Two letters in the previous issue of EXPLORE have prompted musings on the funding of research and its effect on exploration geochemistry.

I have been privileged to work in a research organisation which has made many valuable contributions to exploration geochemistry. At the same time, I have had the opportunity to visit similar research organisations throughout the world many of which, like CSIRO, have received the majority of their funding directly from government. As a result of innovative research in universities, government instrumentalities, industry and consultancies, geochemical exploration is a mature science and many of its techniques are being applied in other fields.

Because of the significant improvements to, for example, exploration techniques, analytical equipment and high-speed computation of complex data sets, our founding fathers such as Goldschmidt and Vernadskiy would have great difficulty in recognising the present practices of exploration geochemistry. These changes have not occurred overnight, but through a process of observation, learning, application, testing and communication, and often at significant cost to governments which until recently had a vision of national good.

However, funding of research in developed countries has undergone significant change thanks to the economic rationalists. Finance for basic research has dwindled and the user-pays principle means that research time is directed towards consultancies, problem-solving and seeking funding sources. All this can result in, is eventual intellectually bankruptcy. Other consequences are a marked decrease in the number of research institutions and teaching of exploration geochemistry, reduced communication due to industry confidentiality requirements, and loss of individuals 'free' time for refereeing, editing, preparation of conferences, field trips, workshops etc., or to the running of societies. We in the Association are facing such problems at the moment.

What research opportunities exist? Both letters in the recent EXPLORE highlight the sharp focus of AEG in fostering and improving the applications of geochemistry to exploration for mineral deposits. There is no doubt that we can further improve our exploration techniques, develop new analytical methods and find new and faster means to analyse the data. We can then apply these techniques to the search for natural resources in those countries with burgeoning foreign debts and rapidly increasing populations, where the need to develop natural resources is paramount to economic survival. But how much of this is returned to the people in the form of a better standard of living?

For those of you who have read "Breakthroughs", by Nayak and Ketteringham of Arthur D. Little, Inc., some of the most innovative research has been done with minimal financial resources and often not directed at a specific need. The current trend of funding multi-disciplinary research may indeed focus on other clients but it would be amazing if we did not discover something of benefit to the exploration industry. Who knows, we might come up with the exploration equivalent of the Sony Walkman or 3M's Little Yellow Note Pads, whilst at the same time improving the environment, growing better crops, and generally improving the standard of living throughout the world.

Graham Taylor

Natural Aggregate - New Opportunities for Geochemists

The subject of industrial rocks and minerals traditionally has lacked the prestige commonly associated with most other fields of geology. Of the industrial rocks and minerals, the truly humble material is natural aggregate - crushed stone and sand and gravel. Most professional geologists, even those who work in the mineral-resource field, commonly ignore natural aggregate in favor of other more glamorous aspects of the geology; however, Robert L. Bates (1969) pointed out in the introduction to his book on the Geology of Industrial Rocks and Minerals, "The student of geology will find that the variety of processes involved in the formation of the industrial rocks and minerals, together with the problems..." Continued on page 3

CONTENTS

President's Message ... 1
Technical Notes... 1
Natural Aggregate - New Opportunities for Geochemists 1
Notes from the Editor ... 2
Letters ... 5
83 Missing Down-Under 6
Upcoming JGE ... 6
Technical Notes	Geochemical Exploration for Precious Metals (Au and PGE) in Gansu Province, China 6
Software Review .. 10
Calendar of Events ... 11
New Members ... 12
AEG Bibliography .. 13
Recent Papers .. 13
AEG Publications ... 16
AEG Application for Admission 17-18
AEG Committees ... 19
List of Advertisers .. 20
Information for Contributors to EXPLORE

Scope This Newsletter endeavors to become a forum for recent advances in exploration geochemistry and a key informational source. In addition to contributions on exploration geochemistry, we encourage material on multidisciplinary applications, environmental geochemistry, and analytical technology. Of particular interest are extended abstracts on new concepts for guides to ore, model improvements, exploration tools, unconventional case histories, and descriptions of recently discovered or developed deposits.

Format Manuscripts should be double-spaced and include camera-ready illustrations where possible. Meeting reports may have photographs, for example. Text is preferred on paper and 5-or 3-inch IBM-compatible computer diskettes with ASCII (DOS) format that can go directly to typesetting. Please use the metric system in technical material.

Length Extended abstracts may be up to approximately 1000 words or two newsletter pages including figures and tables.

Quality Submittals are copy-edited as necessary without reexamination by authors, who are asked to assure smooth writing style and accuracy of statement by thorough peer review. Contributions may be edited for clarity or space. All contributions should be submitted to:

EXPLORE

c/o USGS, Box 25046, MS973, Denver Federal Center
Denver, CO 80225, USA

Information for Advertisers

EXPLORE is the newsletter of the Association of Exploration Geochemists (AEG). Distribution is quarterly to the membership consisting of 1200 geologists, geophysicists, and geochemists. Additionally, 100 copies are sent to geoscience libraries. Complimentary copies are mailed to selected addresses from the rosters of other geoscience organizations, and additional copies are distributed at key geoscience symposia. Approximately 20% of each issue is sent overseas.

EXPLORE is the most widely read newsletter in the world pertaining to exploration geochemistry. Geochemical laboratories, drilling, survey and sample collection, specialty geochemical services, consultants, environmental, field supply, and computer and geoscience data services are just a few of the areas available for advertisers. International as well as North American vendors will find markets through EXPLORE.

The EXPLORE newsletter is produced on a volunteer basis by the AEG membership and is a non-profit newsletter. The advertising rates are the lowest feasible with a break-even objective. Color is charged on a cost plus 10% basis. A discount of 15% is given to advertisers for an annual commitment (four issues). All advertising must be camera-ready P/M or negative. Business card advertising is available for consultants only. Color separation and typesetting services are available through our publisher, Network Graphics, Inc.

Full page 254h x 178w mm (10h x 7w in) US $ 880
Half page 254h x 86w mm (10h x 3-2/8w in) US $ 480
Third page 254h x 86w mm (10h x 2w in) US $ 380
Quarter page 178w x 86w mm (7h x 3-3/8w in) US $ 380
Quarter page 254h x 86w mm (4-7/8h x 3-3/8w in) US $ 270
Quarter page 254h x 41w mm (10h x 1-5/8w in) US $ 270
Quarter page 60h x 86w mm (2-3/8h x 5-3/8w in) US $ 170
Business Card 51h x 86w mm (2h x 3-3/8w in) US $ 70

Please direct advertising inquiries to:

S. Clark Smith
Owen Lavin
MINERALS EXPLORATION GEOCHEMISTRY
NEWMONT EXPLORATION
PO BOX 18325
2600-1700 Lincoln St
PO BOX 8911
DENVER, CO 80203
USA
USA
TEL: (702) 849-2235
TEL: (303) 837-5820
FAX: (702) 849-2335
FAX: (303) 837-5851

Now for something different. This issue of EXPLORE features our first article on natural aggregate. For those of you who may think this is out-of-place in a newsletter for exploration geochemists, I suggest you read the interesting and informative article by William Langer. This article is another timely reminder that geochemistry is an integral part of the world we live in.

Acting on a prompt from EXPLORE editors, Chinese authors have contributed their first article to EXPLORE. Readers interested in platinum-group elements will want to read the article by Zu Jiale et al.

Despite the gloom and doom predictions for exploration geochemistry in the future, major North American laboratories are reporting their best years since 1988. Surprisingly, only a small portion of this business is from South America. Anyone trying to get rapid turn-around in September will attest to this. Further, this issue of EXPLORE features an advertisement for a field-oriented geochemist. The truth is, "exploration geochemistry is alive and well". Because no young people are entering the field, I predict from this time forward that there will be a shortage of geochemists who are willing to work closely with exploration geologists in places that may not always be dry and comfortable. This will "catch up" to us very soon, if it has not already. Being an exploration geochemist should not necessarily mean that your hair is either white or gone. It is up to us to encourage young geologists to specialize in the very effective methods of geochemical exploration. Who else will help us out of the field every evening as we get lost more and more frequently?

Contributor's deadlines for the next four issues of EXPLORE are as follows:

<table>
<thead>
<tr>
<th>Issue</th>
<th>Publication date</th>
<th>Contributor's deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>January 1995</td>
<td>November 30, 1994</td>
</tr>
<tr>
<td>87</td>
<td>April 1995</td>
<td>February 28, 1995</td>
</tr>
<tr>
<td>88</td>
<td>July 1995</td>
<td>May 31, 1995</td>
</tr>
<tr>
<td>89</td>
<td>October 1995</td>
<td>August 31, 1995</td>
</tr>
</tbody>
</table>

Owen Lavin
Editor EXPLORE

Notes from the Editor
Technical Notes
Continued from Page 1

of discovery and exploitation, make this broad field fully as fascinating as any other. In addition, for the inquisitive — and acquisitive — geologist, engineer, or chemist, there are innumerable beckoning avenues of research in the further use and adaptation of the industrial rocks and minerals." This article discusses one of the industrial minerals — natural aggregate — and identifies some of the beckoning avenues of geochemical research that relate to aggregate.

Natural aggregate makes up approximately half the volume of mined material in the United States. Over the past two decades aggregate usage has averaged approximately 2 billion tons per year, or approximately 8 short tons per person per year. In terms of dollars, aggregate production had a combined value during 1992 of approximately $8.5 billion, which by far exceeds that of iron ore ($4.1 billion), copper ($4.2 billion), or the combined value of gold, silver, and the platinum-group metals ($4.2 billion) (U.S. Bureau of Mines, 1993).

Crushed stone and sand and gravel are most commonly used as aggregate in the construction industry. As an example, an average six-room house requires approximately 90 tons of aggregate, and a four-lane interstate freeway requires approximately 85,000 tons of aggregate per mile. Municipal projects such as public buildings, bridges, dams, and airports require large quantities of aggregate, and as an example, the new Denver International Airport required approximately 5 million tons of aggregate (Langer and Glanzman, 1993).

Although geochemists are not commonly involved with the end-use of mineral resources, they can make significant contributions to research in new market areas for aggregate and aggregate byproducts. As an example, a variety of innovative uses for pond screenings (the fines washed from aggregate as it is processed) could be enhanced by geochemical studies (Stokowsk, 1993). Certain types of pond screenings may be suitable for environmental uses such as controlling or limiting acid-mine drainage and controlling SO2 emissions (Kumar and Hudson, 1993). Some pond screenings contain trace minerals that make them effective soil amendments. Geochemists could investigate the effectiveness of these applications, as well as research the chemical processes related to the use of these materials.

Natural aggregate varies greatly in quality, depending on the source. Suitable aggregate is composed of essentially clean, uncoated particles of proper size, shape, strength, and durability. Aggregate commonly is considered to be an inert filler, and, as such, should not change chemically once in place. Research in cement concrete technology shows, however, that many rocks contain minerals that react with or otherwise affect cement concrete. One of the most destructive chemical processes is the alkali-silica reaction (ASR). Under specific conditions, certain high-silica minerals readily react with the alkali hydroxide solutions in the cement pastes, producing alkali-silica gel. By water uptake, gel causes expansion of the aggregate and subsequent deterioration of the concrete (Dolar-Mantuan, 1983). Although the ASR has been extensively studied, there is a need for continued geochemical research.

In asphaltic concrete, the electrochemical properties of rock relate to the ability of the bitumen to adhere to the aggregate. Many investigators agree that siliceous aggregates become negatively charged in the presence of water (Hoiberg, 1965). In contrast, some types of aggregate such as limestone and other calcareous materials have a positive surface charge in the presence of water. Some rocks contain both silica, which imparts a negative charge, and calcium, magnesium, aluminum, or iron, which permits the surface to have a positive charge. The positive molecules in the water lower the interfacial tension and consequently lower the adhesion tension (Smith and Collins, 1993). If the electrochemical properties of the rock are known, additives can be mixed with the bitumen to prevent or limit stripping. Geochemists commonly investigate the electrochemical properties of rock and water-rock interactions and can apply those techniques to characterizing the electrochemical properties of aggregate and studying of processes related to the stripping of bitumen from aggregate.

Not only do geochemists research the alkali-silica reaction problems, they also utilize areal geochemical studies to help identify and characterize potentially reactive source rocks (and sand and gravel derived from those rocks) in the field. The metastable silica minerals opal, tridymite, and crystobalite, as well as the volcanic glasses, are among the most reactive varieties of rocks. Chalcedony is less reactive, and quartz is far less reactive than the metastable silica minerals. The expansion of chalcedony may be relatively slow, and that of quartz very slow; these two minerals usually produce less gel than the metastable silica subgroup...
Technical Notes
Continued from Page 3

(Dolar-Mantuani, 1983, pg 87-88). Reactive volcanic rocks include shallow intrusive rocks that have a glassy or partially glassy groundmass such as cryptocrystalline, devitrified rhyolite, dacite, latite and some andesite, related microcrystalline porphyry, and tuff. The reactivity of these rocks is caused by the composition and texture of the groundmass and is enhanced by the large internal specific surface that develops when the volatile constituents of the rocks expand during eruption (Dolar-Mantuani, 1983). By understanding these relationships, the geochemist can help predict the location and characteristics of potentially reactive sources of aggregate.

Although a variety of laboratory tests are available to identify potentially reactive aggregate, the economics of scheduling construction projects sometimes conflicts with the extended time required for comprehensive tests. The construction industry has been forced to use such data as are available and to depend on service records of material that presumably has the same characteristics. These savings of time can have severe consequences. For example, concrete made with rocks containing the phyllicolitative mineral vermiculite (such as graywacke, phyllite, argillite, and silstone) reacts very slowly, and expansion continues for many years. In Nova Scotia, concrete structures containing these rocks began forming expansion cracks after twelve years, and the cracks continued to form and widen at a significant rate for 30 years or more (Dolar-Mantuani, 1983).

In order to address the issue of slow, long-term reactions, the aggregate industry needs reliable methods to predict alkali reactivity. What distinguishes geologic studies from other resource investigations is the ability to predict geologic parameters without extensive sampling and testing. For example, the chemical properties of aggregate are closely related to its suitability for use in portland cement concrete. Through knowledge of the chemical and physical properties of key rock types, and by relating these properties to appropriate classification schemes, it may be possible to anticipate specific properties of potential aggregate resources prior to commencing extensive tests.

The interdependence of aggregate occurrence, physical and chemical properties, economics, technology, and policy is a complex topic understood only by serious students of the subject. Even professional geologists who work in the field of industrial minerals are inclined to overlook the difference between resources and supplies. The existence of an adequate aggregate resource base is only the first step in development of the resource. To actually produce and deliver aggregate also requires adequate public policy. Geologists can help to develop this policy. Geologists clearly have the responsibility to provide the earth-science information on which to base policy decisions. They also have the responsibility to communicate and explain that information to the policy makers. Beyond that, participation generally functions through the democratic process. For the geologist as a citizen, it remains a personal issue.

It is time to shift paradigms, to implement new ideas and methods, to get involved. In doing so, the inquisitive geologist, engineer, or chemist, will soon recognize numerous challenging opportunities that make natural aggregate a subject as fascinating and rewarding as most any other aspect of geology.

REFERENCES

Continued on Page 5
Technical Notes
Continued from Page 4

This article is an excerpt from a presentation made at the 30th Forum on the Geology of Industrial Minerals, Halifax, Nova Scotia, Canada.

William H. Langer
U.S. Geological Survey
MS 913, P.O. Box 25046
Denver Federal Center
Denver, CO, U.S.A. 80225-0046

Dear Sir:

I read with interest Adrian Smith’s letter in the July issue of EXPLORE (No. 84) concerning the Association and its focus, or lack thereof.

Governments should, and often do, respond to the wishes of their electorates. One of the recurrent messages that has been passed to politicians around the world is to do a better job of maintaining our environment. Geochemists in government are now becoming part of the solution, we have an intimate knowledge of the distributions of elements in the natural environment and the processes which control these distributions. This permits us to bring our geochemical expertise on natural chemical dispersion processes into environmental forums so that regulations, as unpopular as they may be, will be set in place that reflect nature’s processes. We all laugh with derision at regulations that mandate levels in the environment that are lower than those that occur naturally. The very fact that these regulations came into place marks a failure of the geological and geochemical community to communicate what we have learned of natural processes to the regulators. In many countries it has been a long struggle for us to be listened to in the policy making process. We have been perceived as part of the problem, those with strong views and loud voices have equated geology with mining, and therefore we were not to be trusted or listened to. The time is long past when we can afford to snipe from the sidelines, if the situation is to be improved we have to become involved.

At the Geological Survey of Canada a number of us have been working with the Federal Department of Environment in preparing a national policy on both synthetic and naturally occurring toxic substances. This involvement has been strongly supported by the Mining Association of Canada. It is clear, to us at least, that helping to establish a policy framework that recognizes that the background levels of naturally occurring toxic substances vary spatially as a result of geological, pedological and other natural processes, is as much a service to the mining industry, who will have to mine and remediate within that policy framework, as completing another geochemical map or developing a new analytical procedure. By such actions we hope that, to quote Adrian Smith, "Environmental geochemists (will not have to) spend their lives responding to ever increasing bizarre regulatory impositions and numeric criteria which have almost nothing to do with science ..."

Where does this put the Association and its members? I think we have to take a broader view. I expect many of us believe we have a commitment to the mining industry, the provision of mineral resources, and the application of geochemistry to society, that goes beyond the strict confines of exploration geochemistry or geochemical prospecting as defined 30 or 40 years ago. I have always considered myself an “Applied Geochemist” wanting to apply my knowledge to any pertinent problem. In the light of the current discussions, I admire the foresight of the institution that awarded me my graduate degree almost 30 years ago in Applied Geochemistry - not Exploration Geochemistry. I regret now that when we formed ourselves that we did not call ourselves the Association of Applied Geochemists, but that is all water under the bridge. There are few major differences in the science, study of processes, and even procedures, employed in exploration and environmental

LETTERS

Discovery Oriented Geochemist

Newmont Exploration Limited is looking for an exploration geochemist with an advanced degree and approximately five to ten years mineral exploration experience to join their exploration team in Carlin Nevada. The individual should be self-motivated, field-oriented, and have strong communication, interpersonal and computer skills.

The position offers a unique opportunity to work, as part of a practical and skilled exploration team, on some of the most significant gold deposits and prospects in North America.

If this opportunity interests you and you feel that you have the correct qualifications, send a copy of your resume, in confidence, to:

Newmont Exploration Limited
Attn: Chris McAnany
1700 Lincoln St.
Denver, CO 80203
Letters
Continued from Page 5

dgeochemistry; the differences are in the initial mind sets of the investigators and how they approach problems. There is a clear need for the application of our knowledge in the environmental arena and establishing environmental regulations. Interestingly, the converse is also true, we have already one instance where the knowledge gained in an environmentally driven project has fed back to exploration geochemistry and is being applied in mineral exploration.

The composition of the Association’s Council and committees is a function of the available professionals willing and able to commit time to the Association. For a number of years it has been more difficult to obtain the time of members in industry, and elsewhere. Many employers appear to see no benefit in their staff’s commitments of time and energy to the Association. Neither has it helped that the exploration industry has in recent years not seen the benefits of employing full time geochemists. Perhaps we should be grateful that others have stepped in. The alternatives would have been more “re-cycled and re-used” Council and committee members, rather than new blood, or an Association that simply withered and died because everybody had an excuse not to become involved.

Robert G. Garrett
Geological Survey of Canada
Ottawa, Ontario

COST-EFFECTIVE
OVERBURDEN
PENETRATION
WITH THE
"ENZYME LEACH"

Small quantities of trace elements released by oxidation of buried mineral deposits and dispersed to the surface comprise a very small component of the total concentration of these elements in the soil. The ENZYME LEACH is used to determine trace elements added to exotic overburden rather than the total amounts present. This process typically produces dramatic anomaly-to-background contrast and provides a very inexpensive means of finding overburden-drilling targets. The ENZYME LEACH has been successfully tested on ore deposit up to 1250 feet (400 meters) beneath the surface and petroleum at depths up to 9700 feet (3200 meters).

For more information, please contact:

Dr. J. Robert Clark
Enzyme-ACTLABS, LLC
12000 West 50th Place
Wheat Ridge, CO 80033
Office: 303-424-7718
Home: 303-424-4069
FAX/Modem: 303-420-6646

Dr. Eric L. Hoffman
Activation Laboratories, Ltd.
1336 Sandhill Drive
Ancaster, Ontario L9G 4V5
Office: 905-648-9611
Fax: 905-648-9613
Modem: 905-648-9688

UPCOMING JGE

VOLUME 51, NO. 3 SEPTEMBER 1994

CONTENTS

Research papers

Reconnaissance geochemistry and its environmental relevance.
S. Painter, E.M. Cameron, R. Allan and J. Rouse

Criteria for distinguishing between gold-bearing and barren ironstones at Tennant Creek, Northern Territory, Australia.
A.J. Stolz, R.R. Large, P. Robinson, and R. Wedekind

Ultra-low density sampling of overbank sediment in Fennoscandia
P. Eden and A. Bjorklund

Short note
Aquatic bryophytes as bioindicators of arsenic mineralization in Polish and Czech Sudety Mountains
A. Samecka-Cymerman and A.J. Kempers

Contents Volume 51

TECHNICAL NOTES

Geochemical Exploration for Precious Metals (Au and PGE) in Gansu Province, China

Rapid and Simultaneous Determination of Pt, Pd and Au

After great advances were made in prospecting for gold in China, (Xie and Wang, 1991), Chinese geochemists began studying platinum group elements (PGE) which are more difficult to prospect for than gold. The first thing needed was to develop a rapid, simple, efficient and low-cost PGE analytical technique with a low detection limit. In 1990,

Continued on Page 7
Technical Notes
Continued from Page 6

Chen and Jiang (1990) completed their research on Rapid Chemical-Spectral Analytical Technique (RCSAT) for simultaneously determining Pt-Pd-Au and Lin Yunan et al. (1990) developed the technique for the simultaneous spectrometric determination of subtrace amounts of Pt-Pd-Au by the lead-fire assay method. RCSAT was adopted in our survey.

The detection limits of RCSAT for Pt, Pd and Au are 0.3 μg/g, 0.1 μg/g and 0.1 μg/g respectively, and the analytical precision ranges from 15 to 34 percent. This method was improved by Zhang Guofu of the Gansu Provincial Bureau of Geology and Mineral Resources in 1992. In the modified RCSAT, samples are first processed by wet decomposition, then the complexing agent "app" is added to make Au, Pt and Pd form "app" complexes and thereupon these metals can be absorbed and preconcentrated by active carbon. After being ashed at a high temperature, a certain amount of "ZIC" buffer is added to the test samples to lower the melting points of these metals. Finally, samples are determined simultaneously for Pt, Pd and Au by rapid emission spectrometry. The detection limit for each of these three metals can be lowered to 0.1 μg/g using this technique. The accuracy is 0.02-0.16 μg/g. Thus, the analytical requirements for geochemical exploration for PGE can be fully met.

Geochemical Exploration for Pt, Pd and Au in Qilian Mountains, Gansu Province

The survey area is situated in the main Qilian Mountains, which are between 3000 and 5000 metres above sea level. Strata from Proterozoic to Quaternary outcrop in this area. Mafic and intermediate-mafic volcanic rocks occur in the Proterozoic Changcheng system, Cambrian system and Ordovician system. Intermediate-mafic volcanic rocks are well developed in the Cambrian system. Caledonian magmatism is very strong in the area. Well developed Caledonian ultramafic rocks occur as dikes or lenses that are found in two belts; i.e. the North belt and the South belt.

There are several known Au-Pt placer occurrences in the upper reaches of the two main drainage systems distributed in the survey area, respectively (Figure 1). Ultramafic rocks are well developed in the North and South sides of the Pt-Au mineralization belt, which suggests that these rocks may have a genetic linkage to the Au-Pt placers.

Samples of fourteen types of rocks or ores in source areas were analyzed prior to the main survey. The results showed that ultramafic rocks and chromites had high Pt contents. Osmiridium was also found in panned concentrates from ores of chromite. So it can be deduced that placer Pt did come from ultramafic rocks and their chromites, while the sources of placer Au may be related to the intermediate-mafic volcanic rocks in the Proterozoic to Ordovician-aged rocks (Changcheng system, Cambrian system and Ordovician system) and Caledonian ultramafic rocks.

More than 1000 composite stream sediment samples were taken from an area of about 5000 km² in the hinterland of the...
Technical Notes
Continued from Page 7

Qilian Mountains and analyzed for Pt, Pd and Au by Gansu Provincial Bureau of Geology and Mineral Resources using RCSA T improved by the Zhang Guofu. The original sampling density was 1 sample/km². Four samples were collected from each 4 km² grid cell and were composited into one sample for analysis. Good results have been obtained in this regional geochemical survey for Pt, Pd and Au.

Platinum, Pd and Au contents of all samples are above the detection limits of our method, which ensures the reliable delineation of Pt, Pd and Au anomalies. The most frequent Pt concentrations are from 0.4 to 0.7 μg/g, with a minimum of 0.1 μg/g and a maximum of 8.6 μg/g. The threshold is 1.5 μg/g. Two zones of anomalous platinum can be recognized, i.e., the North zone and the South zone (Figure 1). The South zone trends W-NW and corresponds with the South ultramafic-rock zone on the whole. Most of the Pt anomalies in the North belt are nearly isometric. Several Pt anomalies are distributed North and East of this zone. The main anomalies of these two zones have several concentration centers which coincide with ultramafic intrusives or Ordovician rocks. The source areas of Pt-Au placers can be indicated more clearly by comparison between Pt (also Au and Pd) anomalies and the drainage distribution.

For Pd concentrations are most commonly from 0.6 to 1.0 μg/g with the minimum of 0.1 μg/g and maximum of 7.4 μg/g. The threshold is 2.0 μg/g. The characteristics of Pd anomalies are similar to Pt, but their extensions are smaller than the latter (Fig 2). For Au, most frequent contents are from 0.3 to 0.6 μg/g with the minimum of 0.1 μg/g and maximum of 169 μg/g. The threshold is 1.3 μg/g. Gold anomalies can also be divided into two zones and even more importantly the South zone coincides with the distribution of Pt and Pd anomalies on the whole (Figure 3). Therefore, it appears that Au also has a comparatively close relationship with ultramafic rocks. The concentration centers of Au anomalies in the North zone partly correspond with Pt and...
Technical Notes
Continued from Page 8

Pd anomalies, but the Au anomalies are mostly centered to the east of the Pt-Pd anomalies. So these Au anomalies have a closer relationship with intermediate volcanic rocks of Ordovician age than do those of Pt and Pd. By comparing anomalies with the drainage distribution, it can be seen that Au (also Pt and Pd) anomalies delineated in the northern part of the area do not belong to the same drainage basin in which Au Pt placers occur. So these Au anomalies may be new and promising areas for prospecting primary Au and PGE deposits.

Concluding Remarks

This discussion concerns a preliminary regional geochemical exploration for Au, Pt and Pd, but undoubtedly it has proved the effectiveness of geochemical exploration, not only in gold prospecting, but also in the exploration for PGE deposits.

Figure 3. Regional geochemical anomalies of Au in stream sediments.

Acknowledgement

Many thanks to Prof. Xie Xuejing for encouraging our research. Thanks are also due to Mr Shen Xiachu (IGGE) and Mr. Ren Fengshou (Chief Geologist, BGMR, Gansu) for revising and editing our manuscript.

Continued on Page 10

Partners in Exploration

Chemex Labs is your partner in the field, providing sample pickup, technical assistance, training, and portable labs in addition to our assay and geochemical services. These include extensive fire assay services; ICP, AA and XRF spectroscopy; classic wet chemistry; neutron activation analyses and various chromatographic techniques. Like good partners we can instantly deliver your superior analyses through our electronic data centre to any corner of the globe.

Assayers to the World

Chemex Labs

Analytical Chemists
Registered Assayers
Geochemists

in Canada and the United States – Fax 1-800-980-2436
VANCOUVER • RENO • TORONTO • ANCHORAGE • TUCSON • ELKOBUTTE • ROUYN • THUNDER BAY • CHIANG MAI • HERMOSILLO
Technical Notes
Continued from Page 9

References
Xu Jiale, Sun Shancai, Zhang Guofu and Fei Yiqing
Bureau of Geology and Mineral Resources of Gansu Province, Lanzhou, Gansu 730000, China

SOFTWARE REVIEW

P-RES is an integrated software program, developed at the University of British Columbia (UBC), with academic and industry support, for the specific purpose of assisting in the interpretation of multi-element geochemical datasets. P-RES has recently been documented and made available to the public by A. Bentzen and A.J. Sinclair of UBC. P-RES runs on MS-DOS computers and reads commercially supported dBase database files. The maximum number of data points allowed varies with computer configuration, but the program had no problem handling a test dataset with 1500 samples and 32 elements.

The plotting and analysis functions that are available in P-RES complement the earlier UBC program PROBPLOT (Stanley, 1987), and provide a number of immediately useful capabilities. These include: basic statistics, binary graphs (X-Y plots), ternary diagrams, sample location maps, contour maps, histograms, correlation matrices, correlation

dendrographs, and Pearce element ratio plots. P-RES produces no hardcopy output other than screen dumps, but it can produce formatted output for PROBPLOT and the UBC trend surface program "TREND" (O’Leary et al., 1966) although these options were not tested in this review.

The program is menu driven, but the interface is somewhat out-of-date and takes getting used to. For example, I inadvertently exited any number of times before I realized that the "Exit" and "Quit" menu options do exactly what they suggest—exit the program. Escape is the preferred key to abort menu choices. There is no on-line help, but a complete and well formatted manual is included on disk, and can be printed for anyone that really reads manuals.

When I ran P-RES, I had some difficulty reading my test dataset until I removed the data with missing results, and was, in general, disappointed with the low-resolution screen dump printer output; however, P-RES is available at a very low cost and may be of interest to users that do not have easy access to the large, commercially available statistical and graphical packages that are required for modern exploration geochemistry.

P-RES provides a number of good geochemical analysis tools, but is limited because of its lack of hardcopy capabilities and dated user interface. The dBase support is good, and dendrographs are quick and easy. This alone makes the program useful.

Anyone wishing to obtain a copy of P-RES should contact the Mineral Deposit Research Unit, Department of Geological Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada. TEL: (604) 822-6136; FAX: (604) 822-6088, EMAIL: MDRU@geology.ubc.ca.

References

Brian Krzys
Newmont Exploration Limited
New Non-Toxic Heavy Liquids from XRAL

Don't risk your health by using carcinogenic heavy liquids for your mineral separations!

- Try Lithium & Ammonium Metatungstate (LMT & AMT) instead
- Supplied ready to use, at densities of 3.0 and 2.4
- Lower viscosity than sodium polytungstate
- Simply evaporate or add water to obtain the density required
- Recycle washings with recoveries of up to 99%
- Used for separations of heavy minerals, indicator minerals, coal, gold, etc.

For more information, call XRAL laboratories:
Joel Huffman - USA ✆ (303)277-1377
Fax (303)278-4388
Lynda Bloom - Canada ✆ (416)445-5755
Fax (416)445-4152
NEW MEMBERS

To All Voting Members:

Pursuant to Article Two of the Association’s By-Law No.1, names of the following candidates, who have been recommended for membership by the Admissions Committee, are submitted for your consideration. If you have any comments, favorable or unfavorable, on any candidate, you should send them in writing to the Secretary within 60 days of this notice. If no objections are received by that date, these candidates will be declared elected to membership. Please address comments to Sherman P. Marsh, Secretary AEG, U.S. Geological Survey, Mail Stop 973, Box 25046, Federal Center, Denver, Colorado 80225, U.S.A.

Editor’s note: Council has decided that all new applicants will receive the journal and newsletter upon application for membership. The process of application to the Nepean office, recommendation by the Admissions Committee, review by the Council, and publication of applicant’s names in the newsletter remains unchanged.

FELLOW

Lopez, Luis E.
Geologist-Geochemist
Comision Nacional de Energia Atomica
Buenos Aires, Argentina

MEMBERS

Allen, Phillip J.
Geochemist
Lima, Peru

Burton, Paul E.
Adelaide, SA, Australia

Clifford, Bretan A.
Project Geologist
Normandy-Poseidon Ltd.
Townsville, Qld, Australia

Dinelli, Enrico
University of Bologna
Bologna, Italy

Duncan, Gregory N.
Project Geologist
Decade Mining Res
Bulimba, Qld, Australia

King, Jonathan
Geochemist/Geologist
Placer Exploration
Cloveverdale, WA, Australia

Pillajo, Edgar
Geological Consultant
Newmont Ecuador
Quito, Ecuador

Prieto, Gloria
Geosciences Center
Belem, Brazil

Salamis, George
Placer International Expl
Coral Gables, FL, U.S.A.

Wang, Jungshen
Geochemist
Brimrg, Beijing, P.R. China

Wilson, Alan J.
Exploration Geologist
RTZ Mining & Exploration
Miami, FL, U.S.A.

STUDENTS

Beebe, Jared
Mackay School of Mines
Reno, NV, U.S.A.

Corren, Jose A.M.
Institute of Mineralogy
Erlangen, Germany

Groza, Dorin
GEOMECC
Florilor, Romania

THEODORE P. PASTER, Ph.D.
Consulting Petrographer

- Thin and Polished Thin Sections
- Over 25 Years Experience
- Brochure Upon Request

11425 E. Cimmarron Drive
Englewood, CO 80111
Day or Night: (303) 777-8219
Fax: (To T.P. Paster): (303) 220-1891

CONE GEOCHEMICAL INC.
FIRE ASSAY GEOCHEMICAL ANALYSIS

810 Quail St., Suite 1 • Lakewood, CO 80215 • Phone (303) 232-8371
4768 Longley Lane • Reno, NV 89502 • Phone (702) 827-3600
AEG BIBLIOGRAPHY

Exploration Geochemistry Bibliography Supplement 2, compiled by H.E. Hawkes, was issued in 1987. A comprehensive bibliography, currently through the end of 1994, is being prepared for release at the Association's next IGES in Townsville in May 1995. It is anticipated that the bibliography will be available as both hard copy and as a dBase IV file. Costs to members and non-members are currently being determined by Council.

Citations contained in the three previous bibliographies have now been computerized via optical scanning technology. Editing and indexing are underway. Literature citations since 1987 are being added. The computerization task has been a painstaking process; however, future updates will be more readily accomplished. We are grateful to Dorthe Jacobsen and Eric Grunsky for their ongoing efforts in this process.

Individuals and organizations wishing to contribute citations to this compilation can send materials to Graham Closs. Provisions of your material on a Word Perfect 5.1 file would be much appreciated.

L. Graham Closs
Chairman,
Bibliography Committee
c/o Dept. of Geological Engineering
Colorado School of Mines
Golden, CO, USA 80401

RECENT PAPERS

This list comprises titles that have appeared in major publications since the compilation in EXPLORE Number 84. Journals routinely covered and abbreviations used are as follows: Economic Geology (EG); Geochimica et Cosmochimica Acta (GCA); the USGS Circular (USGS Cir); and Open File Report (USGS OFR); Geological Survey of Canada Papers (GSC Paper) and Open File Report (GSC OFR); Bulletin of the Canadian Institute of Mining and Metallurgy (CIM Bull); Transactions of Institute of Mining and Metallurgy, Section B: Applied Earth Sciences (Trans. IMM). Publications less frequently cited are identified in full. Compiled by L. Graham Closs, Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401-1887, Chairman AEG Bibliography Committee. Please send new references to Dr. Closs, not to EXPLORE.

Continued on Page 14
Recent Papers
Continued from Page 13

Continued on Page 15
Recent Papers
Continued from Page 14

AEG PUBLICATIONS

The following special volumes are available from the AEG on a post-paid basis (surface mail) to all.
Both member and non-member prices are listed.

<table>
<thead>
<tr>
<th>Sp. Vol. No.</th>
<th>Description</th>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Application of Probability Plots in Mineral Exploration (A.J. Sinclair)</td>
<td>US $8.00</td>
<td>US $12.00</td>
</tr>
<tr>
<td>10</td>
<td>Gold-S1, Precious Metals in the Northern Cordillera (ed. A.A. Levinson)</td>
<td>US $7.50</td>
<td>US $18.00</td>
</tr>
<tr>
<td>11</td>
<td>Exploration Geochemistry Bibliography to January 1981 (compiled by H.E. Hawkes)</td>
<td>US $10.00</td>
<td>US $20.00</td>
</tr>
<tr>
<td>11.1</td>
<td>Exploration Geochemistry Bibliography Supplement 1 to October 1984 (compiled by H.E. Hawkes)</td>
<td>US $10.00</td>
<td>US $17.00</td>
</tr>
<tr>
<td>11.2</td>
<td>Exploration Geochemistry Bibliography Supplement 2 to October 1987 (compiled by H.E. Hawkes)</td>
<td>US $10.00</td>
<td>US $17.00</td>
</tr>
<tr>
<td>12</td>
<td>Writing Geochemical Reports (S.J. Hoffman)</td>
<td>US $5.00</td>
<td>US $7.00</td>
</tr>
<tr>
<td>14</td>
<td>PROBPLT, An Interactive Computer Program to Fit Mixtures of Normal (or Log Normal) Distributions with Maximum Likelihood Optimization Procedures (C.R. Staniel)</td>
<td>US $30.00</td>
<td>US $55.00</td>
</tr>
</tbody>
</table>

PRICE REDUCED

GEOEXPO/86, Proceedings of an exploration symposium focusing on Cordilleran environments held in Vancouver May 12-14, 1986

<table>
<thead>
<tr>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>US $25.00</td>
<td>US $25.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>US $20.00</td>
<td>US $20.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>US $20.00</td>
<td>US $20.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>US $10.00</td>
<td>US $20.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>US $5.00</td>
<td>US $5.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>US $10.00</td>
<td>US $10.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>US $10.00</td>
<td>US $10.00</td>
</tr>
</tbody>
</table>

**AEG T-Shirt Size: **

<table>
<thead>
<tr>
<th>Colour: Royal blue - white print</th>
<th>Grey - ice green print</th>
<th>White - rich blue print</th>
</tr>
</thead>
<tbody>
<tr>
<td>US $10.00</td>
<td>US $12.00</td>
<td>US $12.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>US $160.00</td>
<td>US $240.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>US $25.00</td>
<td>US $40.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>US $25.00</td>
<td>US $40.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>US $40.00</td>
<td>US $60.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>US $10.00</td>
<td>US $28.00</td>
</tr>
</tbody>
</table>

SPECIAL 1.

<table>
<thead>
<tr>
<th>Practical Problems in Exploration Geochemistry, 1987 (A.A. Levinson, P.M.D. Bradshaw and L. Thomson) 269 pp.</th>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>US $35.00</td>
<td>US $80.00</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL 2.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>US $60.00</td>
<td>US $60.00</td>
<td></td>
</tr>
</tbody>
</table>

Do you need a receipt? Include self-addressed envelopes and US $2.00, otherwise your cancelled check or bank card statement is your receipt.

Do you require airmail? If yes, add US $10.00 per volume.
(Specify number of volumes)

<table>
<thead>
<tr>
<th>TOTAL</th>
<th>US $</th>
<th>X</th>
<th>US $</th>
<th>10.00</th>
</tr>
</thead>
</table>

Send Orders to: P.O. Box 26099, 72 Robertson Road, Nepean, Ontario, K2H 9R0, CANADA
AEG APPLICATION FOR NON-VOTING MEMBERSHIP*

to the Association of Exploration Geochemists

Please complete only the section relevant to the class of membership sought and supply your address on page two of this form. Mail the completed application, together with annual dues, to the AEG.

MEMBER

I ________________ wish to apply for election as a Member of the Association of Exploration Geochemists. I am presently employed by:

(employer)

(employment title)

I am actively engaged in scientific or technological work related to geochemical exploration and have been so for the past two years. I have read the Code of Ethics of the Association and, in the event of being elected a Member, agree to honour and abide by them. Witness my hand this ______ day of _______ 19_____.

(Signature of applicant)

STUDENT MEMBER

I ________________ wish to apply for election as a Student Member of the Association of Exploration Geochemists. I am presently engaged as a full-time student at ________________________, where I am taking a course in pure or applied science.

I have read the Code of Ethics of the Association and in the event of being elected a Student Member agree to honour and abide by them. Witness my hand this ______ day of _______ 19_____.

(Signature of applicant)

Student status must be verified by a Professor of your institution or a Fellow of the Association of Exploration Geochemists. I certify that the applicant is a full-time student at this institution.

(Signature) _______________________
(Printed Name and Title)

CORPORATE MEMBER

(Corporation, Partnership or Association Name) ________________________
(Town, City, State/Province)

wishes to apply for election as a Corporate Member of the Association of Exploration Geochemists. We have an active interest in supporting the objectives and purposes of the Association. We have read the Code of Ethics of the Association and in the event of being elected a Corporate Member agree to honour and abide by them. Witness my hand this ______ day of _______ 19_____.

(Signature of Corporate Representative)

(Printed name and office)

*Application for voting membership requires the sponsorship of three voting members. Request a voting member application from the Association office.

continued..
..continued from previous page

Name and Address
(to be completed by all applicants)

Name: ____________________________
Address: ____________________________
Telephone: ____________________________
bus: ____________________________
fax: ____________________________
home: ____________________________

Annual Dues

All applications must be accompanied by annual dues. Select one of four listed below:

1 1995 member dues
2 1995 student member dues
- If you require a receipt, include a self-addressed envelope and add
 2
- If your check is not drawn from a U.S.A. or Canadian bank, add
 15

TOTAL

All payments must be in US funds. Payment by check, International Money Order, UNESCO Coupons, International Postal Orders, VISA and Master Card are acceptable. For users of VISA or Master Card, minor variations in your billing may reflect currency exchange rate fluctuations at time of bank transaction.

If you pay by charge card, please provide the following information: type: Master Card ______ VISA ______
Credit card account number: ____________________________
Expiration date: ____________________________ Name: ____________________________
Signature: ____________________________

Please note: Your completed form should be mailed to the Business Office of the Association and will be acknowledged upon receipt. The Admissions Committee reviews all applications and submits recommendations to Council, who will review these recommendations at the next Council Meeting or by correspondence. If no objection is raised the names, addresses and positions of candidates will be listed in the next issue of the Association Newsletter. If after a minimum of 60 days have elapsed following submission of candidate information to the membership no signed letters objecting to candidates admission are received by the Secretary of the Association from any Member, the Candidate shall be deemed elected, subject to the receipt by the Association of payment of required dues.

Send completed application, together with annual dues to:

Association of Exploration Geochemists
P.O. Box 26099
72 Robertson Road
Napean, Ontario
CANADA K2H 9R0

TEL: (613) 828-0199
FAX: (613) 828-9288
THE ASSOCIATION OF EXPLORATION GEOCHEMISTS
P.O. Box 26099, 72 Robertson Road, Nepean, Ontario K2H 9R0 CANADA
Telephone (613) 828-0199

OFFICERS

Graham F. Taylor, President
CSIRO Div. of Exploration and Mining
P.O. Box 136
North Ryde, New South Wales 2113
AUSTRALIA
TEL (61 2) 887-8737
Fax (61 2) 236-3200

Gwendy E.M. Hall, First Vice President
Geological Survey of Canada
Room 702, 601 Booth Street
Ottawa, Ontario K1A 0E9
CANADA
TEL (613) 992-6425
Fax (613) 996-3726

William B. Coker, Second Vice President
Geological Survey of Canada
601 Booth Street
Ottawa, Ontario K1A 0E9
CANADA
TEL (613) 992-2378
Fax (613) 996-3726

Sherman P. Marsh, Secretary
U.S. Geological Survey
MS 973, Denver Federal Center
Denver, Colorado 80225
USA
TEL (303) 236-5521
Fax (303) 236-3200

Eion M. Cameron, Treasurer
Geochemistry Subdivision
Geological Survey of Canada
601 Booth Street
Ottawa, ON K1A 0E9, Canada
TEL (613) 496-6420
Fax (613) 996-9990

COUNCILLORS

Australian Geoscience Council Representative
Russell D. Birrell

Canadian Geoscience Council Representative
Colin E. Dunn

Awards and Medals Committee
Jeffrey A. Jaacks, Chair 1993-1994
Robert G. Garrett
Günter Matheis

Bibliography Committee
L. Graham Closs, Chair
Robert G. Garrett
Richard K. Glanzman
Eric C. Grunsky
Gwendy E.M. Hall
Peter J. Rogers

Distinguished Lecturer Committee
David M. Jenkins, Chair

Education Committee
Alastair J. Sinclair, Chair

Committees

Election Official
Ray E. Lett

Elsevier Negotiations Committee
Graham F. Taylor, Chair
Charles M. Butt
Eion M. Cameron
Gerry J.S. Govett
Gwendy E.M. Hall

Environmental Committee
Richard K. Glanzman, Chair
Cecil C. Begley
Peter H. Davenport
Gwendy E.M. Hall
Keith Nicholson

EXPLORE
Owen P. Lavin, Editor
Sherman P. Marsh, Assoc. Editor

Journal of Geochemical Exploration
Eion M. Cameron, Editor-in-Chief

Membership Application Committee
Lloyd D. James, Chair
W. K. Fletcher
Owen P. Lavin
Graham F. Taylor

Symposia Committee
Frederic R. Siegel, Chair

Betty Arseneault, Business Manager
P.O. Box 26099, 72 Robertson Road, Nepean, Ontario K2H 9R0 CANADA, TEL: (613) 828-0199 FAX: (613) 828-9288, e-mail: aeg@geology.isis.org
Laboratory Quality Services International

You'll be making big decisions... You need to know how much confidence to place on the assay data your decisions are based on. LQSi has a different kind of standards program you can use for any project and any laboratory.

The LQSi Program

✓ Receive one standard sample per month.
✓ Submit the standard to the lab with your samples.
✓ Report the data to LQSi.
✓ Review LQSi's statistical summary report to compare results with laboratories worldwide on up to 26 elements.
✓ Use the Parameter Report (shown below) to check for bias, inconsistency and trends over time.

A unique homogenenous standard sample is prepared and distributed to participants each month. Laboratories have no way of knowing what result to expect. LQSi provides rapid and informative graphical reports, which allow you to evaluate laboratory capabilities at a glance.

For a sample report and more information, contact Dick Hogan at (708)331-3249 ext. 30 or fax at (708)331-3040. LQSi: 16130 Van Drunen Rd., South Holland, IL 60473 USA.

LIST OF ADVERTISERS

Acme Analytical Laboratories, Ltd. ... 4
Actlabs - Enzyme Leach ... 6
Atoka Exploration ... 4
Becquerel Laboratories, Inc. .. 13
Bondar Clegg & Company, Ltd. .. 7
Chemex Labs Ltd. ... 9
Cone Geochemical, Inc. ... 12
Laboratory Quality Services International (LQSi) Back Page
MEG Shea Clark Smith .. 10
Newmont Exploration Ltd. ... 5
PACRIM .. 3
Theodore P. Paster ... 12
SEG Meeting ... 14
Skyline Labs, Inc. ... 10
XRAL - X-Ray Assay Labs ... 8
XRAL Heavy Liquids ... 11

Newsletter for The Association of Exploration Geochemists
P.O. Box 9777, University Station, Reno, Nevada 89507-9777, USA

Please send changes of address to:
Association of Exploration Geochemists
P.O. Box 26099, 72 Robertson Road, Nepean, Ontario, K2H 9R0, Canada • TEL: (613) 828-0199 FAX: (613) 828-9288
e-mail: aeg@geology.isis.org

NON-PROFIT ORG.
U.S. POSTAGE
PAID
PERMIT NO. 3550
DENVER, CO