As the chapter deals only with some key features of mineral deposit geology, which is nonetheless a good start for aspiring mineral explorationists, the authors refer the readers to books dealing specifically with the genesis of mineral deposits. In addition, the chapter discusses the importance as well as the pitfalls of using mineral deposit models in mineral exploration.

The next two chapters deal with aspects of the early and later stages of mineral exploration. Chapter 4, by Moon and Whateley, explains reconnaissance exploration and the geo-political aspects that might come into play when acquiring land for exploration in different countries. A short section on application of GIS (geographic information systems) to regional-scale prospectivity mapping would have been a good addition to this chapter, although this topic is treated in a later chapter. Chapter 5, by Moon and Whateley, explains aspects of prospect-scale exploration, in which the key requirement is to explore an area at the lowest cost but without missing significant targets.

The next three chapters deal, respectively, with geological, geophysical and geochemical methods of mineral exploration. Chapter 6, by Whateley, is an introduction to geological remote sensing. It explains briefly the concepts of processing and interpretation of digital space-borne images and analogue air-photos of the Earth’s surface in order to identify geological indications of exploration targets. Chapter 7, by Milsom, explains with geophysical methods. It is a good review of the basic principles of individual geophysical methods as well as the advantages and disadvantages of applications of each method to mineral exploration. Chapter 8, by Moon, covers exploration geochemistry. It provides a useful review of do’s and don’ts in geochemical exploration surveys, especially about which sampling media to consider in areas of different geomorphology and climatic conditions.

Chapter 9, by Moon and Whateley, explains how mineral exploration data are digitally-captured, stored, analyzed and integrated in order to extract useful pieces of spatial information via the application of GIS. It provides an example of GIS-based district-scale mapping of mineral prospectivity; that is, to delineate areas with high likelihood or probability of mineral deposit occurrence.

The next two chapters deal with evaluation of mineral deposits. Chapter 10, by Whateley and Scott, explains evaluation techniques, which involve sampling and geostatistical analysis in order estimate ore reserves and calculate ore grades. Chapter 11, by Scott and Whateley, explains project evaluation or mine valuation via (pre-) feasibility studies involving the analysis of geo-political and socio-economic conditions where a project is located as well as the analysis of cash flows. These procedures are usually handled by mining engineers, but it is important that mineral explorationists have at least basic knowledge about these subjects.

The next chapters are case studies demonstrating the various principles explained in the preceding chapters to explore for different types of mineral commodities. Chapter 12, by Whateley and Barrett, is about development of an aggregate quarry in England. Chapter 13, by Whateley, is about coal exploration in Turkey. Chapter 14, by Moon and Whateley, is about exploration
Introduction to Mineral Exploration...

continued from page 20

of paleoplacer-type gold deposits in South Africa. Chapter 15, by Evans and Moon, is about exploration for volcanic-associated (or volcanogenic or volcanic-hosted) massive sulfide (VMS) deposits in eastern Canada. Chapter 15, by Whateley, Bell and Moon, is about exploration for disseminated-type of precious metal deposits in Nevada (U.S.A.). Chapter 17, by Moon, is about diamond exploration in northern Canada.

At the end of every chapter, readers are referred to highly relevant literature aside from those listed in the reference list at the end of the book. The book is well illustrated with grey-scale but high quality figures. Moreover, it is well written.

The treatment of some subjects in the individual chapter may be shallow, but that is to be expected considering the broad spectrum of subjects covered by the book. The book has, however, more than just achieved its purpose because it is more than just an introduction to mineral exploration. It has demonstrated practical applications of the principles of the various knowledge fields in mineral exploration. The book could serve as the main or adjunct textbook for university courses related to mineral exploration. It could also serve as daily reference in the practice of mineral exploration. With its affordable price, students and practitioners of mineral exploration and geological libraries should be able to obtain a copy of this book.

John Carranza
Dept. of Earth Systems Analysis
International Institute for Geo-Information Science and
Earth Observation (ITC) Enschede, The Netherlands
Email: carranza@itc.nl

RECENT PAPERS

This list comprises titles that have appeared in major publications since the compilation in EXPLORE Number 138. Journals routinely covered and abbreviations used are as follows: Economic Geology (EG); Geochimica et Cosmochimica Acta (GCA); the USGS Circular (USGS Cir); and Open File Report (USGS OFR); Geological Survey of Canada papers (GSC paper) and Open File Report (GSC OFR); Bulletin of the Canadian Institute of Mining and Metallurgy (CIM Bull.); Transactions of Institute of Mining and Metallurgy, Section B: Applied Earth Sciences (Trans. IMM). Publications less frequently cited are identified in full. Compiled by L. Graham Closs, Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401-1887, Chairman AEG Bibliography Committee. Please send new references to Dr. Closs, not to EXPLORE.

Rose, P.R., 2007. Measuring what we think we have found: Advantages of probabilistic over deterministic methods for estimating oil and gas reserves and resources in exploration and production. AAPG Bull. 91(1): 21-

Wilson, A and Chunnett, G., 2006. Trace element and platinum group element distributions and the genesis of the Merensky reef, Western Bushveld Complex, South Africa. J. Petrol. 47(12): 2369-

Zaccone, C. et al., 2008. Distribution of As, Cr, Ni, Rb, Ti, and Zr between peat and its humic fraction along an undisturbed ombrotrophic bog profile NW Switzerland. Applied Geochem. 23(1): 25-33.

New Members and Fellows

Members
John K. Prentice
Scientific Director, Geophysics Consulting Com.
1303 Scrub Oak Circle
Bolder, CO USA 80305-6219
Membership # 3968

Simon J. Griffiths
Chief Geochemist, Barrick Gold
c/o Ms. M. Henderson
Locked Bag 12, Cloisters Square
Perth WA AUSTRALIA 6850
Membership # 3967

Steven M. Hill
Lecturer, University of Adelaide
Regolith Geology
Mawson Laboratories
Adelaide, SA AUSTRALIA 5005
Membership # 3966

Francois Hardy
Senior Geologist, Poly-Geo. Inc.
624 Notre-Dame
St. Lambert, QC CANADA J4P 2L1
Membership # 3965

Merline Laure Djouka-Fonkwe
Post doctoral Associate
Queen’s University
Dept. of Geol. Sciences and Geol. Eng.
Kingston, Ontario CANADA K7L 3N6
Membership # 3964

Mr. Milenko Cilic
Geo Roberts Split
Ulica Marasovic 67
Split, Dalmatia, Croatia 21000
Membership # 3961

Student Members
David A. Shinkle
University of New Brunswick
PO Box 4400, 2 Baily Drive
Fredericton, NB, CANADA E3B 5A3
Membership # 3962

Elizabeth Pesce
Student Colorado School of Mines
1849 Denver West Dr. #2334
Golden, CO USA 80401
Membership # 3963
Application for Membership*

Please complete only the relevant section for membership. See below for mailing instructions.

I, __, wish to apply for election as a ___Member / ___Student Member of the Association of Applied Geochemists. I have read the Code of Ethics of the Association and in the event of being elected a Member/ Student Member agree to honour and abide by them.

MEMBER: State Employer and Employee title
I am actively engaged in scientific or technological work related to applied geochemistry exploration and have been so for the past two years.

__ as a __.
(employer) (employment title)

STUDENT MEMBER: Student status must be verified by a Professor of your institution or a Fellow of the AAG
I certify that the applicant is a full-time student at ____________________________ in pure or applied science.

__ ___
(Professor/ AAG Fellow Signature) (Printed Name and Title)
Witness my hand this ______ day of____________, 20______.

NAME AND ADDRESS: PLEASE PRINT (to be completed by applicant)

Name: __ Telephone bus: ________________________
Address: ___ fax: _____________________________
___ home: ____________________________
___ e-mail: __

Annual Dues:
All applications must be accompanied by annual dues. All payments must be in US funds. Select one of the four listed below.

1 2008 member dues US$ 100 ____________
2 2008 student member dues 10 ____________
 - If receipt required, include a self-addressed envelope and add 2 ____________
 - If your check is not drawn from a U.S.A. or Canadian bank, add 15 ____________

TOTAL ______________

Payment by check, International Money Order, UNESCO Coupons, International Postal Orders, VISA, American Express and Master Card are acceptable. For credit cards users, minor variations in your billing may reflect currency exchange rate fluctuations at time of bank transaction.

Type: VISA ___ American Express ___ Master Card ___ Credit card account number: ____________________________
Exp. date: ______________ Name: __________________________________ Signature: _________________________

*Application for voting membership (Fellow) requires the sponsorship of three voting members. Request a voting member application from the Association office.

Please note: Your application form will be acknowledged upon receipt. The Admissions Committee reviews all applications and submits recommendations to Council, who will review these recommendations at the next Council Meeting or by correspondence. If no objection is raised the names, addresses and positions of candidates will be listed in the next issue of the AAG Newsletter. If after a minimum of 60 days have elapsed following submission of candidate information to the membership no signed letters objecting to candidates admission are received by the Secretary of the Association from any Member, the Candidate shall be deemed elected, subject to the receipt by the Association of payment of required dues. Send completed application, together with annual dues to:

Association of Applied Geochemists
P.O. Box 26099, 72 Robertson Road, Ottawa, Ontario, CANADA K2H 9R0
TEL: (613) 828-0199, FAX: (613) 828-9288, email: office@appliedgeochemists.org WEBSITE: http://www.appliedgeochemists.org
Much has been said and written about the broadening gulf between the demand for qualified explorationists and the supply coming out of our colleges, technical institutes and universities. One merely has to attend any geo-conference and gaze out over the sea of grey to fully grasp the situation our industry faces. This is all the more evident in the field of exploration geochemistry whose members have always been in short supply.

As consultants and service industries, we owe our livelihood to mining and exploration and thus have a vested interest in its development. We believe that any aid to promote fresh faces into our sector is helping to secure our future.

Acme Analytical Laboratories Ltd. and ioGlobal are taking the bold initiative of directly aiding students in the geosciences via the ioStipend. The ioStipend is a grant available to students conducting exploration-related geochemical studies at a recognized educational institution. The grant is in the form of analytical services using any package provided by Acme Analytical Laboratories Ltd. Students and/or their teachers/advisors can apply for the grant by submitting the application to ioGlobal who will vet the proposals.

The grant is intended to promote the collection of high quality, base-line data for comparison with more “esoteric data” (eg, isotopic data, partial digests, non-standard sample media) generated during the course of research, and to promote broad training in fundamental geochemical principals across the geosciences.

The ioStipend allows for amounts of approximately $5,000 (AUD, CAD or equivalent) for in-kind analytical work. Successful applicants will also be provided with 3 academic licences of ioGAS, the new exploratory data analysis software package available from ioGlobal.

The application form is available at www.ioglobal.net.

It is envisaged that three or four of these awards will be made each year. Applications are reviewed by an expert group of ioGlobal’s geochemists.

Eligibility Criteria
Preference will be given to:
- students with no other source of funding
- students working on exploration geochemistry projects
- projects no or very minimal confidentiality requirements

The ioStipend is international. Applications are welcome from qualified institutions globally.

Some technical input may be provided by ioGlobal on request.

Requirements for receiving the ioStipend
Firstly, there are minimal strings attached. Recipients would have to agree to
1. Have their project promoted on the ioGlobal web site in an area devoted to R&D carried out under the program (couple of passport photo shots, brief description)
2. Acknowledge ACME Labs and ioGlobal for support in technical and public presentations of results
3. Write a short article for Explore describing the project outcomes, and allow this to be published on the ioGlobal web site.

David Lawie, John Gravel
EXPLORE is published quarterly by the Association of Applied Geochemists, 1330 Ash Court, Thornton, CO 80229 USA.

EXPLORE is a trademark of the Association of Applied Geochemists.

Type and layout of EXPLORE: Vivian Heggie, Heggie Enterprises, Thornton, CO (303) 288-6540; <vjmhheggie@comcast.net>

ADVERTISING RATES

Full page (Black & White) 241h x 190w mm (9.5h x 7.5w in) US $ 970
Full page (Color) or 124h x 190w mm (4-7/8h x 7.5w in) US$1165
Half page (Black & White) 241h x 89w mm (9.5h x 3.5w in) US $ 530
Half page (Color) or 124h x 89w mm (7h x 3.5w in) US $ 420
Third page (Black & White) 241h x 89w mm (9.5h x 2w in) US $ 420
Third page (Color) or 178h x 89w mm (7h x 2w in) US $ 240
Third page (Black & White) 241h x 41w mm (9.5h x 1-5/8w in) US $305
Third page (Color) or 124h x 41w mm (4-7/8h x 1-5/8w in) US $300
Quarter page (Black & White) 241h x 89w mm (9.5h x 1-5/8w in) US $260
Quarter page (Color) or 124h x 89w mm (4-7/8h x 3.5w in) US $230
Eighth page (Black & White) 60h x 89w mm (2-3/8h x 3.5w in) US $190
Eighth page (Color) or 41h x 89w mm (1-5/8h x 3.5w in) US $ 20
Business Card (Black & White) 51h x 89w mm (2h x 3.5w in) US $ 50
Business Card (Color) or 241h x 51w mm (9.5h x 2w in) US $ 60

Please direct advertising inquiries to:

SARAH A. LINCOLN, BARRICK GOLD CORPORATION
STE 700, 1055 WEST GEORGIA ST • VANCOUVER, BC V6E 3P3, CANADA
(604) 895-4443 Fax: (604) 684-9831 (slincoln@barrick.com)

EXPLORE Publication Schedule
Quarterly newsletters in March, June, September, December

Deadlines for submission of articles or advertisements:
March newsletter: January 15
June newsletter: April 15
September newsletter: July 15
December newsletter: October 15

Manuscripts should be double-spaced and submitted in digital format using WORD. Photos and figures (colour or black and white) should be submitted as separate digital files and as high resolution jpeg or PDF files. Tables should be submitted as separate digital files in EXCEL format. All scientific/technical articles will be reviewed. All contributions may be edited for clarity or brevity.

Formats for headings, abbreviations, scientific notations, references and figures must follow the Guide to Authors for Geochemistry: Exploration, Environment, Analysis (GEEA) that are posted on the GEEA website at: http://www.geolsoc.org.uk/template.cfm?name=geea_instructions_for_authors

Submissions should be sent to:
Beth McClenaghan, Geological Survey of Canada, 601 Booth Street, Ottawa, ON, CANADA K1A 0E8 Email: bmcclena@nrcan.gc.ca
Mobile Metal Ion (MMI) geochemistry measures the mobile ions that accumulate in soil above mineralization. MMI is used successfully to reduce the cost of definition drilling programs and locate many deeply buried deposits, with few false positives. MMI geochemistry is now exclusively available at SGS laboratories.

SGS is the world’s leading inspection, verification, testing and certification company.

cain@sgs.com www.sgs.com/geochem

Newsletter for The Association of Applied Geochemists

P.O. Box 48836, 595 Burrard Street, Vancouver, B.C., V7X 1A0, Canada

Please send changes of address to:
Association of Applied Geochemists
P.O. Box 26099, 72 Robertson Road, Nepean, Ontario, K2H 9R0, Canada • TEL: (613) 828-0199 FAX: (613) 828-9288

e-mail: office@appliedgeochemists.org • http://www.appliedgeochemists.org