Your Association, which was officially founded in 1970, is now beginning its 19th year. We have been, and continue to be, a growing organization with a positive outlook for the future of the minerals industries and allied fields and for the role of the geochemist in today’s society.

Most of our members who were active during the early years of the Association in the Executive and Council, and on committees, have now passed their batons to younger members, many of whom are not as familiar with the early history, growing pains, and functioning of the Association. When we were smaller, our day-to-day operation was relatively simple, as compared to today, and could be handled by a relatively few people. As a result, most of the basic guidelines for each position in the Association have been passed on orally to the next office holder and have never been written down.

We are now in the process of compiling information for each office in the Association as well as historical information concerning all past office holders. This information will be put into an Operating Handbook that will contain guidelines for present and future officers and committee members. The historical data concerning the Association will provide another way of recognizing past officers, who gave so freely of their time and talents to make the Association what it is today.

By now, I hope that all of you have read the information that accompanied the 1989 dues notice concerning the delays in mailings of the Journal and the Newsletter. The delays resulted largely from an ongoing effort to increase the benefits of your membership. We are trying very hard to remedy the problem and hope to have the Journal and Newsletter mailings back on track during 1989. Your patience, especially that of new members in 1988, is appreciated by all concerned.

If you have not yet sent in your dues payment, please do so promptly. Follow-up reminders cost all of us time and money. I think your Association has a lot to offer you for your cost of membership. If, for any reason, you have decided not to renew your membership in 1989, I would appreciate your personally letting me know why. Clearly the Association cannot please everyone of you all of the time but we will try to do our best with the resources available. If there is a major problem out there, I want to know about it—and NOW! Thank you.

Maurice A. Chaffee
U.S. Geological Survey
Denver, Colorado

Overbank Sediment as a Sampling Medium in Geochemical Mapping

Editor’s Note: The following contribution from Norway presents some very interesting observations regarding the applicability of stream sediment geochemistry to routine exploration. It questions a basic premise, that active stream sediment is representative of the drainage basin geochemistry. An alternate sample medium is suggested for its superior ability to represent drainage basin geochemistry.

Collection of active sediments from a streambed in contact with stream water is a widely used sampling medium in geochemical mapping. However, during normal discharge conditions of a river only one or at most a few sources of limited area may be exposed to erosion. The major parts of the stream will approach an equilibrium with its surroundings, which means that erosion and deposition of most places are at a minimum. Consequently stratic stream sediments may reflect only very limited parts of the drainage area.

It may even be that collection of active stream sediments at regular intervals along a drainage channel, a normal geochemical practice, actually provides no more than that which could be obtained from a few samples. Overbank deposits (flood plain sediment) are an alternative drainage sample type with a great potential in geochemical mapping.

Overbank sediments are products of major floods. Water discharge greatly exceeds the volume which flows within the ordinary river channel and material suspended in the water of a

AEG Council Minutes 22
Lost Members 22
New Members 23
Recent Papers 24
AEG Application for Membership 25
Calendar of Events 26
You Read It First in EXPLORE: .
Index of Previous Issues 27

CONTENTS

<table>
<thead>
<tr>
<th>Technical Notes</th>
<th>Analysts' Couch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overbank Sediment Sampling</td>
<td>..... 1</td>
</tr>
<tr>
<td>Gases as Geochemical Indicators</td>
<td>..... 6</td>
</tr>
<tr>
<td>Pattern Recognition (conclusion)</td>
<td>..... 12</td>
</tr>
<tr>
<td>Terrain Analysis in Exploration</td>
<td>..... 14</td>
</tr>
<tr>
<td>Notes from the Editor</td>
<td>..... 2</td>
</tr>
<tr>
<td>A Note from the Secretary</td>
<td>..... 3</td>
</tr>
<tr>
<td>Letters to the Editor</td>
<td>..... 3</td>
</tr>
<tr>
<td>Members of Services</td>
<td>..... 3</td>
</tr>
<tr>
<td>Come to the Rio Meeting!</td>
<td>..... 3</td>
</tr>
<tr>
<td>Special Issues Coming in the Journal</td>
<td>..... 4</td>
</tr>
</tbody>
</table>

Personal:

- C.R. Stanley, S.J. Hoffman |
- **1990 Annual General** |
- **Meeting at Prague** |
- **Pearl Harbor File** |
- **Newfoundland VMS (conclusion)** |

AEG Application for Membership 25
Calendar of Events 26
You Read It First in EXPLORE: .
Index of Previous Issues 27
Information for Contributors to EXPLORE

Scope This Newsletter endeavors to become a forum for late advances in exploration geochemistry and a key informational source. In addition to contributions on exploration geochemistry, we encourage material on multidisciplinary applications, environmental geochemistry and analytical technology. Of particular interest are extended abstracts on new concepts for guides to ore, model improvements, exploration tools, unconventional case histories, and descriptions of recently discovered deposits.

Format Manuscripts should be double-spaced and include illustrations where possible. Meeting reports may have photographs, for example. Text is preferred on paper and 5/4-inch IBM-compatible computer diskettes with ASCII (DOS) format, which can go directly to typesetting. Please include the metric system in technical material.

Length Extended abstracts may be up to approximately 1000 words or two newsletter pages including figures and tables.

Quality Submittals are copy-edited as necessary without reexamination by authors who are asked to assure smooth writing style and accuracy of statement by thorough peer review. Contributions may be edited for clarity or space.

Journal of Geochemical Exploration Volume 30, Number 3, and Volume 31, Number 1, have been issued since the last newsletter. The latter issue is the first one to be received by 1988 members if you didn’t get it, check that you paid your dues for calendar year 1988 and write Ines Filicetti at the Rexdale address given on the back cover of this issue.

Elon Cameron, Editor-in-Chief of the Journal has announced the following accelerated publications schedule:
- 31:2 (Regular papers) Feb. 8
- 31:3 (Regular papers) Mar. 20
- 32:1-3 (12th IGES) Apr. 12
- 32:1-2 (Chinese issue) May 12
In addition to the two special issues listed above, a large volume on Epithermal Gold Mineralization of the Circum-Pacific is due in 1989 (see EXPLORE 64, p.27).

Those who were not members in 1988 can still join and receive Volumes 31, 32, and 33 of the Journal by filling out the form on page 25 and indicating $50.00 (US) is being added for a 1988 membership.

Special thanks are due to Keryl Fleming of the Nevada Bureau of Mines and Geology for editing assistance with this issue. She has also accepted the demanding position of General Secretary for the 15th International Geochemical Exploration Symposium which will be held in Reno, April 28 through May 1, 1991.

The Third Notice of the Third Notice of the 15th International Geochemical Exploration Symposium which will be held in Reno, April 28 through May 31, 1991.

For the same $42.50 established early in the Association’s history, members receive a substantial discount at AEG meetings, this publication, and the Journal of Geochemical Exploration. The Journal includes the proceedings of the AEG meetings and costs libraries $300 a year. Separately the proceedings volumes, like the three special issues mentioned above, generally cost between $100 and $200 US each.

You may have noticed the artwork on page 28 of the last issue. We anticipate a recurring need to fill spaces of varying sizes and invite contributions on mining, exploration, and analytical themes with or without explanations.

EXPLORE 64 was distributed to 4000 different professionals in the exploration industry. In addition to the regular membership mailing, it was disseminated by several council members from a number of booths and tables at the Northwest Mining Association annual meeting and the well attended soils course, by Stan Hoffman at the B.C.-Yukon Chamber of Mines meeting; by Chet Nichols at the McKelvey Forum in Reno; by Clark Smith at the SME-SEG meeting in Las Vegas; and Marc Beaumier of the Ministere de l’Energie et des Resources arranged for the issue to be dispersed to exploration geologists.

EXPLORE is a trademark of the Association of Exploration Geochemists.
throughout Quebec where half of Canada's exploration budget is spent.

We still need volunteers to distribute issues at the many local and national meetings. If you plan to attend one in the next six months, please contact us at the Reno address given on the back cover.

Chet Nichols

A NOTE FROM THE SECRETARY

It has come to that time of the year again when the Association needs to nominate a slate of Councillors to stand for election, replacing our outgoing Councillors who have served their two-year term. As you know, we have 12 Councillors, six of whom are elected or re-elected each year.

I know that all of you are up-to-date on the Constitution and By-laws concerning the nomination of Councillors but, just in case there are one or two out there who have forgotten, here's how it works. We get our nominations for Council from two sources: (1) by a resolution of the Council and (2) by having 6 voting members nominate a voting member for Council. Traditionally the past President, the President, and the Secretary generate a slate from qualified voting members and present it to Council for approval.

At least two more nominees are needed than the number of positions open. This means that we need 8 nominations about this time every year. In addition, Council members who have served a two-year term can, if they choose, run for a second two-year term. Thus someone can be a Councillor for the Association for 4 years if elected to a second term.

As one of those responsible for generating the slate of nominees, I would like to encourage voting members to consider running for Council.

Right now, our list of nominees comes from voting members who are friends, acquaintances, or otherwise known to the President, past President and Secretary. I would like to see some nominees from outside this rather narrow group and therefore strongly urge and request those of you who have an interest in the affairs of the Association to send in your NOMINATION FOR COUNCILLOR. We don't have all that much time left because we must send out the ballots at least two months before the next Annual General Meeting, which will be in Rio de Janeiro, Brazil, October 1989, so DO IT TODAY!!

Sherman P. Marsh
U.S. Geological Survey MS973
Denver, Colorado 80225

Come to the Rio Meeting!

The organizing committee for the 13th International Geochemical Exploration Symposium (IGES) has been steadily planning for the next AEG meeting in Rio de Janeiro during October of this year. Developments for the meeting are moving along well, and on behalf of the organizing committee, we would like to bring AEG members and other recipients of the newsletter up to date.

The 13th IGES will be held as part of an overall event, including the Brazilian National Geochemical Congress, to extend over one week (Oct. 1 to 6). The registration and reception are set for Sunday, Oct. 1, with workshops on various geochemical themes to be held the Monday and Tuesday of the symposium week, coincident with the Brazilian National Geochemical Congress. Plans are firming up, and at present 8 workshops are scheduled. Themes for these are listed below:

1) Analytical Techniques for the Determination of Gold and PGE's; Selective Extraction Techniques Used in Exploration Geochemistry
2) Geochemistry of Precious Metals in Laterite
3) Design and Interpretation of Geochemical Surveys / Microcomputer Applications in Geochemistry
4) Geochemical Exploration Techniques for Petroleum
5) Carbonatite Exploration
6) Ironstones and Gossanis including Isotope Applications
7) Uranium Geochemistry and Exploration in Humid Tropical Terrains
8) Applied Rare Earth Element Geochemistry

The organizing committee is inviting coordinators for these workshops from 6 different countries and the input into these topics of new ideas from such diverse sources promises to be worthwhile.

The Brazilian Geochemical Congress, also taking place on the first two days of the symposium week, attracted over 400 participants from throughout Brazil and from a number of foreign countries when the first congress was held last year. With this demonstrated interest in geochemistry, the event represents an opportunity for all to learn about applications of our discipline in the exciting exploration terrains of Brazil.

During the final three days of the symposium week, the 13th IGES itself will be held. While there is a specific request for papers on the major themes described in the first circular, all quality papers will be considered for presentation and / or publication. We request prospective authors to review the geochemical exploration work they have been involved with and consider submitting a paper to make this symposium a quality event. The call for papers is already announced, and we would appreciate receiving manuscripts on 5.25-inch floppy diskettes as well as the typed versions.

Apart from the paper presentations and workshops, eight excursions to a number of ore bodies and mineral districts — and even to a petroleum production platform — are being arranged. In keeping with the wide range of interests of the delegates, a variety of deposit types has been selected, and excursions will be organized to diverse physiographic regions within Brazil. The destinations of these excursions are as follows:

1) Carajas Mineral Belt. This area in the Amazon Rain Forest represents one of the great mineral occurrences anywhere in the world. Iron ore reserves of over 18 billion tonnes (at over 60% Fe!) accompany deposits of manganese, bauxite, copper, and gold.
2) Iron Quadrangle. In the state of Minas Gerais (General Mines), the iron quadrangle holds a number of Au deposits associated with iron formations including the Morro Valho deposit, which has produced Au for over 150 years. Wits-type Au in quartz pebble conglomerates and the iron formations themselves supply additional interest to this excursion in a very scenic part of Brazil.

3) Carbonatites of Araxa and Tapira. Mineral deposits of Nb, Ti, phosphate, and rare earths will be visited and the geology and geochemistry of the carbonatite deposits where these commodities occur will be reviewed.

4) Gold Mineralization in Bahia. The Fazenda Brasileiro deposit in the Weber greenstone belt and the Jacobina Wits-type gold deposit are included.

5) Proterozoic Copper, Chromium, and Emerald Deposits of Bahia. The Caraiba Copper deposit, the chromium at Campo Formoso, and the emerald deposit at Carnaiba will be visited.

6) Potassium and Magnesium Salt Deposits in Sergipe. Salt deposits of the Taquari-Vassouras evaporites in Sergipe on the eastern coast of Brazil will be visited in this excursion.

7) Campos Basin Petroleum Deposit. A visit to this petroleum basin near Rio de Janeiro will include a helicopter flight to a producing platform.

8) Gold and Emeralds of Goias. The large Crixas Gold deposit and the Santa Teresinha Emerald deposit will be visited on this excursion to central Brazil.

9) Gold, Lead, and Zinc deposits of Paracatu. The large Morro do Ouro gold deposit together with carbonate-hosted lead zinc ores of Morro Agudo are to be visited.

Further details regarding the excursions will be provided in the second circular. The next International Geochemical Exploration Symposium will be a quality event and we hope to see you there.

The Organizing Committee
13th IGES
Rio de Janeiro, Brazil

Journal News

An unusually large number of special issues are expected to be published in 1989, some delayed from 1988. The estimated page size and publication date are subject to large variance. All papers for the 12th IGES and Chinese special issues are edited and are in the hands of Elsevier.

JGE SPECIAL ISSUES

<table>
<thead>
<tr>
<th>VOLUME</th>
<th>EDITORS</th>
<th>PAGES</th>
<th>EST. PUB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12th IGES</td>
<td>various</td>
<td>350</td>
<td>March, 1989</td>
</tr>
<tr>
<td>Chinese</td>
<td>Xie, Jenness</td>
<td>250</td>
<td>April, 1989</td>
</tr>
<tr>
<td>South Africa</td>
<td>Coetzee, Begley</td>
<td>150</td>
<td>June, 1989</td>
</tr>
<tr>
<td>Platinum</td>
<td>Dunn et al.</td>
<td>180</td>
<td>October, 1989</td>
</tr>
<tr>
<td>Gas</td>
<td>Kesler</td>
<td>120</td>
<td>October, 1989</td>
</tr>
<tr>
<td>Geochemistry</td>
<td>Garley, Garrett</td>
<td>150</td>
<td>November, 1989</td>
</tr>
<tr>
<td>Geochemical Mapping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epithermal Gold</td>
<td>Hedengquist, White, Siddeley</td>
<td>450</td>
<td>December, 1989</td>
</tr>
</tbody>
</table>

Eilon M. Cameron
Editor-in-Chief
Journal of Geochemical Exploration
Geological Survey of Canada
601 Booth Street
Ottawa, Ontario KIA 0E8, Canada

Information on Association members is received from around the world. To keep others informed of items such as moves and promotions, send a notice, preferably with photo, to EXPLORE.

Clifford R. Stanley receives a great deal of correspondence concerning Special Volume 14, and would like to advise that his new address is Department of Geology and Geophysics, University of Calgary, Calgary, Alberta T2N 1N4, Canada.

Stan Hoffman, past President of the AEG, wishes to advise members that, as of January 1, 1989, he will be offering his expertise as a consultant on behalf of Prime Geochemical Methods Ltd. See the advertisement on page 10 for address and telephone number.
Exploration geologists pick Bondar-Clegg for irrefutable assays and geochemical analyses. They have for over 25 years.
flooding river will be deposited on the river flood plain at an elevation higher than the normal stream channel. New overbank sediment will be deposited on top of older overbank sediment during later floods. Deposits of more or less horizontal strata, varying from a few millimeters to several decimeters, characterize the overbank deposits.

A vertical section through overbank sediment provides a sedimentation history. A composite sample of such a section will give an integrated picture of the chemical and mineralogical conditions in the whole drainage basin over a long time span, and by one sample it is possible to geochemically characterize the whole drainage basin.

Compare and contrast the representative nature of geochimical data obtained from active sediments versus overbank sediment. In Norway, experience in the use of overbank sampling has found that:

- Overbank sediments represent large drainage areas, and can, therefore, be collected at widely separated sample sites. They are more representative of drainage basin geochemistry than active stream sediment.
- Overbank sediments are transported physically in water suspension and little affected by chemical processes compared to stream sediment which occasionally has coatings of secondary oxides. The interpretation of the dispersion patterns of overbank sediments may, therefore, be relatively simple.
- Overbank sediments are less influenced by pollution than traditional stream sediments.
- Since younger overbank sediments are deposited on top of older overbank sediments, shallow sampling may provide evidence of the effects of pollution whereas by sampling at greater depths natural dispersion patterns existing before main episodes of pollution will be obtained.
- Sampling of overbank sediments can be performed at relatively low cost per unit area.
- Overbank sediments are well suited to be sample medium in a geochemical atlas of the world.

Rolf Tore Ottesen and Tore Volden
Geological Survey of Norway
P.O.Box 3006 Lade
N-7005 Trondheim
Norway

Gases as Geochemical Indicators of Concealed Mineral Deposits

Explorationists are coming to the realization that the days of easy prospecting are over. We find more and more that our search leads us to areas covered by barren, exotic overburden. If we are to find new mineral deposits, we have to develop new geochemical techniques to "see through" this overburden.

One such technique is to look for gaseous indicators that are exhaled from blind deposits. This idea is not new. In the classic volume on mining, De Re Metallica, published in 1556, Georgius Agricola noted...we search for the veins by observing the hoar frost, which whitens all herbage except that growing over the veins, because the veins emit a warm and dry exhalation which hinders the freezing of the moisture. We can only speculate on the number of veins found by prospectors who heeded this ingenious observation, but modern investigators have indeed found gas anomalies over buried deposits.

In this article I will discuss briefly the generation and migration of gases, how they are sampled and analyzed, factors affecting gas anomalies, present a case history of their use in glaciated terrain, and note some disadvantages.

Generation Earth outgassing continues today and a great variety of gases are expelled through volcanoes, spreading centers, and deep-seated faults. However, the gases that are most useful in geochemical exploration result from interaction of ore and gangue minerals with the hydrosphere, biosphere, and atmosphere. Sulfur gases, such as H₂S, CS₂, COS, and SO₂, are produced by reaction of ore and gangue minerals with groundwater. Sulfurous acid is a common product of sulfide oxidation, and, when these waters react...
Searching for Gold?

Chemex Labs plays a major role in the ongoing search for gold and other precious metals by offering quality analyses at low prices coupled with high volume capability and fast turnaround time.

Fire Assay

This service is made possible through our extensive fire assay facilities — some of the largest in North America. Fire assay remains the most widely used method of analysis for gold, silver and platinum group metals. In addition to classical gravimetric finish, you may choose — depending upon the detection limit required — our inhouse neutron activation finish for a 1 ppb detection limit or the standard atomic absorption finish for a 5 ppb detection limit.
with calcareous minerals, CO₂ is produced. Helium and radon produced by radioac-
tive decay have been used in the search for deposits of uranium and thorium. Hydro-
carbon gases (and helium) have been useful guides in exploration for oil and gas
fields.

Migration. Gases naturally migrate from regions of high pressure to regions of low
pressure; i.e., from depth toward the surface. The two mechanisms of migration are
(1) diffusion and (2) mass transport. Diffusion of gases, particularly through dense
solids, is a very slow process (millimeters/year). Mass transport, on the other hand,
can result in rapid movement through faults and connecting open spaces. Gas
fractures has been docu-
mented, and indeed con-
cealed faults have been
mapped by measuring gases emanating from them. Sim-
ilarly, gases readily move
through soil or other uncon-
solidated overburden. Mass
transport is probably the
dominant mechanism that
brings gases to the surface.

Affecting Parameters. Gas exhalations have been found to correlate with changes in
barometric pressure. Field studies measuring radon and mercury vapor show that
maximum outgassing coincides with maximum rate of fall of barometric pressure.
Increased gas exhalation has also been found to correlate positively with earth
quakes and gases vent from faults
during earthquakes as a re-

sult of increased permeability caused by tectonism.

Some gases are quite sol-
uble in water, for example \(\text{H}_2\text{S} \) and \(\text{SO}_2 \), and may form solid
or non-volatile compounds
that preclude their escape to
the surface. Groundwater has
replaced helium anomalies
up to 2 km from their source
before venting. Rain can
"seal-off" surface soil and in-
hbit or occlude the
exhalation of gas.

Sampling. Gases are sam-
ped by (1) extracting
intersitial soil air from shal-
low depth, (2) placing
collectors in the ground for
extended periods of time, or
(3) degassing soil or rock by
heating. Soil gases are com-
monly sampled at a depth of
1/2 to 1 meter by drilling a
hole with an auger or by driv-
ing a hollow probe into the
ground. Either method must

insure that atmospheric air is

excluded. Collectors composed of
activated charcoal, zeolites,
metal, or plastic are buried in
the ground at shallow depth
and left for 1 to 3 weeks.
Gases are absorbed on these
materials and later desorbed
for analysis. Such collectors
have the advantage of aver-
grading long-term variations in
gas exhalation.

Soils are good natural gas
collectors because their or-
ganic and clay mineral
constituents readily absorb
gases. Rocks contain oc-
cluded or absorbed gases
that are released by heating
the pulverized rock for analy-
sis. Some investigators
measure gases in fluid inclu-
sions; not only are these
measurements applicable to
geochemical exploration, but
they can constrain or charac-
terize ore-forming solutions.

Analysis. Early work on
gases was hampered by inad-
equate and time-consuming
analytical methods. Ad-

vances in analytical instru-
mentation, notably the gas
 chromatograph (GC) and the
mass spectrometer (MS), now permit rapid and reli-
able analysis of gases.

Using a GC, several gases in
a sample can be separated
and analyzed. Good sensi-
tivity is achieved by selecting
different columns, detectors
and operating conditions.

Mass spectrometers, espe-
cially the compact, quad-
uple types, are increasingly
used for gas analysis. Many
gases can be analyzed by
rapidly scanning a broad
range of masses (commonly
from mass 2 to mass 300).
The USGS uses the truck-
mounted MS, shown in Fig-
ure 1, to perform gas analysis
in the field. Small hand-held
instruments analyze for sin-
gle gases in the field,
for example for \(\text{O}_2 \), \(\text{CO}_2 \), \(\text{Rn} \), and
helium. All instruments are
calibrated with standard ref-
ence gases.

Mass units from AMU 2 to
100 are scanned in about 45
seconds and analytical data
are recorded on magnetic
tape.

Case History. Soil gas
anomalies for \(\text{CO}_2 \) and \(\text{O}_2
along a traverse over a mas-
sive sulfide deposit in
Wisconsin are shown in Fig-
ure 2. Stratobound massive
sulfide ore occurs in meta-
sediments and metavolcanics
that are covered by up to 65
m of glacial overburden. Acid
ground waters, resulting from
dissolution of sulfide miner-
als, react with calcite to
produce the \(\text{CO}_2 \). Oxygen is
consumed in this reaction and
negative \(\text{O}_2

advanced
exploration
aggressive new
company
seeks gold properties
with
professional work
preferably in
moderate to
advanced stages
of exploration
in nevada or
adjacent states

chester e. nichols
suite 290
680 greenbrae drive
sparks, nevada 89431
(702) 331-4223

instant locations in the field
± 60 feet or better

• full feature electronics loran-c system...
• rugged light weight fully field portable...
• perfect system for nevada work.
• inexpensive — as little as $20 per day...
• rent by day week month or rent to own...
• free pick up and delivery reno sparks elko...
• limited supply — reserve now!

moriah instruments

phone: 916/878-8596

fax: 916/878-8597

figure 1. truck-mounted
gas analyzer (quadruple
mass spectrometer) and pro-
grammable calculator.
Now Open

3431 E. Hemisphere Loop
Tucson, Arizona 85706

Rapid, Accurate and Convenient
Four large capacity laboratories

- Fire Assay Gold Results in 24 to 72 hrs
- BLEG ultra low level gold work
- Full Base Metal suites
- Low level graphite furnace analysis
- Complete computer and transmittal service
- Responsive Staff

TUCSON OFFICE
3431 E. Hemisphere Loop
Tucson, AZ 85706
(602) 294-8078

ELKO OFFICE
2320 Last Chance Road
Elko, NV 89801
(702) 738-9100

SPARKS OFFICE
1500 Glendale Ave.
Sparks, NV 89431
(702) 356-0606

ELY OFFICE
McGill Hwy
Ely, NV 89301
(702) 289-2575

American Assay Laboratories Inc.
coincide with the positive CO_2 anomalies. Geochemists in Great Britain and the USSR have found similar anti-thermal O_2 and CO_2 anomalies. Concentrations of metals in surface soil samples did not reflect the deposit.

Other Applications. At one time oil and gas deposits were discovered by finding hydrocarbon megaseeps on the surface. Oil and gas exploration today uses the detection of microseeps of hydrocarbon gases. These seeps may have no obvious surface expression but they can be direct indicators of oil or gas fields at depth. Gas caps in some fields contain several percent He, and soil gas He anomalies have delineated petroleum deposits. Hydrocarbon gases have also been found over base and precious metal deposits.

Disadvantages. Gases are more difficult to sample and analyze than soil or rock. Many natural phenomena such as barometric pressure and rainfall affect gas exhalations. Gas anomalies can be displaced by groundwater, or along faults. Knowledge of the geology, mineralogy, and hydrology in the exploration area helps to interpret gas anomalies.

Gas measurements do offer hope for prospecting in areas covered by exotic overburden (alluvium filled valleys, gravel covered pediments, glacial till, or barren rock) where conventional surface sampling may fail. They are at least one more tool in the prospector’s "bag of tricks."

The work of many people is included in this note without giving credit. I would be happy to send a list of references to anyone interested.

Howard McCarthy
U.S. Geological Survey
c/o Mackay School of Mines
U. of Nevada-Reno
Reno, NV 89557
(702) 784-1765

NEWMONT EXPLORATION LIMITED

- **BOOTSTRAP**
- **POST**
- **GENESIS**
- **CARLIN**
- **TUSC**
- **GOLD QUARRY**
- **RAIN**

- GEOCHEMIST, experienced practical exploration geochemist, M.S. or Ph.D. in geochemistry or geology with strong geochemical background, 2 to 5 years experience preferred. Knowledge in field methods, statistics, computers and ore deposits. Negotiable salary depending on work experience and education. Contact: Mike Wilson or Bob Croig at Newmont Exploration Ltd., c/o Newmont Gold Company, P.O. Box 669, Carlin, Nevada, 89822 or call (702) 738-7196 ext. 1111. Equal Opportunity Employer M/F.

WANTED

NOW AVAILABLE

Contract geochemical plotting and interpretation service!

- survey design and planning
- project design
- integrated exploration
- training
- trouble shooting
- procedure optimization
- contract sampling by trained/experienced individuals
- computer processing
- data plotting
- interpretation
- soils
- sediments
- lithogeochemistry

Stan Hoffman, President
Prime Geochemical Methods
2834 W. 24th Avenue
Vancouver, B.C., Canada
V6L 1R4
(604) 731-8892

Bob Sandu, President
New Horizon Software
1101 Rochester Avenue
Coquitlam, B.C., Canada
V3K 2X3
(604) 936-9008
GSI Brings A New Horizon To Soils...

15-ELEMENT RECONNAISSANCE PACKAGE FOR SOILS AND STREAM SEDIMENTS (SRP)

A new high precision quantitative analytical package with complete statistical support, contour mapping and interpretational support is now available from GSI. The package has been custom tailored to address the low level sensitivity and precision requirements of soil and stream sediment surveys for bulk mineable gold deposits and other metal deposits. It is designed specifically for use on soil and sediment samples that have been properly dried and sieved to 80 mesh. No other geologic materials or sample preparations will be analyzed using this package. Detection limits are reported at 2-sigma and samples containing elemental concentrations greater than the published upper limits of this package may be subject to significant analytical errors.

For data sets containing 500 or more samples, GSI will provide, at no additional charge, statistical data including contour plots of five elements or variables or any combination of the two, along with interpretational support of the data set. One additional contour plot will be run for each additional 100 samples in a given data set.

If you are not presently using GSI multielement data for soil and sediment reconnaissance programs, you should be. Experience the GSI difference. We’re sure that when you do, you will have a new high powered weapon in your exploration arsenal.

<table>
<thead>
<tr>
<th>Precious Metals</th>
<th>Detection Limit (ppm)</th>
<th>Upper Limit (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.003</td>
<td>1,500</td>
</tr>
<tr>
<td>Au</td>
<td>0.0002</td>
<td>250</td>
</tr>
<tr>
<td>Volatile Elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>0.25</td>
<td>2,500</td>
</tr>
<tr>
<td>Bi</td>
<td>0.05</td>
<td>2,500</td>
</tr>
<tr>
<td>Cd</td>
<td>0.02</td>
<td>2,500</td>
</tr>
<tr>
<td>Hg</td>
<td>0.02</td>
<td>2,500</td>
</tr>
<tr>
<td>Sb</td>
<td>0.05</td>
<td>2,500</td>
</tr>
<tr>
<td>Se</td>
<td>0.25</td>
<td>25</td>
</tr>
<tr>
<td>Tl</td>
<td>0.02</td>
<td>1,500</td>
</tr>
<tr>
<td>Base Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.1</td>
<td>7,500</td>
</tr>
<tr>
<td>Mo</td>
<td>0.02</td>
<td>1,500</td>
</tr>
<tr>
<td>Pb</td>
<td>0.05</td>
<td>2,500</td>
</tr>
<tr>
<td>Zn</td>
<td>0.25</td>
<td>7,500</td>
</tr>
<tr>
<td>Chalcophile/Lithophile Elements (Alteration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ga</td>
<td>0.1</td>
<td>1,500</td>
</tr>
<tr>
<td>Ti</td>
<td>0.1</td>
<td>1,500</td>
</tr>
</tbody>
</table>

Price: $15.00 - U.S. (15 gm. digest)
$16.50 - U.S. (30 gm. digest)
A Test in Pattern Recognition:
Defining Anomalous Patterns In Surficial Samples which Exhibit Severe Nugget Effects - II

In the technical note of the same title in EXPLORE (No. 63, July 1988, pp. 12-14), the groundtruth of a computer-simulated Au geochemical anomaly (Figure 2a), and two realizations of that groundtruth were presented.

These two realizations were collected with sample sizes such that an average of 0.25 and 1 grain per sample (Figures 2b and 2c, respectively) were collected over the anomaly.

A third realization of an unknown groundtruth (with sample sizes corresponding to 0.25 grains per sample) was presented in Figure 2d.

As promised in the first technical note, the groundtruth for the realization of Figure 2d is presented in Figure 3a and a similar realization from this groundtruth using a sample size corresponding to, on average, 1 grain per sample is presented in Figure 3b.

For both of the example groundtruths and their realizations presented in these two articles, it appears possible to correctly define the location of the anomaly with samples containing, on average, 1 grain per sample (Figures 2c and 3b), but virtually impossible to correctly define the location of the anomaly when sample sizes producing, on average, 0.25 grains per sample are used (Figures 2b and 2d).

Clearly, larger sample sizes have improved our ability to recognize the anomaly because they have decreased the variance produced by the nugget effect and created a more stable geochemical response.

Sampling theory (Gy, 1982), grain size studies (Clifton et al. 1969) and Poisson statistics (Ingamells 1981; Figure 1) have demonstrated that extremely large sample sizes are generally required to obtain Au analyses with precisions of 50% or less.

Unfortunately, the precision associated with the realizations using sample sizes corresponding to, on average, 1 grain per sample is 200%, calculated using the following formula:

$$p = 200 \frac{1}{\sqrt{g}}$$

where p is the precision expressed in % (equal to twice the coefficient of variation - standard deviation divided by the mean) and g is the average number of grains in the sample.

This is much higher than the 50% precision level, which based on theoretical considerations, has been recommended by several authors (e.g. Clifton et al. 1969); yet in the example shown, the precision is low enough to allow us to define the correct location of the simulated anomaly.

This apparent discrepancy is not a result of these specific randomly sampled realizations of the groundtruths, but rather can be shown to be caused by several other important factors.

First, the objective of the geochemical survey must be considered.

One may wish only to locate an anomaly, or may wish to go further by locating the anomaly and defining the sample site containing its highest relative concentration.

Obviously, in the second case, a lower level of analytical precision (high level of sample reproducibility), and thus a larger sample size, is required.

The second factor which must be considered is the number of samples which were collected from anomalous sites.

Clearly, if the sample density of the survey is so low that only one sample will likely be collected from anomalous material, a very high level of sample reproducibility (low level of precision) is required to ensure that the sample records an anomalous concentration.

The chance of detecting the anomaly (c) will be equal to the chance of detecting a gold grain in the anomalous sample (d), and thus is only a function of sample size (at least for this case).

However, if several samples will likely be collected from
HELP THE A.E.G. AND FIND OUT WHAT YOU’RE MISSING!

For every 50 samples submitted for neutron activation analysis (INAA) to ACTLABS for the "AU + 33" Rock-Soil-Sediment Package or the "Au + 34" Vegetation Package we will supply a FREE A.E.G. T-SHIRT (limit 4 T-Shirts/customer; please specify Small, Medium or Large.)

"Au + 33" Rock-Soil-Sediment Package

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>DETECTION LIMITS</th>
<th>ELEMENT</th>
<th>DETECTION LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>5 PPM</td>
<td>Mo</td>
<td>5 PPM</td>
</tr>
<tr>
<td>As</td>
<td>2 PPM</td>
<td>Na</td>
<td>0.05 %</td>
</tr>
<tr>
<td>Au</td>
<td>5 PPM</td>
<td>Nd</td>
<td>5 PPM</td>
</tr>
<tr>
<td>Ba</td>
<td>10 PPM</td>
<td>Ni</td>
<td>50 PPM</td>
</tr>
<tr>
<td>Br</td>
<td>1 PPM</td>
<td>Rb</td>
<td>30 PPM</td>
</tr>
<tr>
<td>Ca</td>
<td>1 %</td>
<td>Sb</td>
<td>0.2 PPM</td>
</tr>
<tr>
<td>Ce</td>
<td>3 PPM</td>
<td>Sc</td>
<td>0.1 PPM</td>
</tr>
<tr>
<td>Co</td>
<td>5 PPM</td>
<td>Se</td>
<td>5 PPM</td>
</tr>
<tr>
<td>Cr</td>
<td>10 PPM</td>
<td>Sr</td>
<td>0.1 PPM</td>
</tr>
<tr>
<td>Cs</td>
<td>2 PPM</td>
<td>Sr</td>
<td>0.05 %</td>
</tr>
<tr>
<td>Fe</td>
<td>0.2 %</td>
<td>Ta</td>
<td>1 PPM</td>
</tr>
<tr>
<td>Hf</td>
<td>0.02 %</td>
<td>Tb</td>
<td>0.5 PPM</td>
</tr>
<tr>
<td>Hg</td>
<td>1 PPM</td>
<td>Th</td>
<td>0.5 PPM</td>
</tr>
<tr>
<td>Ir</td>
<td>1 PPM</td>
<td>U</td>
<td>0.5 PPM</td>
</tr>
<tr>
<td>La</td>
<td>1 PPM</td>
<td>W</td>
<td>4 PPM</td>
</tr>
<tr>
<td>Lu</td>
<td>0.05 PPM</td>
<td>Yb</td>
<td>0.2 PPM</td>
</tr>
</tbody>
</table>

*Preparation costs extra (Price valid to June 30/89)

"Au + 34" Vegetation Package

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>DETECTION LIMITS</th>
<th>ELEMENT</th>
<th>DETECTION LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>0.1 PPM</td>
<td>Rb</td>
<td>1 PPM</td>
</tr>
<tr>
<td>Ag</td>
<td>0.2 PPM</td>
<td>Sb</td>
<td>0.005 %</td>
</tr>
<tr>
<td>As</td>
<td>0.01 PPM</td>
<td>Sc</td>
<td>0.01 PPM</td>
</tr>
<tr>
<td>Ba</td>
<td>5 PPM</td>
<td>Se</td>
<td>0.1 PPM</td>
</tr>
<tr>
<td>Br</td>
<td>0.10 PPM</td>
<td>Sr</td>
<td>10 PPM</td>
</tr>
<tr>
<td>Ca</td>
<td>0.1 %</td>
<td>Ta</td>
<td>0.05 PPM</td>
</tr>
<tr>
<td>Co</td>
<td>0.1 PPM</td>
<td>Th</td>
<td>0.1 PPM</td>
</tr>
<tr>
<td>Cr</td>
<td>0.30 PPM</td>
<td>U</td>
<td>0.01 PPM</td>
</tr>
<tr>
<td>Cs</td>
<td>0.05 PPM</td>
<td>W</td>
<td>0.05 PPM</td>
</tr>
<tr>
<td>Fe</td>
<td>0.005 %</td>
<td>Zn</td>
<td>2 PPM</td>
</tr>
<tr>
<td>Hf</td>
<td>0.05 PPM</td>
<td>La</td>
<td>0.01 PPM</td>
</tr>
<tr>
<td>Hg</td>
<td>0.05 PPM</td>
<td>Ce</td>
<td>0.1 PPM</td>
</tr>
<tr>
<td>Ir</td>
<td>0.1 PPM</td>
<td>Nd</td>
<td>0.3 PPM</td>
</tr>
<tr>
<td>K</td>
<td>0.05 %</td>
<td>Sm</td>
<td>0.001 PPM</td>
</tr>
<tr>
<td>Mo</td>
<td>0.05 PPM</td>
<td>Eu</td>
<td>0.05 PPM</td>
</tr>
<tr>
<td>Na</td>
<td>1 PPM</td>
<td>Tb</td>
<td>0.1 PPM</td>
</tr>
<tr>
<td>Ni</td>
<td>2 PPM</td>
<td>Yb</td>
<td>0.005 PPM</td>
</tr>
</tbody>
</table>

*For drying and macerating costs please enquire.

PRICE:
- 8 gram Briquette: CAN $14.50 / US $12.00
- 15 gram Briquette: CAN $15.00 / US $12.75
- 30 gram Briquette: CAN $16.00 / US $13.50

Preparation facilities: Vancouver, B.C.; Saskatoon, Sask.; Timmins, Ont.; Mississauga, Ont.; Deer Lake, Nfld.; Carson City, Nevada (vegetation only).

For further information contact: Dr. Eric Hoffman
Activation Laboratories Ltd.
P.O. Box 1420, 383 Elgin St.
Brantford, Ontario, Canada N3T 5T6
Phone: 519-758-0310 Fax: 519-758-8766

Thus, we may require that several nearly adjacent samples record anomalous concentrations before we confidently consider the region they define to be an 'anomaly'.

The change of obtaining anomalous concentrations in m of the n samples collected from anomalous sites can be calculated by the following formula:

\[c = 1 - \left(1 - \frac{d m}{n} \right)^n \]

where:

\[h = \left(\frac{n}{m} \right) \]

Thus, if we require that 2 of 5 samples collected from anomalous material record anomalous concentrations before we correctly locate the anomaly, the change of anomaly detection becomes 34%. If 3 of the 5 anomalous sites must record anomalous concentrations, the probability of detection drops to 8%. Raising the requirements for anomaly detection reduces the probability of detection. Therefore, the probability of anomaly detection is dependent on a variety of factors.

Those factors considered here include the size of the sample, and the chance of collecting a gold grain from an anomalous site, the number of anomalous sites, and the number of samples which must be anomalous before the anomaly can be located with confidence.

It is important for geochemists to consider all of these factors in light of their survey objectives in order to define the sample size required to produce a survey which has only a small chance of not detecting an anomaly when it is present.

In this way, exploration expenses can be directly related to the probability of anomaly detection, and geochemical surveys can be designed and implemented in the most cost efficient manner.

This brief example forms part of a larger project investigating the relationships between sampling theory, sample size, sample density, pattern recognition, cost effectiveness and practicality (logistical feasibility) in geochemical exploration surveys.

Clifford R. Stanley
Dept. of Geology and Geophysics
University of Calgary
and
CyberQuest Exploration Systems
Vancouver, B.C. V6C 1J8

Barry W. Smeee
Abermin Corporation

References Cited

Clifford, H.E., Hunter, R.E., Swanson, F.J. and Phillips, R.L.

Terrain Analysis in Exploration Geochemistry

An examination of the characteristics of the surficial geologic landscape is an essential step in any land-use planning process. Terrain geologists commonly assess properties of the landscape may have an environmental or engineering effect on a resource use or development (i.e. aggregate and mineral extraction, forestry operations, pipeline and hydro-electric development, settlement location facilities, etc.). Mapping of terrain and soil landscapes also has great potential for use in geochemical exploration programs, such as to determine depth of overburden, direction of glacial transport, and deglaciation patterns.

Most of the Canadian Cordillera has been subjected to multiple glaciations in the Pleistocene, and glacial deposits have subsequently reworked in the Holocene. Terrain analysis (surficial geological mapping) provides information about the physical characteristics of the surficial geologic landscape. Among important parameters affecting lateral and vertical geochemical dispersion which can be evaluated are:

- genesis and composition of surficial deposits
- direction of glacial transport and source of transported debris
- glacial stratigraphy, thickness of surficial deposits, and depth to bedrock
- landform-geologic boundary relationships
- slope gradient, aspect, and position
- soil type, texture, and composition
- site drainage, seepage, and groundwater flow patterns

Exploration decisions based on results of incorrectly designed or interpreted soil surveys can prove costly. Highly variable sample composition, genesis, depth of deposit, landscape position and drainage regime can introduce excessive noise into a data set. Discussion of many of the effects various site and physical properties have on geochemical dispersion patterns is presented in an SEG-AEG publication by Fletcher et al. (1988), Exploration Geochemistry: Design and Interpretation of Soil Surveys. Important soil descriptive parameters are: site topography, site drainage, groundwater movement, overburden transport and origin, sample texture, soil type and soil horizon, and depth to bedrock.

The Terrain Classification System (Ryder and Howes, 1984), provides a standardized system for classifying surficial geologic materials and their dominant physical characteristics. Aerial
EXPLORE NUMBER 65

Figure I.

Photographs are used to map the distribution of different terrain types of large, often inaccessible areas in a cost-effective manner. By combining stereoscopic analysis of aerial photos with ground truth followup, a terrain scientist is able to reliably map and describe the distribution of discrete terrain units using genesis, texture, drainage, landform expression, slope and geomorphic process (e.g., mass wasting). Terrain maps are commonly displayed on a photo mosaic (Figure I), topographic (Figure 2), or orthophoto base. The landscape represented within the dashed square of Figure 2 is displayed by the 3-dimensional sketch of Figure 3.

Unfortunately, terrain maps are rarely prepared prior to designing and/or interpreting soil surveys. Why unfortunately? A preliminary photo interpretation of the surficial geology could significantly enhance the effectiveness of a sampling program, thereby reducing costs. For example, appreciating the direction of ice movement, location of deep overburden, genesis of soil parent material, location of wetlands, and recognition of areas of thin overburden cover can fundamentally affect where a survey is conducted, what sample density is selected, and how the data are interpreted. The subsequent geochemical interpretation might benefit from orientation and/or followup of the surficial landscape by field terrain mapping to augment or refine the photo interpretation.

As an example, consider the broad, northern valley of Figure 1 underlain by sedimentary rocks. Tributary valley glaciers coalesced in the main valley and then flowed in a northwesterly direction. Rock outcrops, shallow colluvium (talus), and thin glacial till occurred on the steeper, mid to upper slopes (Rs/Cv, Rhv/Mbv/Cbv, Ca, Rs/Cvb). Geochemical anomalies in these areas would be generated by active downslope mechanical and hydromorphic dispersion and would normally lie close to their source (25-300 m). Anomalies in shallow-till on some mid-slope areas (Mb/h/Rv/Ov) reflect a close-to-bedrock source although mechanical transport is mainly subparallel to the valley ice movement. Hydromorphic anomalies could be located by sampling seepage zones, streams, or shallow organic deposits (Ov).

The lower slopes are mantled by thicker till (probably 1 to 3m average depth) with scattered organic deposits occupying wet depressions (Mbh/Ov). Geochemical anomalies in well-drained tills display a theoretical characteristic shape comprising a sharp up-ice cutoff with concentrations declining and the anomaly broadening in a down-ice direction. Secondary hydromorphic anomalies are likely to form in the organic wetlands.

FREEPORT-McMoRan
Gold Company
A PREMIER NORTH AMERICAN GOLD PRODUCER
UNITED STATES
NEVADA
6130 Plumas Street
P.O. Box 41330
Reno, Nevada 89504
(702) 876-3000
Mountain City Star Route
Elko, Nevada 89801
(702) 739-5600
MONTANA
H24 National
Helena, Montana 59601
(406) 442-0660
ARIZONA
7600 Oracle Road
Suite 272
Tucson, Arizona 85704
(602) 777-1393
CANADA
Suite 57
200 Granville Street
Vancouver, BC V6C 1S4
(604) 684-4121

DEMONSTRATED EXPERTISE IN MINERAL EXPLORATION AND DEVELOPMENT
In the valley bottom secondary dispersion is important and sampling bags (Ob, Obv) and stream sediments (FAL) is likely to locate hydrothermal anomalies. Thick till and hummocks and ridges of stratified drift (Mb/FGr, FGr/obv, FGr/Mb) probably prevent the easy recognition of the bedrock sources of mechanically derived anomalies without trenching or deep overburden sampling. Mineral exploration in glaciated areas is often made difficult by the presence of overburden. However, a terrain scientist working with a geochemist should, in most cases, be able to determine how the glacial sediments can be used to indicate rather than obscure bedrock sources of mineralization. A correctly designed and interpreted geochemical survey, incorporating fundamental terrain analysis, can result in significant time and cost savings to an exploration program. In fact, the cost involved in carrying out terrain mapping is very small in comparison to the money which can be wasted on poorly designed programs and incorrectly interpreted results.

The **Pearl Harbor File** has been discussing the interpretation of soil survey data from a VMS property in Newfoundland. In this issue the column illustrates how geochemical interpretation can benefit from a terrain analysis.

Denny E. Maynard,
Westland Resource Group
13-251 West 14th Street
North Vancouver, B.C. V7M 1P4

Reference cited

PEARL HARBOR FILE

Volcanic Massive Sulphide in Newfoundland - Conclusion

Part I and Part 2 of the VMS case history reported in Issues 62 and 63 indicated that strikingly different soil survey results could describe the same area, a factor attributed to sampling. The second set of data is probably more reliable, a judgement based on a more homogeneous data set and less erratic in the distribution of elements such as Fe and Mn. We found that it was a mistake to believe the first set of data without confirming the occurrence of anomalous conditions. Money would have been wasted, probably nothing of importance discovered, and control of the land relinquished. Is this an odd example, or could it be the norm? How many readers of this column have tested the quality of their data before proceeding to the next stage of exploration? I would appreciate hearing your experience on this matter.

This property continues to be under active exploration and a VMS prospect has yet to be discovered. In order to provide some suggestions on what should be done next, I asked Mr. Denny Maynard, a terrain geologist who has written a separate column in this issue, to examine the surficial deposits of the property through an air photo interpretation. This exploration procedure sees only rare application, but in view of its low cost and excellent potential to save needless expenditures through a focussing of effort, it would be my recommended followup approach.

The interpretation provided by Maynard is summarized on Figure 6 and has been augmented by discussions with the author and reference to published regional Quaternary reports and maps. We should always be careful of the tendency of specialists to interpret property data independently of each other, without reference to other workers on the same ground, to the detriment of their own recommendations.

The sampled landscape is rather featureless, covered by glacial till of variable thickness. Bedrock-controlled ridges, mantled by thin till (probably ranging from 0.5 - 3 m depths) occur in the west of Figure 6. Erosional slopes and incised stream channels in the northeast also have bedrock close to surface. Subdued gentle slopes underlain by till up to 15 metres thick drain to the north and east. Wetlands, occupied by thin organic deposits, occur in linear depressions within the ridge terrain and in larger depressions on the subdued ground.

Figure 6.

Very few archive soil anomalies of any element are associated with the *shallow-to-bedrock* ridged terrain (other than in seepage depressions) in the west. This implies a bedrock source of significant concentrations of base metals is unlikely in this area. By contrast, multielement soil anomalies in the east coincide with areas having less than 3 m of drift. Areas of thicker till are not associated with many anomalous signals. Clearly, data from the latter areas should be considered separately from data from the thin drift environments.

Quaternary maps and the local terrain suggest the last ice-flow direction was southwesterly. Earlier glaciations probably followed a more extensive southward flow. Bedrock sources are thus predicted to lie to the north and northeast. Tills representing both flow directions occur in the area of thicker overburden. Geochemical signatures from bedrock immediately underlying anomalous soil sites are unlikely to be translated to the surface soil through 8 to 10 metres of low permeability till without lateral displacement. Possible presence of an early till deposited by southward flowing ice would complicate interpretation by providing a second source in addition to a source northeast of an anomalous area where the bedrock is near the surface.

Wet Drilling? Wet Samples?

LEGEND has new cloth and finon (olefin) sample bags ideal for wet samples. Low prices. High quality. Large stock. Many sizes. Example: 10x x 17" cloth bag for $27.14 per hundred. 10x x 17" Finon Bag with tag for $26.14 per hundred (prices are for 1000 bag lots).

Fire assaying & Geochemical analysis

LEGEND Metallurgical Laboratory, Inc.
125 Manuel Street
Reno, Nevada 89502

phone (702)786-3003 fax (702)786-3613
A program of trenching, pitting or deep overburden sampling would determine the three dimensional characteristics of surface soil anomalies and check for chemical and physical differences in underlying till. Till fabric studies reconstructing vertical variation in ice directions would assist in predicting probable location of bedrock sources of metal responsible for the surface soil anomalies. Predicted source area locations could then be compared to positions of known conductors to establish drill targets.

Stanley J. Hoffman
Prime Geochemical Methods
2834 W. 24th Avenue
Vancouver, B.C. V6L 1R4 Canada

Bias in Analyses for Gold

A significant trend in the values obtained for Au in rocks by various methods has been reported previously (Hall and Bonham-Carter, 1988). It was found that the mean value by direct neutron activation analysis (INAA) was greater than the mean by fire assay-based methods (FA) which, in turn, was greater than the mean value by methods incorporating wet chemical digestion (e.g., aqua regia, AR). This pattern was also evident in a round-robin analysis carried out to characterize three soil reference samples for Au in which 15 commercial laboratories and the GSC participated. The results for these and two porphyry copper drill-core samples are illustrated in Fig. 1.

The data fall clearly into three groups of analytical methods classified according to sample decomposition procedure, regardless of the final measurement technique employed (Table 1). For the three soils, the average value for Au obtained by wet chemical methods is 55-70% of that by direct INAA, while the corresponding figure for the two drill-cores is 69%. Methods based upon fire assay (e.g., FA/AAS, FA/ICP-ES) yield, on average, 81-86% of the mean value obtained by INAA for the soils; the corresponding figure for the drill-cores is somewhat lower, at 74%.

These differences are significant as the precision associated with each mean is good. For example, analysis of soil A in triplicate by three INAA laboratories yielded a relative standard deviation of 10%. The low results for these and 31 rock samples by AR/GFAAS were investigated further at the GSC. Recoveries of Au spikes added to the sample during digestion confirmed that there was no evidence for loss of Au by adsorption of the undissolved sample, reduction to metallic Au or vaporization. The residues remaining after aqua regia digestion were filtered off and analyzed by INAA. Significant amounts of Au were found in the residues, sometimes even exceeding the amount leached. This is illustrated graphically in Fig. 2. The best-fit line obtained by plotting Au by AR/GFAAS vs Au by INAA has a slope of only 0.55. However, when the Au remaining in the residue is added to that leached by aqua regia and this value is then plotted against Au by INAA, a slope of 0.95 is obtained which is not significantly different from 1.00. Hence, indications are that the INAA value is accurate and that aqua regia is ineffective in solubilizing all the Au.

Modifications to the aqua regia procedure, such as prior evaporation with HF or HCl, did not improve results. Typically, the weight of the residue remaining after HF-aqua regia decomposition on a 10-g sample would be about 8 g (i.e., it is not a "total" attack). The distribution of Au in these soil samples was particularly homogeneous. A decrease in the sample weight from 10 g to 1 g while maintaining the volume of aqua regia at 25-30 ml did increase the extraction efficiency dramatically (Table 2). Addition of HF further improved extraction to the point that results are virtually identical to those by INAA. Reduction of

TABLE 1. Classification of methods

<table>
<thead>
<tr>
<th>Method</th>
<th>WET CHEMICAL</th>
<th>FIRE ASSAY</th>
<th>NEUTRON ACTIVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decomposition</td>
<td>Aqua regia or HBr - Br</td>
<td>Pb fire assay via cupellation into Ag bead</td>
<td>None</td>
</tr>
<tr>
<td>Separation by extraction</td>
<td>into MIBK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>Flame AAS GFAAS ICP - ES</td>
<td>Flame AAS GFAAS DCP - ES INAA (Ag bead)</td>
<td>INAA directly</td>
</tr>
</tbody>
</table>

AAS Atomic absorption spectrometry
GF Graphite furnace
ICP Inductively coupled plasma
DPP Direct current plasma
ES Emission spectrometry
MS Mass spectrometry

Figure 1. Mean Au values for replicate analyses of five reference samples by three distinct methods

Figure 2. Gold by aqua regia/AAS (= Au in residue) versus gold by INAA
sample size from 10 g to 1 g to ensure complete recovery of Au is not expected in view of the well-known nugget effect!

It is thought that the low extraction efficiency by aqua regia (also shown by HBr-Br2) is due to a lack of intimate, prolonged contact between the 10 g sample and the acid mixture. Occasional manual stirring is carried out during the evaporation with aqua regia but constant agitation is more desirable. Magnetic stirring is not easily adapted to large-scale production and tends to promote only localized mixing. Hot plates equipped with shaking tables are no longer manufactured for safety reasons. Heating by microwave irradiation, with its different mechanism of energy transfer, may solve this problem and is now under investigation at the GSC.

The slightly low results for the soils by fire assay-based methods compared to INAA were within the limits set by the associated standard deviations. This is not the case for the porphyry copper drill-cores (low by 26%). However, the presence of high concentrations of Cu is known to be detrimental in obtaining a clean separation of Au (and PGEs) into the Pb button in Pb fire assay. Modification to the procedure (e.g., leaching with HCl) may not have been adequate in removing Cu prior to fusion. Some loss of Au to the slag and during cupellation, depending upon sample matrix, is not unexpected (Diamantatos, 1984, 1987).

It is extremely difficult to assess the accuracy of any analytical method for Au in the absence of certified standard reference materials (SRMs) at these lower levels (10-300 ppb). A joint program between the GSC and CANMET is now at the stage of preparing six rock samples for certification in Au and the PGEs. Initial distribution for the purpose of certification will be to the INAA laboratories would provide us with replicate data on the SRMs routinely analyzed and used in their calibration procedure. While the literature provides us with studies on Au in geological materials using wet chemical and fire assay methods, there is an obvious absence of practical papers on Au by INAA, except for those employing radiochemical separations.

The significance of the bias described here is (a) that results for Au by wet chemical methods may be lower than INAA by as much as 50% in some cases and (b) that caution should be used in interpreting data obtained by more than one method. This low bias for Au by wet chemical methods is variable and dependent upon the sample matrix. For example, it has been found to be almost insignificant (10%) in some ore-grade materials. Although good precision is vital in analysis for gold, it is most important to the exploration industry that this problem of accuracy be resolved.

Gwendy E.M. Hall
Head, Analytical Methods Development
Geological Survey of Canada
601 Booth Street, Ottawa KIA 0E8

J. Alan Coope and Erleek F. Weiland
Neumont Exploration Ltd.
200 West Desert Sky Road
Tucson, Arizona 85737

References Cited

MEETING REPORTS

Prospecting in Arid Terrain

The Second International Conference on Prospecting in Arid Terrain, jointly sponsored by the Australian Institute on Mining and Metallurgy, the Institution of Mining and Metallurgy, London, and the Association of Exploration Geochimists, was held at the University of Western Australia on 26-30 April, 1988. There were 255 registrants including 30 from overseas representing 16 countries.

After opening speeches, Jim Ross (Western Australia) presented the keynote address Prospecting in arid terrains - geological problems and opportunities, which focused on the deeply weathered lateritized environments typical of the Yilgarn Block of Western Australia. Many of the papers which followed, including several on West Africa, addressed the nature of lacustrine terrains in north-arid environments, and exploration for gold. There is no doubt that such terrains are the source of much low cost gold in Australia and
other countries. However, the number of operating mines casts doubt on problems associated with finding them. It was not until the last day that the emphasis shifted to prospecting in the many other arid environments, with Paul Theobald (USA) giving examples of exploration techniques in loess environments of Saudi Arabia, Mexico, and Alaska. The use of calcrete (Willem Van Der Westhuizen, South Africa) and resistant minerals (D. Kuster, Germany) in various parts of Africa, although hardly novel techniques, added some variety.

There was a great emphasis on geochemical prospecting techniques, with the discovery of many new deposits in Australia being attributable to geochemistry (albeit Au analyses in RAB and/or RC drilling). Whereas during the "nickel boom" of the early 1970's laterite was considered to be a hindrance to exploration, today due to considerable research (e.g. in CSIRO) and sophisticated analytical and data handling techniques, laterite is a widely utilized sampling medium. The discovery of the Johnstone Range gold deposits by multi-element lateite geochemistry (Ray Smith, Western Australia) bears witness to this.

Other topics addressed were groundwater resources for mining ventures (6 papers), remote sensing techniques (6), geophysics (2), geology (3) and the environment (1). One successful application of remote sensing was the use of an airborne Thematic Mapper Simulator to distinguish mafic from ultramafic rocks in the PGE-mineralized Munni Munni Complex of WA (Colin Simpson, Canberra). Participants were also privileged to hear the first public discussion of exploration leading to the discovery of the huge Kingtyre uranium deposit in the Great Sandy Desert (D.G. Jackson, Western Australia).

Copies of the Abstract Volume may be purchased from the Australian Institute of Mining and Metallurgy, Clunies Ross House, 181 Royal Parade, Parkville, Victoria, Australia 3052 for $45 plus postage. It is the intention of the Organizing Committee to publish the full texts of papers in a special Aust. I.M.M. volume.

After many months of below average rainfall, Perth was an apt venue for an arid terrains conference. However, despite the obvious detailed planning by Bryan Smith and the staff of Worsley Alumina, the heavens opened on the day of the field excursion to Boddington-Worsley south of Perth. Bauxite has been mined in these environmentally sensitive jarrah forests since 1966.

Following analysis of some lateritic pisoliths, a major gold deposit 4 km long containing 45Mt at 1.8g/t in laterite overlying a previously unrecognized greenstone was discovered in the early 1980's. The mine, which poured its first gold at the beginning of August 1987, is set to increase gold output to more than 250,000 oz p.a. following the completion of a major expansion. Despite the ever-present red mud, the 80 participants were given detailed explanation of the local geology, lateritic profiles, bauxite and gold distribution, and environmental factors.

Approximately 60 registrants visited various gold deposits in the Eastern Goldfields on pre- and post-conference field trips, and a further 8 participants visited the Pilbara region. An excursion guidebook for Boddington and Eastern Goldfields can be obtained from University Extension, University of Western Australia, Nedlands, Western Australia, 6009 for $20.

At the conclusion of the conference, a Workshop on the very topical theme Exploration in Lateritic Environments was attended by 60 participants. Topics discussed were climatic effects on lateritic weathering, regolith terrain mapping, geochemical exploration and geophysical exploration. This concluded a most successful week and plans are now being drawn up to hold the third conference possibly somewhere in North America in 1991.

Graham F. Taylor CSIRO / Division of Exploration Geoscience P.O. Box 136 North Ryde NSW 2113 Australia Phone:(02) 887-6665

First International Gold Conference

The First International Gold Conference was held October 20-22, 1987, in San Jose, Costa Rica, sponsored by the Ministry of Natural Resources, Energy, and Mines of Costa Rica, Minera Nacional S.A. [MINASA] (a Costa Rican government mining company), Los Alamos National Laboratory, and the United States Geological Survey. The Regional Office for Central America Programs (ROCAP), United States Agency for International Development provided funds for the conference. Over 250 participants from 15 countries were in attendance.

In 1986, regional geologic and geochemical studies were begun by the United States Geological Survey and Los Alamos National Laboratory, in cooperation with the Costa Rican Ministry of Natural Resources, Energy, and Mines, and the University of Costa Rica. Because the data identified areas with potential for undiscovered gold deposits, the government of Costa Rica requested that the results be disseminated at an international gold conference.

The conference was opened by Jose M. Blanco, General Manager of MINASA, Jorge Rodriguez, President of MINASA, and Alvaro Umana, Minister of Natural Resources, Energy, and Mines. The government's support for the mining sector was clearly stated. A modern mining law is now before the Costa Rican legislature. The morning sessions concluded with presentations by Carl Duisberg (ROCAP) and Joe Frank (Los
Stephen Bolivar showed how regional geochemistry could be used to identify not only the gold district, but individual subdistricts within the gold belt that contain elemental signatures suggestive of possible hot-spring Au-Ag deposits. The morning sessions concluded with a presentation by Allen Clark (Eawi West Center), who attempted to quantify the value of the Los Alamos and U.S. Geological Survey regional program. He was able to show net benefit/cost ratios from 17:1 to 33:1, depending on discounting procedures.

The results of the Los Alamos geochemical work are presented in a geochemical atlas, available through MINASA, which contains several geochemical maps at a scale of 1:200,000, and a description of sampling and data-processing methodology (Los Alamos Informal Report LA-10969-MS). All raw data are included on microfiche.

The afternoon session began with Ray Krauss (Homestake Mining Co.), who showed that environmental protection can be complementary to mining, using McLaughlin, California as an example. The remaining afternoon sessions were by Costa Rican officials who described legal aspects of the current mining law, including import restrictions, tax laws, import duties, and lending policies.

The third day was devoted to a field trip to the Belvista-Montezuma gold prospect, which is being developed by Rayrock Yellowknife Resources. Miguel Alan, site geologist, provided an overview of the project. About 80 field trip participants, mostly foreign visitors, examined the geology exposed by development and the progress of a 10,000-m rotary drilling program. This deposit is an excellent representative of the type of bulk-tonnage epithermal gold deposits found in Costa Rica.

The most exciting results of the conference were the compilation and dissemination of an extensive database on viable precious-metal deposits being developed in Costa Rica, and that the potential exists, discovered through an interagency, interdisciplinary program, for the discovery of large hot-spring Au-Ag deposits as well as possible extensions of the known gold belt.

Stephen L. Bolivar & Steve Ludington
Los Alamos National Laboratory
Los Alamos, N.M. 87545
Phone (505) 667-1868

Associated Societies
The Canadian Quaternary Association
The Canadian Quaternary Association (Association canadienne pour l'étude du Quaternaire) was founded in 1979 to bring together researchers and practitioners with an interest in the Quaternary Period in Canada. The Association (also known by the acronym CANQUA) was incorporated in March 1988. Its objectives are the advancement and dissemination of knowledge about the Quaternary Period, by means of public meetings and exhibits, through the publication of newsletters, position papers, and papers from meetings, and through lecture series and field conferences. The Association also has a mandate to cooperate with other Quaternary Associations both inside and outside Canada.

Membership in CANQUA stands at close to 300, and interests of the members represent all areas of research involved with the Quaternary. CANQUA is a member of the Canadian Geoscience Council, and it is also an affiliated society with the Geological Association of Canada. The membership is represented by a Council of twelve members; two from the Pacific region, two from the plains and Arctic, three from the Central region (Ontario), three from the Eastern region (Quebec), and two from the Atlantic.

CANQUA, together with its sister association in Quebec, AQUA, and National Research Council, was responsible for an invitation to, and the subsequent hosting of, the XIIIth Congress of the International Quaternary Association in Ottawa in late July and early August, 1989. The theme of the meeting will be Late Glacial and Post-Glacial Processes and Environments in Montane and Adjacent Areas. In 1990 CANQUA has invited AMQUA (The American Quaternary Association) to a joint meeting at the University of Waterloo. The topic will be Rapid Change in the Quaternary Record.

The Association is now involved in the Proxy Data Resource Group in the Royal Society of Canada's development of the Canadian input to Global Change. This will be the major thrust of international scientific bodies through the course of the next one or two decades. Reports on the activities of the Association appear in the CANQUA Newsletter/Bulletin which is issued twice a year. Scientific publications for CANQUA are released through Geographie physique et Quaternaire. For further information on CANQUA please contact:

Alan V. Morgan
President, CANQUA
Quaternary Sciences Institute
University of Waterloo
Waterloo, Ontario N2L 3GI

International Geochemical Mapping
The February 1988 issue of EXPLORE contained a two-column statement outlining the objective, plans, and future arrangements for this new project. It was an abbreviated version of documentation previously submitted to the IUGS/GCP Selection Committee in Paris. The project was formally accepted by this Committee in February. This was an important event, which will encourage government earth science organizations to give official support and allow their scientists to participate. Without this type of organizational backing the project cannot move.
The project was launched in May as planned, on the opening morning of the VM Goldschmidt Conference in Baltimore at a session entitled International Geochemical Mapping. Eight papers on various aspects of the subject were presented by speakers from Canada (Darnley, Garrett), China (Xie Xuejing), Norway (Bolviken), UK (Plant), and USA (Duval, McNeal). Arrangements are being made to have several of these papers published in a special issue of the Journal of Geochemical Exploration during 1989.

The inaugural business meeting for the project took place later during the same conference. The business meeting was opened by Dr. Maurice Chaffee (USA), President of the Association of Exploration Geophysicists. IUGS rules governing the establishment of IGCP Projects required that the Project Leader be formally elected. Dr. Chaffee proposed Dr. A.G. Darnley (Canada); this was seconded by Dr. B. Bolviken (Norway) and Prof. Xie Xuejing (P.R.C) and the motion was carried unanimously.

Organization

The principal item of business was the organizational structure for the project. The aim is to encourage broad geographic participation in parallel with the establishment of specialized working groups. The latter will have to deal with technical problems on an international basis. It was agreed that under the guidance of a Steering Committee, there will be four Technical Committees plus a number of geographically distributed Regional Committees. The Steering Committee, under the chairmanship of the IGCP Project Leader, will be composed of the leaders of the Regional and Technical Committees.

The Technical Committees will each have a minimum of 5 members. Responsibilities will be divided as follows:

- **Field Methods Committee**: to include all matters concerning selection of sample media; methods of sample collection; sample spacing, including ultra-wide spacing; sample mass; particle size(s) for analysis; collection of replicate samples; use of composite samples; selection and collection of material for reference standards; in-field sample processing, etc.
- **Analytical Methods Committee**: to include all matters concerning sample preparation and digestion; selection of analytical techniques; use and adoption of reference materials; provision of international inter-laboratory reference materials; expansion of analytical suites, etc.
- **Data Processing and Management Committee**: to include recommendations on the organization and contents of a world index of geochemical surveys; methodology for levelling/normalizing diverse data sets; development of standard formats for trans-border data-sets and map publication; evaluation of data interpretation methods for the principal user-groups, etc.
- **Radiometric Methods Committee**: to include all aspects of the collection, standardization, compilation and interpretation of geochemical data obtained by airborne gamma-ray spectrometry. A working group has already commenced work on methods for combining existing airborne radiometric data under the auspices of the International Atomic Energy Agency, Vienna. The Convener is Mr. A. Y. Smith of the IAEA. Note that the Radiometric Methods Committee has comprehensive responsibility for this particular technique.

The function of each of these committees is to produce technical reports, summarising recommended methods and procedures, based on a review of international information and experience.

Nominations for membership of the Technical Committees were solicited. Some have already been received. It is requested that additional names should be sent to the Project Leader as soon as possible.

Regional Committees: the following geographic regions were identified as having institutional arrangements which would facilitate an early commencement of work; leaders names are given where known:

- J. McNeal (USA) North America (incl. Greenland)
- Xie Xuejing China
- F. Mrna (CSSR) Eastern Europe
- B. Bolviken (Norway) Western Europe
- P. V. Koval USSR

It is believed that there are good prospects in the near future for establishing Regional Committees to represent Latin America, India and Australasia.

In addition, steps will be taken to encourage the formation of Committees representing Africa, SE Asia, Japan, and the Middle East. The UN and related International Aid Agencies are being informed and their assistance requested to spread information about the relevance of the project to agriculture and health as well as to resource development.

Future Meetings

Paper and/or Poster Sessions on International Geochemical Mapping are being planned for the following international conferences which have been identified as suitable occasions for:

1) organization of paper and/or poster sessions on the theme of Regional Geochemical Mapping to stress methodology, products, and applications,
2) Technical Committee workshops to review specific problems:

- 1989 October, IGES, Rio de Janeiro
- 1990 August, IAGC, Prague
- 1991 (various options, suggestions invited)
- 1992 IGC, Japan

It is expected that, in addition to the major international meetings, Regional Committees will identify other suitable events, conferences etc., within their own geographic regions where periodic IGCM Regional Meetings can be held to plan and coordinate regional activities.

Questions to be Resolved

Following the decisions on the organizational aspects of the project, a number of scientific matters were raised. Some are mentioned below. It is anticipated that, as the project progresses, many of them will be the subject of workshops prior to the formulation of recommendations. Decisions will have to be taken. During the formative stages of the project, comments on these and other issues would be welcomed.

1) In many countries there are increasing signs of awareness amongst scientific policy makers that geochemical surveys can have environmental significance. Scientific concern about the rate of "global change" is beginning to attract media attention and creating some popular pressure for government action, which in turn creates a need for factual information. Recognising that most existing geochemical surveys were conducted for mineral exploration purposes, what additional steps could be taken in order to maximise the environmental usefulness of existing or new data? For example, could additional analyses of retained sample material be undertaken; how might the design of future surveys and analytical procedures be modified?

2) Given the desirability of obtaining a global geochemical overview as rapidly as possible, there is an urgent need to establish the most satisfactory method(s) for wide-spaced sampling. In this context, the question of single or composite samples is important. Stream (or river) sediments are generally considered to be the most universally available sampling media. On the basis of Norwegian experience, a strong case has been made for "overbank" sampling, but questions have been
raised as to whether the technique is of widespread applicability (7).

3) Could the major river systems of the world be sampled by means of a few thousand samples in order to achieve world-wide coverage quickly? What would be the analytical requirements in order to detect significant regional differences? Could the materials collected serve for control reference purposes?

4) There is a need to subdivide the world into physiographic-climatic zones, within each of which, geochemical methods can be optimised. It will be necessary to have overlap between the zones so that data can be normalised. Where are the most suitable areas for these overlap studies? Who will perform them?

5) Should samples be totally or partially digested? For geological purposes the former is preferable; for mineral exploration applications some partial extractions are advantageous and this is especially true for environmental interpretation. Conversely, it is easier to obtain standardized data where total extractions are used.

6) A number of countries involved in providing technical assistance hold large amounts of geochemical data pertaining to developing countries. These data are potentially suitable for incorporation into world maps and it is highly desirable that they should be used, otherwise there will be no information about some areas of the world. It will be necessary to obtain formal permission from the countries concerned before these data can be used for this purpose. Who should take this initiative?

All geochemists are asked to inform their colleagues about this project especially any contacts they have in developing countries in order to encourage the widest possible support and involvement. It is expected that there will be a small fund available to assist a few participants from developing countries to attend project meetings. More information can be provided by the Project Leader:

Dr. A. G. Darnley
IGCP International Geochemical Mapping Project
Geological Survey of Canada
601 Booth Street
Ottawa, Ontario
Canada K1A 0E8
Tel. (613) 995-4909
Fax (613) 996-9990
Telex 053-3117 EMAR OTT

AEG COUNCIL MINUTES

Actions of September 8, 1988

1. The Treasurer reported that there would be a shortfall of about $20,000 in 1988. This is due to numerous reasons, including funding suppressions, printing the Directory and Bibliography, publishing the new format of this newsletter, publishing special volumes, and some rather complicated financial arrangements with Elsevier.

2. It was recommended that the Executive study the possibilities of a dues increase for 1989, not to exceed $10 for all classes of membership and not to exceed a total of $50.

3. Additional and Thody of Vancouver, B.C., Canada were appointed auditors for the Association.

4. Council approved a copyright search to see if the name EXPLORE had been copyrighted.

5. Council approved an expenditure of funds for producing a T-shirt with the Explore logo on the front and the Association logo on the back. These are to be sold at meetings and through the mail as a fund raiser for the Association.

Sherman P. Marsh
U.S. Geological Survey MS 973
Denver, Colorado 80225

INFORMATION REQUESTED

Lost Members

We do not have the correct address for the following members whose mail has been returned as undeliverable. If you know how to contact any of these people please notify the Association secretary or Erick Weiland, U.S. Geological Survey MS 973, Denver, Colorado. Thank you for your help.

Atkinson, Ross David
Sparks, Nevada

Beswick, Anthony E.
Naughton, Ontario Canada

Birk, Dieter
Sydney, Nova Scotia Canada

Brake, Sandra S.
Golden, Colorado

Brozowski, Robert A.
Marquette, Michigan

Campbell, Terry L.
Oklahoma City, Oklahoma

Carpenter, Donald J.
Hye M., New Mexico

Chater, Geoffrey
Fort Worth, Texas

Chisholm, J.M.
Kensington, N.S.W., Australia

Dousset, Pierre-Edouard
Caen, France

Duchschzerer, W.
Golden, Colorado

Evans, Geoffrey M.
San Jose, Costa Rica

Felder, F.
Don Mills, Ontario Canada

Garnett, David L.
Menai, N.S.W., Australia

Gerdienich, Michael J.
Ann Arbor, Michigan

Giles, David L.
Lakewood, Colorado

Gintautas, Peter A.
Denver, Colorado

Herron, Calvin R.
bishop, California

Hill, Walter E.
Winneconne, Nevada

Hill, John G.
Reno, Nevada

Holopainen, Kathryn D.
Vancouver, B.C., Canada

Lepeltier, C.L.
New York, New York

Lippoth, Richard E.
Silverton, Colorado

Liu, Quan-Qing
Beijing, China

Lopez, L.
El Paso, Texas

Lowder, Gary G.
N.S.W., Australia

Neal, William L.
Kennewick, Washington

Nelson, Carl E.
Denver, Colorado

Olson, Roger H.
Golden, Colorado
NEW MEMBERS

To All Voting Members:

Pursuant to Article Two of the Association's By-Law No.1, names of the following candidates, who have been recommended for membership by the Admissions Committee, are submitted for your consideration. If you have any comments, favorable or unfavorable, on any candidate, you should send them in writing to the Secretary within 60 days of this notice. If no objections are received by that date, these candidates will be declared elected to membership.

Please address comments to Sherman P. Marsh, Secretary, AEG, U.S. Geological Survey, Mail Stop 973, Box 25046, Federal Center, Denver, Colorado 80225, U.S.A.

Editors note: Council has decided that all new applicants will receive the journal and newsletter upon application for membership. The process of application to the Toronto office, recommendation by the Admissions Committee, review by the Council, and publication of the Council's names in the Journal remains unchanged.

VOTING MEMBERS

Parr, Michael G.
Nashwauk, Minnesota

Patel, Jamnadas M.
Toronto, Ontario Canada

Puziar, Karel
Barako, Mali W.Africa

Schumacher, Andrew L.
Elko, Nevada

Stephenson, John F.
Toronto, Ontario Canada

Telemaniam, M.H.

AFFILIATE MEMBERS

Asmara, Ethiopia
Thompson, E.G.
Toronto, Ontario Canada
Trost, Paul B.
Golden, Colorado
Van Ingen, Robert
Toronto, Ontario Canada
Veek, Bruce M.
Reno, Nevada
York, Terrel M.
Lakewood, Colorado

Gavie, Gary T.
Geologist
Freeport Sulfur Company
Texas, U.S.A.

Gereouni, F.
Inst. of Geol. & Min. Expl.
Athens, Greece

Giroux, Gary
Montgomery Consultants
British Columbia, Canada

Gowin, Colin I.
British Columbia, Canada

Gormley, Gordon P.
Manager of Exploration, Precious Metals
Denison Mines Ltd.
British Columbia, Canada

Hammitt, Ray W.
Molycorp Inc.
Colorado, U.S.A.

Helser, Lois
Indiana University
Indiana, U.S.A.

Heithersay, Paul
Geopeko
N.S.W., Australia

Jackson, Martin Edward
De Beers Geology - Capex
Cape Province, South Africa

Jaworski, Kathie M.
Geologist
Ontario, Canada

Jennings, C.M.H.
Senior Vice-President, Exploration
Ontario, Canada

Jones, C.B.
Project Geologist
City Resources (Aust.) Pty.
Western Australia

Jones, Dennis
Geoquest International
Ontario, Canada

Kogler, Klaus
Uranerz Exp'l & Mining Ltd.
Saskatchewan, Canada

Kokkola, M.
Espoo, Finland

Lee, Linda
Geologist
MineQuest Exploration Associates Ltd.
British Columbia, Canada

Looney, Brian B.
Research Engineer
Savannah River Laboratory
South Carolina, U.S.A.

Luppichal, Eva-Lena
Swedish Geological Survey
Uppsala, Sweden

Macarthur, Ron
British Columbia, Canada

McAusland, J.H.
P.Eng. Mining
Emjay Enterprises
British Columbia, Canada

Madera, Alexander Y.
Philex Mining Corp.
Baguio City, Philippines

Martinez, Robert
Coeur-Rochester Inc.
Nevada, U.S.A.

Maynard, Denny E.
Surficial Geologist
British Columbia, Canada

Mohon, John P.
Geologist
Nevada, U.S.A.

Morton, Louise M.
J. & L. Morton
Mt. Pleasant, W.A., Australia

Mosier, Elwin L.
U. S. Geological Survey
Colorado, U.S.A.

Newman, J. E.
British Columbia, Canada

Nicholson, George E.
British Columbia, Canada

Petersen, Jon Steen
University of Aarhus
Aarhus, Denmark

Rogers, Michael
Geologist
Geochemical Services, Inc.
California, U.S.A.

Sawinski, Myron J.
British Columbia, Canada

Schafer, Robert W.
Addwest Gold Inc.
Nevada, U.S.A.

Schmidt, Jeanine
U. S. Geological Survey
Alaska, U.S.A.

Schmitt, Jean-Michel
Ecole Nationale Superieure
Fontainbleu, France

Seglund, J. A.
Missoua, U.S.A.

Shepherd, Thomas J.
British Geological Survey
London, England

Soderlund, James
Trinidad Mines Co.
Washington, U.S.A.

SPEVAK, Mike
Illinois, U.S.A.

Stephen, George R.
Horizon Research Inc.
California, U.S.A.
Recent Papers on Analytical Geochemistry

Pertinent papers from Geostandards Newsletter, published in April and October yearly, are too numerous to cite. This journal is a “must” for the geochemist. Where the number of authors on one paper is greater than four, “et al.” is used. This list covers those issues received by the author since those listed in EXPLORE 64.

Compiled by Gwenda E.M. Hall, Head of Analytical Methods Development, Geological Survey of Canada, 601 Booth Street, Ottawa, Canada K1A 0E8. Please send new references to Dr. Hall, not to EXPLORE.

Recent Papers on Analytical Geochemistry

- Froehner, Mark W. Bondar-Clegg Inc., Monona, U.S.A.
- Wright, James H. Willeton, W.A., Australia
- Student Members
 - Driacoll, Alain J., Jr. Virginia Tech., Virginia, U.S.A.
 - Jobson, Robert L. Idaho, U.S.A.
 - Oliver, Tom Arizona, U.S.A.
- Pujoiri, Lluira Barcelona, Spain

RECENT PAPERS

Recent Papers on Analytical Geochemistry

Pertinent papers from Geostandards Newsletter, published in April and October yearly, are too numerous to cite. This journal is a “must” for the geochemist. Where the number of authors on one paper is greater than four, “et al.” is used. This list covers those issues received by the author since those listed in EXPLORE 64.

Compiled by Gwenda E.M. Hall, Head of Analytical Methods Development, Geological Survey of Canada, 601 Booth Street, Ottawa, Canada K1A 0E8. Please send new references to Dr. Hall, not to EXPLORE.

Recent Papers

Recent Papers on Analytical Geochemistry

Pertinent papers from Geostandards Newsletter, published in April and October yearly, are too numerous to cite. This journal is a “must” for the geochemist. Where the number of authors on one paper is greater than four, “et al.” is used. This list covers those issues received by the author since those listed in EXPLORE 64.

Compiled by Gwenda E.M. Hall, Head of Analytical Methods Development, Geological Survey of Canada, 601 Booth Street, Ottawa, Canada K1A 0E8. Please send new references to Dr. Hall, not to EXPLORE.

Recent Papers on Analytical Geochemistry

Pertinent papers from Geostandards Newsletter, published in April and October yearly, are too numerous to cite. This journal is a “must” for the geochemist. Where the number of authors on one paper is greater than four, “et al.” is used. This list covers those issues received by the author since those listed in EXPLORE 64.

Compiled by Gwenda E.M. Hall, Head of Analytical Methods Development, Geological Survey of Canada, 601 Booth Street, Ottawa, Canada K1A 0E8. Please send new references to Dr. Hall, not to EXPLORE.

Recent Papers on Analytical Geochemistry

Pertinent papers from Geostandards Newsletter, published in April and October yearly, are too numerous to cite. This journal is a “must” for the geochemist. Where the number of authors on one paper is greater than four, “et al.” is used. This list covers those issues received by the author since those listed in EXPLORE 64.

Compiled by Gwenda E.M. Hall, Head of Analytical Methods Development, Geological Survey of Canada, 601 Booth Street, Ottawa, Canada K1A 0E8. Please send new references to Dr. Hall, not to EXPLORE.

Recent Papers on Analytical Geochemistry

Pertinent papers from Geostandards Newsletter, published in April and October yearly, are too numerous to cite. This journal is a “must” for the geochemist. Where the number of authors on one paper is greater than four, “et al.” is used. This list covers those issues received by the author since those listed in EXPLORE 64.

Compiled by Gwenda E.M. Hall, Head of Analytical Methods Development, Geological Survey of Canada, 601 Booth Street, Ottawa, Canada K1A 0E8. Please send new references to Dr. Hall, not to EXPLORE.

Recent Papers on Analytical Geochemistry

Pertinent papers from Geostandards Newsletter, published in April and October yearly, are too numerous to cite. This journal is a “must” for the geochemist. Where the number of authors on one paper is greater than four, “et al.” is used. This list covers those issues received by the author since those listed in EXPLORE 64.

Compiled by Gwenda E.M. Hall, Head of Analytical Methods Development, Geological Survey of Canada, 601 Booth Street, Ottawa, Canada K1A 0E8. Please send new references to Dr. Hall, not to EXPLORE.
APPLICATION FOR AFFILIATE MEMBERSHIP
& THIRD NOTICE OF 1989 DUES

The Association of Exploration Geochemists (AEG) is a professional nonprofit organization promoting interest in the application of geochemistry to the mineral industry and related fields. The AEG encourages membership from individuals or organizations working with geochemical data for a variety of uses including mineral exploration, analytical technology, computer processing, environmental geochemistry, geobotany, biogeochemistry, and other applications.

Membership in the AEG offers many benefits. Advances in geochemical technology are presented regularly in symposia, short courses, distinguished lecturers' workshops, field trips, the Journal of Geochemical Exploration (1200 pages annually), this newsletter, and Special Volumes published or cosponsored by the AEG. Annual membership dues of $42.50 U.S. include the Journal of Geochemical Exploration, EXPLORE, bibliography updates, discounts on most Special Volumes, and discounts on registration fees for symposia or short courses.

PLEASE CHECK

☐ Renewal ☐ New Member ☐ New Address (i.e. different from address label)

Your Name and Address:

NAME ________________________________

TITLE __________________________________

AFFILIATION ______________________________

ADDRESS __________________________________

Annual dues payable ________________________________

US $ 42.50

Student membership (requires the signature of a member of the academic staff to verify full-time student status)

Professor ____________________

Institution ______________________

$ 20.00

Corporate member:

$100.00

☐ Check here if you do not want your name and address released as part of the AEG mailing list.

Payment of annual dues automatically makes you an affiliate member. If you would like to become an active (voting) member of the A.E.G., please mark this box to receive the appropriate forms.

Charge: MasterCard ☐ VISA ☐

Credit Card Account Number Here:

Expiration date ____________________

Signature ______________________
ing district, Quebec, Canada. Min. Deposita 23(4): 293-298.

Gundobia, G.M. 1988. A behavior of F, B and rare elements in
geochemistry of gold and silver in the North End orebody,

MacLean, W.H. 1988. Rare earth element mobility at constant
inter-REE ratios in the alteration zone at the Phelps Dodge
massive sulphide deposit, Matagami, Quebec. Min. Deposita 23(4):
231-238.

use of sulphur gasses in soils to detect hidden mineralization.
Trans. IMM: B57-63.

deposit in parts of Idaho and Montana using mathematical

chemistry and Mineral Formation in the Earth Surface.
CSIC, Madrid. 890 p.

Schneider, H.J., Ozgor, N. and Palacios, C.M. 1988. Rela-
tionship between alteration, rare earth element distribution,
and mineralization of the Murgul Copper Deposit, Northeaster-
ern Turkey. Geology 16(6): 1230-1236.

Shelton, F.T., Chil-Sup, So and Jin-Su Chang. 1988. Gold-
rich mesothermal vein deposits of the Republic of Korea:
Geochemical Studies of the Janggoan gold area. Geology 16(6):
1221-1227.

Shrivastava, J.P. and Alexander, P.O. 1988. Geomicrobi-
ology on soil and air pollution: A critical study from Malajnjhond
and Zuwar base metal deposit, India. J. Geol. Soc. India 31(3):
328.

Swaab, P.M. 1988. A mineralogical investigation of refractory
gold ore and their beneficiation, with special reference to arse-

Wang, J.G. 1988. In situ leaching of disseminated gold depos-

CALENDAR OF EVENTS

International, National and Regional Meetings of Interest to Colleagues Working in Exploration and Other Areas of Applied Geochemistry

- **May 14-17, ’89 GAC/MAC Geol. Assoc. Canada/Mineralogical Assoc. of Canada, ann. mtg., Montreal (Colin Stearn, Rm. 238,
3450 University St., Montreal, H3A 2A7. Tel: 514-398-4062)**
- **May 23-25, ’89 Gold in Europe, Int’l Symposium on gold
metallurgy, exploration and beneficiation, (F. Tollen, Labora-
atoire de Mineralogie, Universite Paul Sabatier, 39 Allee Jules
Guesde 31400 Toulouse, France. Tel: 61.53.02.35)**
- **June 26-30, ’89 Gold geology & exploration, Intl. mtg.,
Shenyang, China (Zhu Fengsan, Chinese Soc. of Metals, 46 Don-
gsi Daji, Beijing, People’s Republic of China. Tel: Beijing
553768)**
- **July 9-19, ’89 28th Intl. Geological Congress, Washing-
ton, D.C. (Bruce B. Hanshaw, Box 1001, Hemdon, VA
22070-1001. Tel: 703-648-6053)**
- **Aug. 7-11, ’89 Caribbean Geological Conference, Chris-
tiandsted, St. Croix, U.S. Virgin Islands (Fred Nagle, Dept.
of Geological Sciences, Box 249176, Univ. of Miami, Coral Gables,
FL, 33124. Tel: 305-284-4253)**
- **Aug. 14-19, ’89 Symposium: Precambrian Granitoids (pe-
trogenesis, geochemistry, and metallurgy) (Organizing
Committee, Dept. of Geology, Univ. of Helsinki, P.O. Box 115,
SF-00171 Helsinki, Finland)**
- **Sept. 7-9, ’89 International Gold Expo, Reno, Nevada (Engi-
neering & Mining Journal, Industrial Publications Inc., 1237 E
East Cornell Avenue, Aurora, CO 80014. Tel. (303) 696-6100)**
- **Oct. 1-6, ’89 13th International Geochimical Exploration,
Symposium (Donal C. Brunt, Societade Brasileiro da Geo-
quimica, P.O. Box 2432CEP 20010. Rio de Janeiro, BR RJ) (see
No. 64, p. 27)**
- **Oct. 2-6, ’89 Remote sensing for exploration geology, mtg.,
Como, Alberta (Robert H. Rogers, Box 8616, Am. Arbor. MI,
48107-8618. Tel: 313-934-1200)**
- **Oct. 16-20, ’89 Mathematical methods in geology, Intl.
mtg., Pribram, Czechoslovakia (Vaclay Nemec, GEOINDUSTRIA,
Geologicka 2, 152 00, Prah S Barradov, Czechoslovakia)**
- **Oct. 22-25, ’89 Gold in Europe, Intl. mtg., Reno, NV, Soc. of Mining
Engineers and Australasian Inst. of Min. and Metall. (Meetings
Dept., SME, Box 025002, Littleton, CO 80162. Tel: 303-973-9550)**
- **Nov. 6-9, ’89 Geological Society of America ann. mtg., St.
Louis, with associated societies (Vanessa George, GSA, Box
9140, Boulder, CO 80301. Tel: 303-447-2020)**
- **Apr. 1-3, ’90 Geology and ore deposits of the Great Basin,
Reno, NV (Geol. Soc. Nevada, Box 12/21, Reno, NV 89510)**
- **May 6-12, ’90 Pacific Rim 90 congress on the geology, struc-
ture, mineral resources, economics and feasibility of mining and
development in the Pacific Rim, Gold Coast, Queensland, Aus-
tralia (The AusIMM Pacific, P.O. Box 731, Toowong Qld 4066,
Australia. Tel: 07-371-7900 (0617-371-7900 (international))
- **June 28-July 3, ’90 IMA 1990 15th Gen. Meeting of the Inter-
national Mineralogical Association, Beijing, China (Dr. Wang
Zejiu, Chinese Academy of Geological Sciences, Beijing, China)**
- **July 2-6, ’90 Minerals, materials & Industry, Edinburgh, Scotland,
14th Congress of the Council of Mining and Metallurgical
Institutions (The Secretary, IMM, 44 Portland Place, London
W1N 4BR, England)**
- **Aug. 12-18, ’90 8th Symp. of Intl. Assoc. on the Genesis of
Ore Deposits, Ottawa, Canada (L.M. Cumming, Secretary, 8th
IAGOD Symposium, Geological Survey of Canada, 601 Booth St.,
Ottawa, Ontario, Canada K1A 0E8)**
- **Aug. 25-31, ’90 14th International Geochimical Exploro-
tion Symposium, Prague, Czechoslovakia (Geological Survey
AUGA, Symposium on geochemistry prospecting, Malostranske
nám. 19, 118 21 Praha 1, Czechoslovakia)**
- **Apr. 28-May 1, ’91 15th International Geochimical Exploro-
tion Symposium, Reno, NV (Richard B. Jones, Nevada
Bureau of Mines & Geology, Univ. of Nevada, Reno, NV
89557-0088. Tel: 702-784-6691)**

Note to AEG Colleagues: There will be 1500 spaces available for
low-cost housing for the 28th International Geological Con-
gress in Washington, D.C., July, 1989, at University dormitories at The George Washington University, Georgetown University, and American University. Read the second circular for the Congress carefully when you receive it and make your reservations for the low-cost housing as soon as you can because these spaces will undoubtedly be "exploration targets" for our association as well as other professional groups and colleagues.

Please check this calendar before scheduling a meeting to avoid overlap problems. Let this column know of your events.

Fred Siegel
The George Washington University
Department of Geology
Washington, D.C. 20052

YOU READ IT FIRST IN EXPLORE

Index to Issue Numbers 61-64

BIBLIOGRAPHY

1. Asmussen, Dennis G. Mineral Development Opportunities in Minnesota. no. 63, p. 9, July, 1988
2. Barnes, Sarah-Jane. The Use of Metal Lixiviations in Platinum-group Elements Prospecting. no. 64, p. 6, November, 1988
3. Bloom, Lynda B. Analytical Imprecision and Data Interpretation. no. 61, p. 8, October, 1987
5. Callahan, John E. A Safe Heavy Liquid. no. 64, p. 14, November, 1988
11. Hall, Gwendy E.M. The Determination of Pt and Pd in Waters. no. 64, p. 12, November, 1988
14. Hoffman, Stan J. Volcanogenic Massive Sulphides in Newfoundland - Pearl Harbor File. no. 64, p. 12, November, 1988
15. Kelb, Stanley B. Magma Series: Chemistry and Mineral Deposits. no. 61, p. 5, October, 1987
18. Macloke, J.B. and Jones, V.T. Mobile Mercury Application in the Search for Gold. no. 61, p. 6, October, 1987
23. Smith, A.Y. International Geochemical Mapping. no. 61, p. 8, October, 1987

INDEX
alteration minerals 9
analytical techniques 8, 11, 14, 18, 20
heavy liquid 5
resistant minerals 25
sample preparation 20
biochemistry 19, 20, 21
British Columbia 19
Vancouver Island 19, 20
China 23
chromium 14
classification 22
magma-series 15
computer programs 24
copper deposits 22
porphyry copper 16
stratiform copper 19
data base 4, 8, 19
deposit genesis 2, 15, 16
environmental 14
Finland 23
eleven-element vein deposits (Ni-As-Ag-Co-Bi) 16
France 23
gold 4, 7, 23
gold exploration 18, 25
gold deposits 21, 22
interpretation of data 22
gold exploration 4, 8, 15, 20, 21
interpretation of data 13, 25
Greenland 12
groundwater geochemistry 22
heavy mineral survey 4, 19
history 11
microorganisms and mineral exploration 21
Labrador 23
lake sediment 8, 23
lead-zinc deposits 16
massive sulphide deposits 12
interpretation of data 13, 14
mined 6, 23
Mexico 22
Sonora - gold deposit 22

ADVERTISE IN EXPLORE
See rates on page 2
Index to Issue Numbers 61 - 64

LIST OF ADVERTISERS

Acme Analytical Laboratories Ltd.
Advance Exploration
American Assay Laboratories
Bondar-Clegg & Company
Cereus Exploration Technologies
Chemex Labs
Coast Geochemical Laboratories
Freepoint McMoRan Company
Geochemical Services Inc.
Legend Metallurgical Laboratory
Minerals Exploration Geochemistry
Moriah Instruments
New Horizon Software
Prime Geochemical Methods
Rocky Mountain Geochemical
Skyline Labs, Inc.
Theodore P. Pastore

The Association of Exploration Geochemists Newsletter
PO Box 9777 University Station Reno Nevada 89507-9777 U.S.A.

Please send changes of address to the Association office at P.O. Box 523 (Metropolitan Toronto)
Rexdale, Ontario, M9W 5G4, Canada.

EXPLOR does not maintain its own mailing list.

BULK RATE
U.S. POSTAGE
PAID
PERMIT #15 8
RENO, NEVADA

LIST OF ADVERTISERS