Past President’s Message

After 18 years as a Member (Fellow) and 18 months as President of the Association of Exploration Geochemists, I will use this opportunity for a little reflection.

I am, or have been, a member of a number of scientific associations/societies and without doubt, AEG is the best of them. This is not to imply that there are none better or that there is no room for improvement. Why do I make this assertion?

Firstly, AEG is comprehensive, with emphasis on both research and application, catering for the needs of universities, government instrumentalities, industry and consultants. It is international in scope and, although servicing mainly the mineral exploration industry, there have been encouraging moves recently into environmental geochemistry and ore genesis. An emphasis on the search for fossil fuels using organic geochemistry is one possible avenue to be explored. We are also extremely fortunate to have two excellent means of communicating our science: the *Journal of Geochemical Exploration* and EXPLORE.

Secondly, previous Councils have made some innovative changes which will ensure the vitality of AEG as we start on our second quarter century. We now have two prestigious medals for outstanding contributions to exploration geochemistry and to the Association. The student paper prize, although not as keenly contested as had been hoped, is aimed at encouraging our younger members. Another great success has been the Distinguished Lecturer tour which allows geochemists in a number of countries to meet with the visiting lecturer and discuss the latest techniques and methods. The number of Regional Councillors has been expanded to give our members in all parts of the globe a local point of contact. Many of our Committees have been very busy, e.g. the Elsevier negotiations have resulted in a new 5-year contract which is now acceptable to both parties; we have new membership application forms; there are new and improved ways to publicise the Association; and we should have a new comprehensive bibliography by 17th IGES. Of greatest importance are the successful efforts to get the business affairs of the Association running smoothly.

Finally, AEG is successful because of the friendships which are made through scientific contacts, meetings and exchange of ideas and knowledge. I have been privileged to meet and often stay with many very friendly people and I am sure that this applies to us all.

Continued on Page 3

Gwendy Hall

My congratulations to Graham on his very successful term as President, during a period of challenge and change for the Association when numerous decisions had to be made. I was surprised that Graham was the first “non North American” to hold this office and am delighted that David Garnett, also from Down Under, will assume the position in 1997. David, incidently, has been extremely active this past year in updating the Australian section of the database (otherwise known as troubleshooting!) and in representing us so well at Geoanalysis ’94 in the UK. The Australian influence continues this year with the 17th IGES in Townsville, Queensland, a meeting which many of us are striving to attend. It is the official venue for the celebration of the 25th birthday of the AEG and I hope attendees will range from those with membership numbers below 100 (e.g. Al Archer is #1, John Barakso #4) to those newcomers in the 3000 series. I feel particularly privileged to be President of AEG during this jubilee year, an event which naturally fosters assessment of the status quo and contemplation of new directions.

We are adopting a higher profile at both international and national meetings; to this end we have purchased a portable booth to advertise our activities and products. Andrew Bourque, now in Nevada, has kindly volunteered to assume responsibility for publicity and is open to new ideas and suggestions from our members. The first venue for our booth will be the Prospectors and Developers Convention in

Continued on Page 3

CONTENTS

Past President’s Message 1
President’s Message 1
Notes from the Editor 2
Treasurer’s Report 3
News Releases 5
News of Members 5
Upcoming JGE 5
Technical Notes
Accumulation of gold and heavy minerals by moss mats 8
Preliminary investigation of a new analytical methodology for the PGEs: laser ablation ICP-MS analysis 12
Software Review 17
Calendar of Events 18
New Members 18
Recent Papers 20
AEG Publications 23
AEG Application for Admission 26
AEG Committees 27
List of Advertisers 28
Information for Contributors to EXPLORE

Scope This Newsletter endeavors to become a forum for recent advances in exploration geochemistry and a key informational source. In addition to contributions on exploration geochemistry, we encourage material on multidisciplinary applications, environmental geochemistry, and analytical technology. Of particular interest are extended abstracts on new concepts for guides to ore, model improvements, exploration tools, unconventional case histories, and descriptions of recently discovered or developed deposits.

Format Manuscripts should be double-spaced and include camera-ready illustrations where possible. Meeting reports may have photographs, for example. Text is preferred on paper and 5-or 3-inch IBM-compatible computer diskettes with ASCII (DOS) format that can go directly to typesetting. Please use the metric system in technical material.

Length Extended abstracts may be up to approximately 1000 words or two newsletter pages including figures and tables.

Quality Submittals are copy-edited as necessary without re-examination by authors, who are asked to assure smooth writing style and accuracy of statement by thorough peer review. Contributions may be edited for clarity or space. All contributions should be submitted to:

EXPLORE

c/o J.T. Nash, Box 25046, MS973, Denver Federal Center
Denver, CO 80225, USA

Information for Advertisers

EXPLORE is the newsletter of the Association of Exploration Geochemists (AEG). Distribution is quarterly to the membership consisting of 1200 geologists, geophysicists, and geochemists. Additionally, 100 copies are sent to geoscience libraries. Supplementary copies are mailed to selected addresses from the rosters of other geoscience organizations, and additional copies are distributed at key geoscience symposia. Approximately 20% of each issue is sent overseas.

EXPLORE is the most widely read newsletter in the world pertaining to exploration geochemistry. Geochemical laboratories, drilling, survey and sample collection, specialty geochemical services, consultants, environmental, field supply, and computer and geoscience data services are just a few of the areas available for advertisers. International as well as North American vendors will find markets through EXPLORE.

The EXPLORE newsletter is produced on a volunteer basis by the AEG membership and is a non-profit newsletter. Advertising rates are the lowest feasible with a break-even objective. With this in mind, readers are asked to consider our loyal advertisers when contracting services or supplies. Potential advertisers are asked to consider EXPLORE, as we believe we are the most direct link to the geochemical exploration community, worldwide.

Contributor’s deadlines for the next four issues of EXPLORE are as follows:

<table>
<thead>
<tr>
<th>Issue</th>
<th>Publication date</th>
<th>Contributor’s deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>87</td>
<td>April 1995</td>
<td>February 28, 1995</td>
</tr>
<tr>
<td>88</td>
<td>July 1995</td>
<td>May 31, 1995</td>
</tr>
<tr>
<td>89</td>
<td>October 1995</td>
<td>August 31, 1995</td>
</tr>
<tr>
<td>90</td>
<td>January 1996</td>
<td>November 30, 1995</td>
</tr>
</tbody>
</table>

Owen Lavin
Editor EXPLORE
Past President's Message
Continued from Page 1

The success which we now enjoy has been due to the efforts of many people. I would particularly thank Gwendy Hall on whose shoulders have many of the business management matters in the last 18 months and who with Eion Cameron successfully negotiated the Elsevier contract. Sherman Marsh has been a tower of strength as Secretary, and always seems to know the right answer. Alan Coope and Peter Rogers have both contributed to Committees which have made valuable contributions. Our two editors, Eion Cameron and Owen Lavin, maintain an excellent standard in our two publications. To each of these and the many others, I extend on your behalf, sincere thanks.

Gwendy Hall has the best wishes of us all as she starts her term of office as President. Her knowledge of the Association and her great energy and enthusiasm will ensure the continued success of AEG.

Graham F. Taylor

President’s Message
Continued from Page 1

Toronto in March. Schedules permitting, it will be “manned” by our business manager, Betty Arseneault and by myself. Also at this meeting, the AEG will have a hospitality suite and a Past-Presidents table at the banquet (PPs - please contact me if you are planning on attending). The AEG is sponsoring sessions at the SME conference in Bellevue, Washington in May and is co-sponsoring the SEG symposium on carbonate-hosted Pb-Zn deposits in St. Louis, Missouri in June. The SEG is also celebrating a birthday this year; it has 50 years on us!

Jan. 1, 1995 marks another event -- a new 5 year contract with Elsevier. This differs significantly from the previous one, specifically in the formula by which royalties are calculated and in a more flexible arrangement for colour reproduction. Charges for colour are DFL. 1250 (ca 1.85 Dfl. = US$1.00) for the first page and DFL. 750 for the second. However, if separation is carried out by the author according to Elsevier’s instructions (to be printed in the Journal and EXPLORE), these costs fall to DFL. 850 and 500, respectively.

The Journal size is larger, at 19 by 26 cm. in common with the majority of such publications. As before, there will be no page charges but we may be subject to Value Added Tax (VAT) in the future. This decision rests in Brussels and is beyond our influence (or Elsevier’s). We are not always smooth last year. If you find that yours is late or missing (remember issues dates are printed in Explore), don’t hesitate to contact Betty Arseneault in the business office and she will take immediate action.

I am greatly looking forward to this year and welcome lots of input from members. We are seeking regional councilors in Africa and Europe and more volunteers for various duties, more on that in a future issue.

Gwendy Hall
Treasurer’s Report
Continued from Page 3

Vancouver office we were impressed by the exemplary nature of those prepared by Lorraine Kluber in the early part of 1993.

The second item that had a negative effect on our finances for 1993 was a re-adjustment in the royalties payable by Elsevier to the AEG from sales of the Journal of Geochemical Exploration. The amount of the royalty is formally defined in our contract with Elsevier Science and is calculated each year by that company. Elsevier has informed us that they miscalculated the royalty payments for 1990, 1991 and 1992. We have confirmed that the revised royalty payments are correct. For 1990 the amounts decrease from US $28909 to $28096; for 1991 from US $33303 to $25666 and for 1992 from US $29788 to $21987. The AEG has made a strong representation to Elsevier that the Association should not bear the whole cost of this re-adjustment. However, waiting resolution of the matter, the entire re-adjustment cost has been applied to our 1993 financial statement, causing the substantial drop in royalty revenue for that year.

During 1994 we have undertaken a number of steps to improve the administration and use of our financial assets. The first was to implement a computer-based accounting package to record all transactions. The second was a decision to maintain all of our financial assets in US$, apart from a small amount of working capital in Can$. Most of our expenditures are in US$. Although dues payments are nominally in US$, Canadian banks require that credit card payments be received in Can$, which are now rapidly changed into US$ to avoid the effects of devaluation in the Canadian currency. Formerly, most of our assets were held in bank accounts and Certificates of Deposit, which return relatively low rates of interest. In 1994 we adopted a more proactive, but conservative, investment policy. At this time these funds are mostly invested in 6 to 10 year bonds of A grade US corporations yielding higher rates of return. The new Business Manager, BettyArseneault, and Al Arseneault, have made great efforts to return our financial affairs to steady ground. Gwendy Hall and her husband, Graeme Bonham-Carter, who live (perhaps unfortunately) only a few steps from the business office, have both contributed a very large number of hours to putting our affairs into shape. I also thank our auditor, Bruce Anderson.

Summary of Audited Financial Statements (in Canadian $)

<table>
<thead>
<tr>
<th></th>
<th>1993</th>
<th>1992</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Assets</td>
<td>176,957</td>
<td>202,193</td>
</tr>
<tr>
<td>Capital Assets</td>
<td>3,080</td>
<td>4,078</td>
</tr>
<tr>
<td>Total current assets:</td>
<td>180,037</td>
<td>206,271</td>
</tr>
<tr>
<td>Current Liabilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounts Payable</td>
<td>11,619</td>
<td>5,272</td>
</tr>
<tr>
<td>Members Equity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance, Beginning of year:</td>
<td>200,999</td>
<td>177,375</td>
</tr>
<tr>
<td>(Excess expenditures over revenue)</td>
<td>(24,551)</td>
<td>39,337</td>
</tr>
<tr>
<td>Foreign exchange adjustment:</td>
<td>(8,030)</td>
<td>(15,713)</td>
</tr>
<tr>
<td>Balance, end of year:</td>
<td>168,418</td>
<td>200,999</td>
</tr>
<tr>
<td>Total revenue</td>
<td>51,359</td>
<td>191,540</td>
</tr>
<tr>
<td>Revenue:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dues:</td>
<td>26,904</td>
<td>60,117</td>
</tr>
<tr>
<td>Royalties</td>
<td>13,459</td>
<td>43,250</td>
</tr>
<tr>
<td>Reno Symposium:</td>
<td></td>
<td>56,524</td>
</tr>
<tr>
<td>Other:</td>
<td>10,996</td>
<td>31,649</td>
</tr>
<tr>
<td>Total revenue:</td>
<td>51,359</td>
<td>191,540</td>
</tr>
<tr>
<td>Expenditures:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Administrative:</td>
<td>54,201</td>
<td>49,966</td>
</tr>
<tr>
<td>Publications and Newsletter:</td>
<td>19,331</td>
<td>84,187</td>
</tr>
<tr>
<td>Special Projects:</td>
<td>2,378</td>
<td>18,050</td>
</tr>
<tr>
<td>Total expenditure:</td>
<td>75,910</td>
<td>152,203</td>
</tr>
</tbody>
</table>

Eion M. Cameron
AEG Treasurer

The British Columbia Geological Survey Branch will be releasing at Roundup 1995 (February 7 to 10, Vancouver, B.C.) the publication *Drift Exploration in Mountainous Terrain* (Paper 1995-2). Twenty-six contributions by leading specialists in the field of drift exploration provide reviews, case studies and new descriptive works of interest to geochemists, geologists and prospectors. Contributions from Canadian federal and provincial geological surveys, academia and the consulting community have combined their expertise to produce an essential asset to Cordilleran mineral exploration. This volume is an expansion of a short-course offered at Roundup 1994 which emphasized the integration of interdisciplinary methods in the search for drift-concealed mineralization. Primarily devoted to mineral exploration in glaciated mountainous terrain, the papers are arranged by topics including: basic surficial mapping methods (such as airphotographic studies and drilling/sampling techniques), drift exploration practices (including pebble lithological analysis, till geochemistry studies and application of lake sediment geochemistry) and geophysical techniques (such as shallow seismic, borehole and electromagnetic methods). Numerous illustrations, figures, tables and references accompany the text in this state-of-the-art publication, which will be available for CAN$ 40.00 from Crown Publications (521 Fort St., Victoria, B.C., V8V 1E7). For more information on ordering, call Crown Publications at (604) 386-4636.

This long-awaited report, describing the "why and how" of geochemical mapping, the reasons why a comprehensive quantitative database is urgently required, and why a global reference network is a necessary foundation, will be published in January 1995 by UNESCO, Paris, as Earth Science Report No. 19. It contains 130 pages, with 10 colour plates.

Arrangements for the distribution of the report are now being made. Copies will automatically be distributed by UNESCO to: listed participants in IGCP 259 and IGCP 360, science libraries, as well as national and international organizations. Copies will also be available for purchase at booksellers which specialize in government and UN agency publications.

A.G. Darnley
Geological Survey of Canada

NEWS OF MEMBERS

Alan Coope relocated to Tucson, Arizona during October 1994. His new address is 11060 North Canada Ridge Drive, Tucson, Arizona 85737-8559, U.S.A. (Phone/FAX 602-742-0250). He will be continuing his consulting and other professional activities from this new location.

UPCOMING JGE

VOLUME 52, NOS. 1 AND 2

Heavy Metals Aspects of Mining Pollution and its Remediation
R. Allan and W. Salomons (Editors)

CONTENTS

Preface
Introduction: sustainable mining in the future
R. Allan

Environmental impact of metals derived from mining activities: Processes, predictions, prevention
W. Salomons

Continued on Page 6

New Non-Toxic Heavy Liquids from XRAL

Don't risk your health by using carcinogenic heavy liquids for your mineral separations!

- Try Lithium & Ammonium Metatungstate (LMT & AMT) instead
- Supplied ready to use, at densities of 3.0 and 2.4
- Lower viscosity than sodium polytungstate
- Simply evaporate or add water to obtain the density required
- Recycle washings with recoveries of up to 99%
- Used for separations of heavy minerals, indicator minerals, coal, gold, etc.

For more information, call XRAL laboratories:
Joel Huffman - USA ☑️ (303)277-1377
Fax (303)278-4388
Lynda Bloom - Canada ☑️ (416)445-5755
Fax (416)445-4152
Lead and sulphur isotope dilution during dispersion from the Falun mining area

P. Östlund, P. Torssander, C.M. Mörh and S. Claesson

Selective scavenging of copper, zinc, lead, and arsenic by iron and manganese oxyhydroxide coatings on plankton in lakes polluted with mine and smelter wastes: results of energy-dispersive X-ray micro-analysis

T.A. Jackson and T. Bistricki

Mercury contamination in the northern Pantanal region Mato Grosso, Brazil

W. von Tumpling, R.D. Wilken and J. Einaix

A summary of the effects of mining and related activities on the sediment-trace element geochemistry of Lake Coeur d’Alene, Idaho, USA

A.J. Horowitz, K.A. Elrick, J.A. Robbins and R.B. Cook

Light induced changes of Fe(II)/Fe(III) and their implications for colloidal forms of Al, Mn, Cu, Zn and Cd in an acidic lake polluted with mine waste effluents

S. Karlsson, K. Håkansson

Environmental impact assessment of uranium mining and milling facilities: A study case at the Pocos de Caldas uranium milling and milling site, Brazil

Arsenic concentration in sediments near a metallurgical plant (Sepatiba Bay, Rio de Janeiro, Brazil)

V.F. de Mägelhaes and W.C. Pfeiffer

The effect of nickel mining and metallurgical activities on the distribution of heavy metals in Levisa Bay, Cuba

H. González and M. Ramírez

Contamination of riparian wetlands from past copper mining and smelting in the headwaters region of the Clark Fork River, Montana, U.S.A.

C. Johns

Development of proposed Canadian Environmental Quality Guidelines for cadmium

Rehabilitation studies on an old non-ferrous waste dumping ground: effects of revegetation and metal immobilization by beringite

J. Vangronsveld, J. Sterkx, F. Van Assche and H. Clijsters

Changes in soil chemistry 20 years after the closure of a nickel-copper smelter near Sudbury, Ontario, Canada

D.G. Gundermann and T.C Hutchinson

Trace metal contamination of soils and crop plans by the mining and smelting industry in Upper Silesia, South Poland

D. Milne, P. Cureton, S.L. Smith, K.G. Drouillard and D.D MacDonald.

Rehabilitation studies on an old non-ferrous waste dumping ground: effects of revegetation and metal immobilization by beringite

J. Vangronsveld, J. Sterkx, F. Van Assche and H. Clijsters

Changes in soil chemistry 20 years after the closure of a nickel-copper smelter near Sudbury, Ontario, Canada

D.G. Gundermann and T.C Hutchinson

Trace metal contamination of soils and crop plans by the mining and smelting industry in Upper Silesia, South Poland

S. Dudka, M. Piotrowska, A. Chlopecka and T. Witek

Ecological impact and remediation of contaminated sites around lead smelters in Poland

J. Gzyl

Resistance in copper toxicity in some British willows

T. Punshon, N.W. Lepp and N.M. Dickinson

Environmental improvements by mining industry in the Sudbury Basin of Canada

G.A. Crawford
Upcoming JGE
Continued from Page 6

VOLUME 52, NO 3.
CONTENTS

Research Papers
Geochemistry of till in Fennoscandia from ultra-low density sampling
P. Eden and A. Björklund

Petrology and mass-balance constrains on major-, trace- and rare-earth-element mobility in porphyry-greisen alteration associated with the epizonal True Hill granite, southwestern New Brunswick, Canada
D.R. Lentz and C. Gregoire

Lithogeochemistry of altered rocks at the New Inso VMS deposit, Noranda, Quebec
S. Liaghat and W.H. MacLean

Anomalous gold, antimony, arsenic and tungsten in ground water and alluvium around disseminated gold deposits along the Getchell Trend, Humbolt County, Nevada
D.J. Grimes, W.H. Ficklin, A.L. Meier and J.B. McHugh

Technical note
Possible effects of iron oxide coating in the recovery of particulate gold from stream sediments
K. Bheemalingeswara

Book reviews
Contents Volume 52

VOLUME 53, NO. 1 - 3

Diamond Exploration: Into the 21st Century
W.L. Griffin (Editor)

CONTENTS

Preface -Into the 21st Century
Background
1. The origin of diamond
 G.P. Bulanova
2. Occurrence of diamond in the mantle; A case study from the Siberian Platform
 Z.V. Spetsius
3. The morphology and nature of primary diamondiferous occurrences
 P.H. Nixon
4. Catalogue of world wide diamond and kimberlite occurrences: a selective and annotative approach
 A.J.A. Janse and P. Sheahan
5. The exploration context for diamonds
 C.H. Jennings

Area Selection
6. Geotectonic controls of primary diamond deposits: Implications for area selection
 H. Helmstaedt and J.J. Gurney

Continued on Page 8
Upcoming JGE
Continued from Page 7

7. Diamond exploration from the bottom up: Regional geophysical signatures of lithosphere conditions favorable for diamond exploration
P. Morgan

8. Prognostication of primary diamond deposits
F.V. Kaminsky, A.A. Feldman, V.A. Varlamov, A.N. Boyko, L.N. Olofinsky, I.L. Shofman and V.I. Vaganov

Finding the target
9. Pathfinder sampling techniques for locating primary sources of diamond
M. Muggeridge

10. Diamond laboratory techniques
N.J. Towie and L.H. Seet

11. Applications of geophysics for the detection and exploration of Kimberlites and lamproites
J. Macnae

12. Structural controls on the emplacement of Kimberlites and lamproites
S.H. White, H. de Boorder and C.B. Smith

13. Exploration in glaciated terrain: A Russian perspective
Yu. Golubev

14. Basic principles of alluvial diamond exploration
T. Marshall and R. Baxter-Brown

Prioritisation and evaluation
15. The interpretation of the major element compositions of mantle minerals in diamond exploration
J.J. Gurney and P. Zweistra

16. Trace elements in indicator minerals: area selection and target evaluation in diamond exploration
W.L. Griffin and C.G. Ryan

17. The role of petrography and lithogeochemistry in exploration for diamondiferous rocks
R.H. Mitchell

18. Sampling and statistical evaluation of diamond deposits
L. Rombouts

Accumulation of gold and heavy minerals by moss mats: An example from northern Vancouver Island, British Columbia

Steve Sibbick and Kathy Laurus

Introduction
The British Columbia Regional Geochemical Survey (RGS) has extensively employed moss-mat (aquatic bryophyte) sediment as a sample medium. RGS programs conducted on Vancouver Island utilized moss-mat sediments exclusively. In total, over 3,700 moss-mat samples were collected on the island during 1987 and 1988. Moss mats, collected from the active stream channel, have proven to be a highly effective sampling media. Acting as a natural riffle, they accumulate sediment by trapping particulate matter entrained in the streamflow, making them particularly effective in stream environments where fine grained streambed sediment is absent. Moss mats are widely available, easy to collect and contain, on average, five times as much fine grained sediment as a conventional stream sediment (Gravel et al., 1990).

Based on results of orientation studies, Matysek and Day (1988) and Gravel et al. (1990) proposed that moss mats preferentially concentrate heavy minerals relative to conventional stream sediments. This process has been used to explain higher, more reproducible gold concentrations found within moss-mat sediment relative to stream sediment. As a test of this hypothesis, a sampling program was conducted on a stream draining the Red Dog copper-molybdenum-gold porphyry deposit on northern Vancouver Island. The deposit is hosted mainly within a quartz-magnetite breccia within a medium grained dioritic to monzonitic pluton that is approximately 2 kilometres in diameter. Primary sulphides are chalcopyrite and molybdenite with minor bornite and covellite. Pyrite is ubiquitous within the deposit and surrounding argillic alteration halo. This stream has been the site of previous orientation work by Matysek and Day (1988), who studied the downstream dispersion of elements from the deposit in both moss-mat and conventional stream

Continued on Page 9
Technical Notes
Continued from Page 8

sediments. They found that copper, molybdenum, silver, gold, arsenic, antimony, bismuth, selenium, and tellurium were anomalous in both types of sediment. The flat dispersal curves identified for anomalous elements were attributed to a relatively constant influx of mineralized material along the length of the stream from glacial sediments derived from the Red Dog deposit. Gold concentrations within stream sediments are highly reproducible, suggesting that much of the gold is fine grained (Matysek and Day, 1988).

Methods

Conventional stream sediment and moss-mat samples were collected at six sites, spaced 500 metres apart. Moss-mat samples were collected from boulders or logs within the active stream channel. Stream sediments were collected from sites containing abundant fine grained material and located within two metres of the moss-mat sample site. One to two kilogram samples of each sample type were collected. The samples were wet sieved to obtain the -177+62.5 micron (-80+230 mesh) fraction. A representative 50 gram split was separated into heavy and light mineral fractions using methylene iodide (specific gravity 3.3 g/cm³). Magnetite was removed from the heavy mineral fraction using a hand magnet. The resulting non-magnetic heavy mineral fractions and representative 30 gram splits of the light mineral fraction were analyzed at a commercial laboratory by instrumental neutron activation analysis for 34 elements. Mean weight of analyzed non-magnetic heavy mineral fractions was 5.0 grams (range 2.1 to 8.4 grams).

Results and Discussion

Figure 1 shows the proportion of heavy minerals (SG>3.3) present in conventional stream sediments and moss-mat sediments. Moss-mat sediments contain 13 to 25 per cent heavy minerals whereas stream sediments contain lesser amounts, ranging from 4 to 12 per cent. The higher proportion of heavy minerals supports the Matysek and Day (1988) hypothesis that moss mats preferentially concentrate heavy minerals.

Continued on Page 10
Technical Notes
Continued from Page 9

Magnetite abundances in the moss-mat heavy mineral fractions are, on average, double those in adjacent stream sediments (Fig. 2a). Hafnium, a trace element found almost exclusively in zircon, has much higher concentrations in moss-mat heavy mineral fractions (Fig. 2b). Moss-mat heavy minerals contain approximately three times the stream sediment hafnium concentrations, whereas the moss-mat and stream sediment light mineral fractions return detection limit values. Like magnetite, zircons appear to be preferentially accumulated within moss mats. Similar patterns for the heavy mineral fraction magnetite and hafnium abundances and their comparable densities (magnetite 5.2, zircon 4.7) suggest that these minerals behave in a hydraulically similar fashion.

Gold contents of the heavy mineral fractions are an order of magnitude higher than the light mineral fractions (Fig. 3). There is relatively good correlation between moss mat and stream sediment heavy mineral fraction gold values. The exception to this is one moss-mat sample with a gold content of 6860 ppb. This anomalous value is likely the result of the nugget effect; a single 150 micron gold grain (density = 18 g/cm³) will increase the gold concentration of a 5 gram sample by approximately 6300 ppb. Gold concentrations in moss and stream light density fractions are highly coincident and average approximately 50 ppb, suggesting that a significant proportion of the gold is retained as fine particles within lower density grains.

Figure 2a) Weight percent magnetite in moss mats and stream sediments. b) Concentrations of hafnium in moss mat and stream sediment light and heavy mineral fractions.

Figure 3. Concentrations of gold in light and heavy mineral fractions of moss mats and stream sediments.

Continued on Page 11

PACRIM '95
19-22 November 1995
Auckland, New Zealand

PACRIM '95 will examine the geology and ore deposits of the dynamic environment of the Pacific Rim. It will also examine the political, economic and environmental constraints on mining and exploration in this area of increased investment. The Congress will have eight main themes.

1. Metallogeny at plate boundaries
2. Case histories of recent discoveries
3. Mining and the environment
4. Mining geology: problems and solutions
5. Mining and metallurgy
6. Political and economic constraints
7. Structural geology, tectonics, geophysics and geodynamics
8. Petrology, geochemistry and volcanology

Abstracts and papers will be published in a proceedings volume which will be available at the conference. To express interest, and for more information: Mrs. Charmayne Perera, The Australasian Institute of Mining and Metallurgy, P.O. Box 660, Carlton South, Victoria 3053, Australia Phone: +61-3-662-3166, Fax: +61-3-662-3662 or E-mail: J.Mauk@auckland.ac.nz
Technical Notes
Continued from Page 10

Based on observed concentrations within the heavy mineral fraction, magnetite and zircon (hafnium) are preferentially concentrated within moss mats compared to stream sediments, while gold is not. Concentration ratios (concentrationmoss/concentrationstream sed.) for hafnium, magnetite and gold in moss mat and stream sediment heavy minerals emphasize this feature (Fig. 4). The similarity in heavy mineral fraction concentrations for gold in stream sediments and moss-mat sediment (Fig. 5, median concentration ratio = 0.9) suggest that gold particles in both sediments are accumulated in near equal amounts. Gold particles are not preferentially accumulated by moss mats.

Comparison of mineral densities versus their enrichment in moss mats shows a distinctive trend (Fig. 4). Enrichment of a mineral in moss-mat sediment increases with decreasing density. The correlation between degree of enrichment and density suggests that the accumulation of minerals by moss-mats is a function of their hydraulic equivalency. Only high energy stream flows are capable of entraining higher density grains and carrying them high enough in the streamflow to be trapped by moss mats. Lower density minerals will be transported in the streamflow more readily. This will result in lower density grains being trapped within mosses more frequently than equivalent-sized, higher density particles. Further evidence is provided by the fact that fine grained sediment, easily entrained within streamflow, is preferentially accumulated in moss mats relative to stream sediments (Gravel et al., 1990).

An additional limitation on sediment accumulation by moss mats may be their inability to trap and retain hydraulically equivalent sediment above a certain streamflow velocity. Sediment entrained within higher velocity flows will pass through the moss. Therefore a narrow stream velocity range may exist which permits gold to be entrained from the streambed, then trapped by the moss. Lower density minerals such as magnetite or zircon could be transported over a wider range of stream velocities, thereby increasing their opportunities to be trapped by moss mats. Fletcher and Wolcott (1991) reported that the seasonal rate of magnetite transport was relatively uniform except for a rapid increase during a single high stream discharge in the spring. Gold particles were only transported during this high stream discharge. It is possible that while the trapping of fine sediment and low density heavy minerals by moss mats occurs regularly, gold accumulation by moss mats may occur infrequently, perhaps only once per year. These results seem contradictory to studies which report that moss mats have higher gold concentrations than stream sediments. The explanation may be that moss mats contain a higher proportion of fine grained sediment, thereby providing a more representative sample and reducing nugget effect. Sediment in the moss mat may represent several years of accumulation, whereas stream sediments likely represent a single depositional event. Another factor is that gold in the Red Dog deposit is generally fine grained, hence most of the gold may be unaffected by hydraulic sorting. Further, the processes observed on this stream may not apply to the entire region. Ongoing research will continue to study the process of sediment accumulation by moss mats. Analysis of larger heavy mineral samples in narrower size fraction ranges would provide a more accurate estimate of the behavior of heavy minerals in the stream environment.

References cited

Continued on Page 12
Technical Notes
Continued from Page 11

Steve Sibbick
Kathy Laurus
British Columbia Geological Survey

Preliminary investigation of a new analytical methodology for the PGEs: laser ablation ICP-MS analysis of partially cupelled lead buttons

Gwendy E.M. Hall, J.C. Pelchat, and Brenda Caughlin

Introduction
Methods used for the determination of gold and the platinum group elements (PGEs) in geological samples are commonly based on two fire assay preparations, Pb and NiS (Hall et al., 1988). These procedures serve to separate and preconcentrate the analytes from their sample matrix. A variety of analytical techniques can be then employed for the measurement step, including instrumental neutron activation analysis (INAA, as described by Hoffman et al., 1978), inductively coupled plasma emission spectrometry (ICP-ES) and ICP mass spectrometry (ICP-MS, as described by Jackson et al., 1990). The widespread Pb fire assay method has been designed for efficient high-volume production at relatively low cost (ca $10). However, it has the disadvantage, compared to NiS, that only Au, Pt and Pd are reported as the other PGEs are lost (volatilisation) to varying degrees during the cupellation step. The much higher charges (ca. $100) demanded by commercial labs for the NiS based method are for Au and Pt in particular, Diamantatos (1977) designed an integrated scheme for the recovery of all 6 PGEs and Au immediately after Pb fusion (i.e. without cupellation). Though results are impressive, the manipulations involved are numerous and complex, and not conducive to commercial application. However, his work has shown that all PGEs are present quantitatively in the Pb buttons (of 20-25 g weight). Kolosova and colleagues in St. Petersburg have published extensively on the use of partial Pb cupellation for collection of Au and PGEs in buttons weighing 10-100 mg (Kolosova, 1982; Kolosova et al., 1984). This research showed that, when the weight of the Pb button is reduced by partial cupellation from ca. 20 g to 10 mg (without a silver inquart), the analyte losses are minimal. It appears that the easily soluble elements (Au, Pt, Pd, Rh) alloy with Pb while Ir and Ru remain in the form of suspensions or of intermetallic compounds with each other. We adopted this approach of partial cupellation and combined it with analysis of the small Pb button by laser ablation ICP-MS. This report presents preliminary data using this methodology on five standard reference materials (SRMs) produced by the Geological Survey of Canada and marketed under the Canadian Certified Reference Materials Program (CCRM).

Experimental
Chemex Laboratories in Vancouver carried out the Pb fire assay and partial cupellation procedure on four samples (2 at 10 g and 2 at 30 g) each of the following SRMs: TDB-1, a diabase from Tremblay Lake, Saskatchewan; WGB-1, a gabbro; WPR-1, a peridotite; WMG-1, a mineralised gabbro; and WMS-1, a massive sulphide. All four SRMs prefixed with 'W' were collected from the Wellgreen Complex, Yukon Territory and all SRMs had been sieved to <74 µm. Final bead weights were in the range 25-50 mg and were flattened between pliers to measure about 1.5-2 mm in diameter. Each bead was weighed to an accuracy of 0.1 mg before analysis. The fire assay/cupellation procedure is effecting a preconcentration factor of about a thousand-fold.

A commercially available VG LaserProbe system was used coupled to the PlasmaQuad 11+ ICP mass spectrometer. The Nd-YAG laser was operated at 1064 nm in the Q-switched mode with a 5 ns half pulse duration. The beam was focused onto the surface of the bead through the window of a quartz sample cell, flushed by argon carrier gas at a flow of 1.1 l min⁻¹. Ablated aerosol was swept through Tygon tubing (ca. 2.5 m) to the injector inlet of the ICP torch. A high resolution CCD video camera with colour monitor, capable of x250 magnification, was used to view the sample. The location of the target and focusing of the laser beam were controlled by motorised X, Y and Z stages. The hardware could be controlled manually with an electronic console or remotely via the PQ software. The ion lenses were tuned to give a good elemental response for the ablation of the well characterised solid glass SRM 612 from the National Institute of Standards and Technology and the element response curve (i.e. expected counts s⁻¹ per ppm of each element across whole mass range) was stored for the semi-quantitative measurement mode. The glass standard was preblazed for 1-2 min. prior to acquiring data. Operating parameters are shown in Table 1. The isotopes measured were:

<table>
<thead>
<tr>
<th>Table 1. LA-ICP-MS operating conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICP forward power</td>
</tr>
<tr>
<td>Carrier gas flow</td>
</tr>
<tr>
<td>Auxiliary gas flow</td>
</tr>
<tr>
<td>Coolant gas flow</td>
</tr>
<tr>
<td>No. of sweeps</td>
</tr>
<tr>
<td>Dwel time</td>
</tr>
<tr>
<td>Acquisition mode</td>
</tr>
<tr>
<td>Detector mode</td>
</tr>
<tr>
<td>Laser energy</td>
</tr>
<tr>
<td>Shots per position</td>
</tr>
<tr>
<td>Repetition rate</td>
</tr>
<tr>
<td>Distance between positions</td>
</tr>
<tr>
<td>Raster positions</td>
</tr>
<tr>
<td>Integration time per raster</td>
</tr>
</tbody>
</table>

Continued on Page 13
Technical Notes

Continued from page 12

Ru-101, Pd-105, Pd-106, Pd-108, Os-190, Ir-191, Ir-193, Pt-194, Pt-195, Au-197 and Pb-204. The analytes were measured in the pulse counting detector mode while Pb-204, used as the internal standard, was so intense that it necessitated measurement in the analog detector mode. The function of the internal standard is to compensate for the variability in the amount of material ablated by each shot. Signals resulting from a 5 x 5 position computer controlled raster with three ablations per position were integrated over a 50 s period to give an overall ICP-MS intensity value for that isotope. A preablation raster was performed initially without acquiring data. Two to four rasters were performed on each Pb bead, depending on the size of the bead.

Laser ablation processes are as yet poorly understood. The amount of material ablated will depend on factors such as the flashlamp power and repetition rate, the point of beam focus, and the absorption characteristics of the material. Naturally it is mandatory for accurate analysis that the composition of the ablated products is representative of the target itself, i.e. that there is minimal fractionation of one element relative to another during the ablation process. It is reasonable to expect vapour phase enrichment of the more volatile elements during the initial stages of ablation and Pb could certainly behave quite differently from the PGEs. A major drawback to using Pb-204 as internal standard is that the analog detector mode is selected and count intensity for Pb is actually acquired at different times of ablation from the analytes which are being measured in a pulse counting mode.

Results and Discussion

The integrated normalised intensities for each raster on each of the 10 beads, derived from the 30 g sampling weights (in duplicate) of the five SRMs, were plotted against known concentration for each element. A line of best fit was drawn on each of these plots, the concentrations equivalent to these intensities then calculated and the found versus known concentration graph produced, as seen in Figure 1. The variable weight of the Pb bead was taken into account in this computation. Each star in Figure 1 represents the result for one raster (i.e. 5 x 5 grid). This was also carried out for the 10 g set of SRM beads and, as the data were similar to those obtained for the 30 g set, it is redundant to present them here. Unfortunately, intensities for Rh were acquired with only one set of beads. The certified concentrations of Au and PGEs in the five SRMs are given in Table 2 and the results obtained from the lines of best fit in Table 3. The values for

Continued on Page 14

Figure 1. Analytical results by laser ablation ICP-MS compared with recommended values for the seven elements determined.
Technical Notes
Continued from Page 13

Table 2. Certified precious metal concentrations (in ng/g) in Standard Reference Materials (SRMs) issued by the CCRMP.

<table>
<thead>
<tr>
<th>SRM</th>
<th>Au</th>
<th>Pt</th>
<th>Pd</th>
<th>Rh</th>
<th>Ir</th>
<th>Ru</th>
<th>Os</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDB-1</td>
<td>6.3 ± 1.0</td>
<td>5.8 ± 1.1</td>
<td>22.4 ± 1.4</td>
<td>0.7*</td>
<td>0.15*</td>
<td>(0.3)</td>
<td></td>
</tr>
<tr>
<td>WGB-1</td>
<td>2.9 ± 1.1</td>
<td>6.1 ± 1.6</td>
<td>13.9 ± 2.1</td>
<td>0.32*</td>
<td>0.33*</td>
<td>(0.3)</td>
<td></td>
</tr>
<tr>
<td>WPR-1</td>
<td>42 ± 3</td>
<td>285 ± 12</td>
<td>235 ± 9</td>
<td>13.4 ± 0.9</td>
<td>13.5 ± 1.8</td>
<td>22 ± 4</td>
<td>13*</td>
</tr>
<tr>
<td>WMG-1</td>
<td>110 ± 11</td>
<td>731 ± 35</td>
<td>382 ± 13</td>
<td>26 ± 2</td>
<td>46 ± 4</td>
<td>35 ± 5</td>
<td>24*</td>
</tr>
<tr>
<td>WMS-1</td>
<td>279 ± 33</td>
<td>1741 ± 142</td>
<td>1185 ± 44</td>
<td>225 ± 16</td>
<td>235 ± 25</td>
<td>99 ± 16</td>
<td>119*</td>
</tr>
</tbody>
</table>

*: indicates provisional value rather than 'certified'
(): indicates informational value only

Table 3. Precious metal concentrations in ppb obtained by LA-ICP-MS calculated from the line of best fit.

<table>
<thead>
<tr>
<th></th>
<th>Au</th>
<th>Pt</th>
<th>Pd</th>
<th>Rh</th>
<th>Ir</th>
<th>Ru</th>
<th>Os</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDB-1</td>
<td>6.90 ± 0.83</td>
<td>5.90 ± 0.24</td>
<td>21.5 ± 2.4</td>
<td>0.10 ± 0.01</td>
<td>0.74 ± 0.17</td>
<td><DL</td>
<td></td>
</tr>
<tr>
<td>Bead 3</td>
<td>7.23 ± 1.15</td>
<td>6.05 ± 0.05</td>
<td>19.4 ± 2.2</td>
<td>0.68 ± 0.05</td>
<td>0.10 ± 0.01</td>
<td>0.75 ± 0.15</td>
<td><DL</td>
</tr>
<tr>
<td>Bead 4</td>
<td>6.65 ± 0.54</td>
<td>5.82 ± 0.26</td>
<td>23.3 ± 0.4</td>
<td>0.10 ± 0.01</td>
<td>0.75 ± 0.21</td>
<td><DL</td>
<td></td>
</tr>
<tr>
<td>RSDs, %</td>
<td>12/16, 8.1</td>
<td>4.0/1.0, 4.8</td>
<td>11/11, 1.8</td>
<td>7.5</td>
<td>9.1/10, 8.1</td>
<td>23/21, 28</td>
<td></td>
</tr>
<tr>
<td>WGB-1</td>
<td>1.90 ± 0.23</td>
<td>4.98 ± 0.49</td>
<td>11.3 ± 1.9</td>
<td>0.20 ± 0.04</td>
<td>1.27 ± 0.80</td>
<td>6.6 ± 1.8</td>
<td></td>
</tr>
<tr>
<td>Bead 7</td>
<td>2.10 ± 0.17</td>
<td>4.50 ± 0.12</td>
<td>11.0 ± 1.6</td>
<td>0.38 ± 0.03</td>
<td>0.20 ± 0.06</td>
<td>2.03 ± 0.61</td>
<td>5.5 ± 2.1</td>
</tr>
<tr>
<td>Bead 8</td>
<td>1.75 ± 0.13</td>
<td>5.06 ± 0.10</td>
<td>11.4 ± 1.0</td>
<td>0.20 ± 0.03</td>
<td>0.70 ± 0.08</td>
<td>7.3 ± 1.5</td>
<td></td>
</tr>
<tr>
<td>RSDs, %</td>
<td>12/8.2, 7.3</td>
<td>10/4.4, 1.9</td>
<td>11/14, 9.1</td>
<td>8.4</td>
<td>19/28, 15</td>
<td>62/30, 12</td>
<td>27/39, 21</td>
</tr>
<tr>
<td>WPR-1</td>
<td>39.7 ± 6.5</td>
<td>268 ± 19</td>
<td>212 ± 21</td>
<td>12.9 ± 2.6</td>
<td>21.7 ± 3.3</td>
<td>14.0 ± 4.3</td>
<td></td>
</tr>
<tr>
<td>Bead 11</td>
<td>41.7 ± 8.6</td>
<td>264 ± 7</td>
<td>212 ± 30</td>
<td>12.5 ± 1.0</td>
<td>15.0 ± 0.8</td>
<td>22.7 ± 0.60</td>
<td>15.0 ± 6.2</td>
</tr>
<tr>
<td>Bead 12</td>
<td>38.3 ± 5.3</td>
<td>270 ± 25</td>
<td>211 ± 17</td>
<td>10.8 ± 1.9</td>
<td>21.0 ± 4.5</td>
<td>13.0 ± 2.0</td>
<td></td>
</tr>
<tr>
<td>RSDs, %</td>
<td>16/21, 14</td>
<td>7.2/2.6, 9.1</td>
<td>9.8/14, 7.9</td>
<td>8.0</td>
<td>20/56, 18</td>
<td>15/25, 22</td>
<td>30/41, 15</td>
</tr>
<tr>
<td>WMG-1</td>
<td>113 ± 12</td>
<td>719 ± 72</td>
<td>351 ± 43</td>
<td>53 ± 8</td>
<td>29.8 ± 19.6</td>
<td>22.7 ± 6.6</td>
<td></td>
</tr>
<tr>
<td>Bead 15</td>
<td>123 ± 2.5</td>
<td>694 ± 79</td>
<td>321 ± 25</td>
<td>24.5 ± 2.5</td>
<td>41</td>
<td>16.7 ± 8.1</td>
<td>17.3 ± 2.9</td>
</tr>
<tr>
<td>Bead 16</td>
<td>102 ± 5</td>
<td>738 ± 71</td>
<td>373 ± 42</td>
<td>56 ± 5</td>
<td>49.5 ± 10.6</td>
<td>26.8 ± 5.6</td>
<td></td>
</tr>
<tr>
<td>RSDs, %</td>
<td>10/22, 4.9</td>
<td>10/11, 9.7</td>
<td>12/7.8, 11</td>
<td>10</td>
<td>15/9.7</td>
<td>66/48, 21</td>
<td>29/17, 21</td>
</tr>
<tr>
<td>WMS-1</td>
<td>254 ± 23</td>
<td>1816 ± 99</td>
<td>1182 ± 65</td>
<td>175 ± 14</td>
<td>209 ± 16</td>
<td>175 ± 17</td>
<td>54 ± 5.3</td>
</tr>
<tr>
<td>Bead 19</td>
<td>247 ± 24</td>
<td>1784 ± 23</td>
<td>1120 ± 22</td>
<td>173</td>
<td>123 ± 56</td>
<td>173 ± 17</td>
<td>54 ± 5.3</td>
</tr>
<tr>
<td>Bead 20</td>
<td>264 ± 23</td>
<td>1831 ± 123</td>
<td>1213 ± 56</td>
<td>173</td>
<td>137 ± 56</td>
<td>173 ± 17</td>
<td>54 ± 5.3</td>
</tr>
<tr>
<td>RSDs, %</td>
<td>8.8/9.7, 8.5</td>
<td>5.4/1.3, 6.7</td>
<td>5.5/2.0, 4.6</td>
<td>7.4</td>
<td>7.8/9.6</td>
<td>10</td>
<td>4.2</td>
</tr>
</tbody>
</table>

RSDs given in the order of <all rasters over both beads>/<rasters over first bead>, <rasters over second bead>

each bead represent the mean obtained from 2-4 rasters carried out on each and the first relative standard deviation (RSD) given represents the variability over both beads for all rasters. Different isotopes of the same element gave essentially identical results, indicating an absence of isobaric interferences. Gold and PGEs in blank Pb beads (i.e. flux only) measured less than the equivalent of 0.5 ppb for Au, Pt, Pd, Ru and Os and less than 0.05 ppb for Rh and Ir. The system blank was monitored constantly; this involves acquisition of counts with the same protocol as that for sample beads but with the laser off and argon flowing through the cell to the ICP.

On an elemental basis:
GOLD: Results are excellent, with RSDs which are not dependent on concentration over this range. Bead 3, for example, produced from TDB-1 with a known concentration of 6.3 ppb Au, gives about 1400 counts s⁻¹ for each raster, well above the system blank of 21 ± 3 counts s⁻¹. The good precision within each bead for WMG-1 (2.2 and 4.9 % RSD) implies that the efficiency of collection of Au is different between the two beads, to give significantly different mean concentrations of 123 and 103 ppb. Alternatively, sampling variability could be the cause (though doubtful at 30 g for this SRM).

Continued on Page 15
Technical Notes
Continued from Page 14

PLATINUM: Precision for Pt is excellent, ranging from 4% RSD over all rasters (two beads) for TDB-1 to 10% for WMG-1. The distinct grouping of stars in Fig. 1b for Pt in WMG-1 suggests that these represent the two separate beads. However, one raster on bead 15 gave a comparatively low intensity while another on bead 16 gave a higher intensity than the rest. Data for beads 7 and 8 suggest the different mean values of 4.5 and 5.1 ppb Pt in WGB-1 to be due to sampling and/or assay preparation variability rather than analysis. Typical intensities are 600 and 53,000 counts s^-1, respectively, for TDB-1 and WMG-1 at 5.8 and 731 ppb Pt, with a system background of 21 ± 4 counts s^-1.

PALLADIUM: Precision across all rasters on both beads is in the range 6-12% RSD, slightly inferior to that for Pt but still good. Using the line of best fit, results for WGB-1 and WPR-1 are consistently low at 11.3 ppb (cf. 13.9 certified) and 212 ppb (cf. 235 certified), respectively. This may suggest that calibration should be divided into low and high concentrations of Pd. Sample TDB-1, at 22 ppb Pd, gave about 2000 counts s^-1 at Pd-108, over a system blank of 29 ± 5 counts s^-1.

RHODIUM: There is an isobaric interference on the only isotope of Rh (103), originating from doubly ionised Pb-206. Hence subtraction of counts obtained for the Pb bead blank is critical, particularly at low concentrations of Rh. The absence of Rh in the original test data precludes estimation of bead-to-bead precision but the within-bead precision is excellent, at 7-10% over the concentration range of 0.3-209 ppb.

RUTHENIUM: Precision between and within beads for Ir at the low levels in TDB-1 and WCB-1 is extremely good, at 9-19% RSD. When only these SRMs and WPR-1 are used for calibration, the line of best fit then goes through the origin (cf. Fig. 1). Signal intensity is quite low at levels below 1 ppb, WGB-1, for example, producing about 120 counts s^-1 at Ir-193. Mean values for Ir in the two beads of WPR-1 are significantly different, at 15.0 and 10.8 ppb, indicating different efficiencies of recovery through the assay/cupellation procedure. Only one of the three raster values was taken for beads 15 and 20 of the mineralised samples, WMG-1 and WMS-1. Distribution of Ir in these two beads was clearly heterogeneous, as evidenced by count rates differing by factors of 2 to 5. This may be a reflection of the intermetallic compound formation referred to by Kolosova (1982). It is interesting to note that the precision within the other beads 16 and 19 was good, at 10%. Perhaps these particular samples were inadvertently treated differently during preparation. Certainly this requires further investigation, as does the behaviour of the calibration at higher concentrations where a curve rather than a straight line is indicated by the data (Fig. 1). Is Ir collected less efficiently in the preparation of WMS-1 or is the lower intensity due to losses in the ablation and transport steps?

OSMIUM: The small number of counts obtained for Os on all sample beads indicated volatilisation loss during partial cupellation. The count rate for WPR-1, for example, is only about 60 counts s^-1. Precision values are poor, averaging 30% RSD, except for bead 20 of WMS-1. Interestingly, it is bead 19 of WMS-1 which produces extremely noisy raster data (too noisy to plot), suggesting quite different distributions and associations within the Pb bead compared to Ir and Ru.

Once the procedure is optimised, several of these SRMs will be selected for calibration against which unknown sample beads will be measured. They would be processed through the fire assay procedure with the suite of samples to be analysed.
Technical Notes
Continued from Page 15

Conclusions
Results for the easier elements Au, Pt, Pd and Rh are excellent. Inevitably it is the rarer PGEs which are most challenging. Many parameters, both in bead preparation and in analysis, remain to be optimised. We have not yet investigated loss of anatytes to the cupel or through volatilisation during the final stages of Pb reduction, clearly an important factor for Os. Intermetallic formation of Ir and Ru and its effect on homogeneity in the Pb bead requires further study of the preparation methodology. Results for at least one of each bead for the five SRMs are encouraging and suggest that this drawback can be overcome. Though within this bead size range of 15-40 mg, there does not appear to be any trend in the results, different weights need to be investigated. An alternative internal standard to Pb-204 which could be read in pulse counting mode would certainly improve accuracy and precision. This element or isotope would have to be collected efficiently in the Pb bead. Polishing the surface of the beads does not appear to produce superior results to those generated by simply flattening them between pliers but this rather coarse approach needs review. New software is imminent from VG/Fisons which will allow us to traverse the bead at a predetermined constant rate and view the ablation signals of the analytes essentially simultaneously (i.e element mapping). At least 20 beads can be mounted in the cell at one time and the program of ablation and data acquisition carried out automatically. Thus the analytical step will prove to be very rapid, at several minutes a sample. The potential impact of this method is indeed exciting: its cost will be less than half that of current NiS prices, it is environmentally safer and its detection power is remarkable, having preconcentrated the analytes by about a thousand-fold. As with many analytical methods, sample preparation is critical to good accuracy and precision and thus the need for experienced fire assayers continues!

Gwenda EM. Hall and J.C. Pelchat
Geological Survey of Canada

Brenda Caughlin
Chemex Laboratories, Vancouver

This project is being carried out under an Industrial Partners Program (IPP) between the GSC and Chemex Laboratories.

References Cited

Continued on Page 17
Technical Notes
Continued from Page 16

determine gold, platinum and palladium in production-oriented
geochemical laboratories, with application of a statistical
Hoffman, E.L., Naldrett, A.J., Van Loon, J.C., Hancock, R.G.V. and
Manson, A., 1978. The determination of all the platinum
elements and gold in rocks and ore by neutron activation
analysis after preconcentration by a nickel sulphide fire-assay
Kolosova, L.P., 1982. Concentrated lead button, a collector of noble
Determination of platinum, palladium, rhodium, iridium,
ruthenium and gold in natural and industrial materials by
chemical spectroscopy with concentration in lead and partial

SOFTWARE REVIEW

Brian Krzys

RockWare Utilities Version 1.5
The RockWare Utilities (Version 1.5) are a new set of
Windows-based programs that neatly combine various
common geochemical, geological, and hydrologic
applications. There are 14 programs in the initial release:

Geological Applications
Rose diagrams
Stereonets
Ternary diagrams
Calculate the volume of a 3-d geologic unit
Plot an isopach and control point map
3 Point calculations
Formation attitude calculations

Geochemical/Hydrological Applications
Hydrographs for water level and precipitation
measurements
Piper diagrams for groundwater ion concentrations
Stiff diagrams for groundwater ion concentrations

Miscellaneous
Calculated XYZ points and base maps from survey data
Convert between UTM and latitude/longitude
definitions
Convert graphic files to/from various formats

All of the programs have been written to take advantage
of the Windows environment, and present a clean, typically
straightforward interface for the user. Individual programs
that require extensive data input store data in ASCII files that
Can be modified through on-screen spreadsheet style data
entry, or for many applications, imported from delimited
ASCII files. The stereonet program is the one anomaly here,
and relies on basic ASCII file editing for its data input. The
file formats are described both in the on-line and printed
documentation.

The plotting programs produce clean, easy to read
diagrams; however, the programs contain little or no options
for changing font, line style, color, size, and layout. All
diagrams can be written to any supported Windows output
device, or saved to a variety of common graphic file formats.
The saved diagrams can then be modified with other
Windows-based programs or potentially combined with other
types of information (i.e. written documents).

Two mysterious aspects of the on-screen plot previewing
are the Contrast, Brightness, and Gamma controls that are
used to change the colors on the diagrams, and the <shift> +
mouse double click combination that must be used to zoom
into an area of the plot. The colors are somewhat annoying
since they must be changed to get a good black plot on a
standard laser printer.

The RockWare programs are arranged nicely into the
Windows interface, but expect to run them on fast computers
or spend time waiting on slow computers. For example, the
time required to generate a rose diagram with 158
measurements on a 486/25Mhz notebook with 8Mb of RAM
was 32 seconds as opposed to 4 seconds on a 90Mhz Pentium
with 16Mb of RAM.

Windows and its successors are becoming the preferred
PC operating environments, and these utilities are good,
practical geologic programs that are the first of many similar
planned releases from RockWare. A demonstration disk can be
requested for more information, or the RockWare Utilities
1.5 can be ordered directly for $US 249.

In summary, the RockWare Utilities provide a useful
combination of utilities with common geological applications,
all under a consistent Windows interface. RockWare intends
to expand the number of utilities, which could make this an
indispensable package for those working in the geological
sciences. For more information contact:

RockWare, Inc.
2221 East St.
Golden, CO 80401
Phone: (303) 278-3534
Fax:(303) 278-4099

Brian Krzys
Newmont Exploration
International, national and regional meetings of interest to colleagues working in exploration and other areas of applied geochemistry.

- **Feb. 13-15, '95, U.S.G.S. McKelvey Forum, Energy and the Environment, Washington, D.C.** (Dudley D. Rice, USGS, MS971, Box 25046, Denver, CO 80225, USA, TEL: (303) 236-5711; FAX: (303)236-8822; e-mail: rice@bpgsvr.cr.usgs.gov)

- **Feb. 20-22, '95, Mineral Resources of Venezuela, conf., Caracas, Venezuela** by Institution of Mining and Metallurgy and Camara Minera de Venezuela (Conference Office, Institution of Mining and Metallurgy, 44 Portland Place, London WIN 4BR; TEL: +44 71 580 3802; FAX: +44 71 436 5388)

- **Feb. 20-25, '95, South Asia Geological Congress, Colombo, Sri Lanka** (N.P. Wijayananda, GEOSAS II Secretariat, NARA, Crow Island, Mattakkuliya, Colombo 15, TEL: 941-522008; FAX: 941-522932)

- **Mar. 6-9, '95, Society for Mining, Metallurgy and Exploration, ann. mtg., Denver** (SME, Box 625002, Littleton, CO, 80162-5002, TEL: (303) 973-9550; FAX: (303) 979-3461)

- **Mar. 29-4, '95, Centennial Geo congress 1995, Johannesburg, The Geological Society of South Africa** (The Congress Secretariat, Centennial Geocongress, PO Box 36815, Johannesburg 0102, South Africa; TEL/FAX: 27 12 47 3398)

- **Apr. 10-13, '95, Geology and Ore Deposits of the American Cordillera, Geological Society of Nevada Symposium III** (Bob Hatch, Geological Society of Nevada, P.O. Box 12021, Reno NV 89510; TEL: (702) 323-4569; FAX: (702) 323-3599)

- **Apr. 11-13, '95, European Environmental Geochemistry & Health Conference: Energy and the Environment** (Dr. Keith Nicholson, Environmental Division, School of Applied Sciences, The Robert Gordon University, St. Andrew Street, Aberdeen, AB1 1HG, Scotland; TEL: (0224) 262802 or 262801; FAX (0224) 262828)

- **Apr. 23-26, '95, Geology of Industrial Minerals, ann. mtg., El Paso, TX** (Gretchen Hoffman, New Mexico Bureau of Mines and Mineral Resources, Campus Station, Socorro, NM 87801, TEL: (505) 835-5640; FAX: (505) 835-6333; e-mail: gretchen@gis.nmt.edu; pre-and post-meeting field trips)

- **May 15-19, '95, 17th International Geochemical Exploration Symposium, Exploring the Tropics, Townsville, Queensland, Australia** (Russell Myers, 17 IGES, National Key Centre in Economic Geology, James Cook University, Townsville, Queensland 4814, Australia; TEL: 61 77-814486; FAX: (61) 77-815522)

- **May 24-26, '95, 5th V.M. Goldschmidt Conference, University Park, PA, USA** (Technical Program Chair, Mike McKibben, TEL: (909) 787-3444; FAX: (909) 787-4524; E-mail: McKibben@UCRAC1.UCR.EDU)

- **June 3-6, '95, International Field Conference on Carbonate-hosted Lead Zinc Deposits, int'l mtg., SEG Anniversary Field Conference (David Leach or Martin Goldhaber, USGS, Branch of Geochemistry, MS 973, PO Box 25046, Federal Center, Denver, CO 80225, USA, TEL: (303) 236-5100; e-mail: dleach@helios.cr.usgs.gov)

- **June 7-9, '95, African Mining '95, Windhoek, Namibia** (IMM, 44 Portland Place, London W1N 4BR, UK; TEL: (071) 580-3802; FAX: (071) 436-5388)

- **June 12-14, '95, Second International Conference on Arsenic Exposure and Health Effects, San Diego, CA** (Dr. Willard R. Chappell, Campus Box 136, University of Colorado at Denver, Denver, CO 80217-3364; TEL: (303) 556-4520; FAX: (303) 556-4292; e-mail: rwormington@castle.cudenver.edu)

- **Aug. 28-Sept. 2, '95 Tectonics and Metallogeny of Early/Mid Precambrian Orogenic Belts, Montreal, Canada** (J.A. Percival, Geological Survey of Canada, 601 Booth St., Ottawa, Ontario K1A 0E8, Canada; TEL: (613) 995-4723; Fax: (613) 995-9723; E-mail: jpercival@601.c.gsc.emr.ca)

- **Sept. 4-8, '95, International Symposium on Environmental Biogeochemistry, Rio de Janeiro, Brazil** (Symposium Secretariat, Prof. Luis Henrique Melges, FAX: 55-(0)21-248-4870; E-mail: ise@bruerj)

- **Nov. 6-9, '95, Geological Society of America, Ann. Mtg., New Orleans, LA** (Vanessa George, 3300 Penrose Place, Boulder, CO 80301; TEL: (303) 447-2020; FAX: (303) 447-1133

Please check this calendar before scheduling a meeting to avoid overlap problems. Let this column know of your events.

Fred Siegel
The George Washington University
Department of Geology
Washington, DC 20052
USA
TEL: (202) 994-6194
FAX: (202) 994-0450
BITNET: ndfrs@gwuvm.gzou.edu

To All Voting Members:
Pursuant to Article Two of the Association’s By-Law No.1, names of the following candidates, who have been recommended for membership by the Admissions Committee, are submitted for your consideration. If you have any comments, favorable or unfavorable, on any candidate, you should send them in writing to the Secretary within 60 days of this notice. If no objections are received by that date, these candidates will be declared elected to membership. Please address comments to Sherman P. Marsh, Secretary AEG, U.S. Geological Survey, Mail Stop 973, Box 25046, Federal Center, Denver, Colorado 80225, U.S.A.

Editors note: Council has decided that all new applicants will receive the journal and newsletter upon application for

Continued on Page 20
The following books published by ELSEVIER SCIENCE are available from the AEG on a post-paid basis. Members are entitled to a reduction of the normal price.

<table>
<thead>
<tr>
<th>Author/Title</th>
<th>Non-member Price US$</th>
<th>Member Price US$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augustithis, S.S. Atlas of Metamorphic-Metasomatic Textures and Processes</td>
<td>195.50</td>
<td>117.50</td>
</tr>
<tr>
<td>Bárdossy, G. and Aleva G.J.J. Lateritic Bauxites</td>
<td>186.00</td>
<td>112.00</td>
</tr>
<tr>
<td>Buchanan, D.L. Platinum-Group Element Exploration</td>
<td>105.50</td>
<td>63.50</td>
</tr>
<tr>
<td>Butt, C.R.M. and Zeegers, H. Regolith Exploration Geochemistry in Tropical</td>
<td>205.50</td>
<td>123.50</td>
</tr>
<tr>
<td>and Subtropical Terrains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapman, N.A. et al. The Poços de Caldas Project: Natural Analogues of</td>
<td>214.50</td>
<td>128.50</td>
</tr>
<tr>
<td>Processes in a Radioactive Waste Repository</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Das, H.A., Faanhof A. and van der Sroot, H.A. Radioanalysis in Geochemistry</td>
<td>132.50</td>
<td>79.50</td>
</tr>
<tr>
<td>David, M. Handbook of Applied Advances Geostatistical Ore Reserve Estimation</td>
<td>96.00</td>
<td>57.50</td>
</tr>
<tr>
<td>Didier, J. and Barbarin, B. Enclaves and Granite Petrology</td>
<td>168.00</td>
<td>101.00</td>
</tr>
<tr>
<td>Fletcher, W.K. Analytical Methods in Geochemical Prospecting</td>
<td>116.00</td>
<td>69.50</td>
</tr>
<tr>
<td>Govett, G.J.S. Rock Geochemistry in Mineral Exploration</td>
<td>172.00</td>
<td>103.00</td>
</tr>
<tr>
<td>Gulson, B.L. Lead Isotopes In Mineral Exploration</td>
<td>112.50</td>
<td>67.50</td>
</tr>
<tr>
<td>Hedenquist, J.W., White, N.C. and G. Siddely Epithermal Gold Mineralization</td>
<td>302.50</td>
<td>181.50</td>
</tr>
<tr>
<td>of the Circumpacific: Geology, Geochemistry, Origin and Exploration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howarth, R.J. Statistics and Data Analysis in Geochemical Prospecting</td>
<td>168.50</td>
<td>101.00</td>
</tr>
<tr>
<td>Kauranne, L.K., Salminen, R. and K. Eriksson Regolith Exploration Geochemistry in Arctic and Temperate Terrains</td>
<td>160.00</td>
<td>96.00</td>
</tr>
<tr>
<td>Kwak, T.A.P. W-Sn Skarn Deposits and Related Metamorphic Skarns and</td>
<td>155.50</td>
<td>93.50</td>
</tr>
<tr>
<td>Granitoids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laznicka P. Breccias and Coarse Fragmentites</td>
<td>222.50</td>
<td>133.50</td>
</tr>
<tr>
<td>Mysen, B.O. Structure and Properties of Silicate Melts</td>
<td>112.50</td>
<td>67.50</td>
</tr>
<tr>
<td>Naqvi, S.M. Precambrian Continental Crust and its Economic Resources</td>
<td>151.50</td>
<td>91.00</td>
</tr>
</tbody>
</table>

Total Payment enclosed

To qualify for discount, all orders must be received by the AEG before June 1, 1995. Orders must be accompanied by payment. Orders will be shipped by surface mail.

Send orders to AEG, P.O. Box 26099, 72 Robertson Rd., Nepean, Ontario K2H 9RO, Canada. Fax orders (+1) 613 828 9288

Please note that cheques, International Money Orders, UNESCO coupons, International Postal Orders, VISA and MasterCards are acceptable. All payments are in US funds.

For users of VISA or MasterCard, minor variations in billing may reflect currency exchange rates at the time of bank posting. Please note that the cheques drawn on overseas banks require an additional US$ 15.00 to be submitted to reimburse the AEG for bank charges.
New Members
Continued from Page 18

membership. The process of application to the Nepean office, recommendation by the Admissions Committee, review by the Council, and publication of applicant’s names in the newsletter remains unchanged.

FELLOWS

Lentz, David R.
Mineral Deposits Geologist
NB Geological Survey Branch
Bathurst, NB, Canada

Levitski, Alexander
Managing Director
Explotech
Ariel, Israel

Van Blommestein, Bruce S.
Manager R & D
Inchcape Testing Services
Belmont, WA, Australia

MEMBERS

Burge, Colin
Sr Project Geologist
Metall Mining
Vancouver, BC, Canada

Christie, Anthony B.
Minerals Geologist
Inst Geol & Nuclear Sciences
Lower Hutt, New Zealand

Heinemeyer, Gary L.
Expl Manager - Mexico
Phelps Dodge Mining
Tucson, AZ, U.S.A.

Linder, Harold
Tempe, AZ, U.S.A.

Lombard, Paul
Project Geologist
N.S. Dept Nat Res
Halifax, NS, Canada

Porto, Claudio G.
Rio de Janeiro, Brazil

Rasmussen, P.E.
Geol Survey of Canada
Ottawa, Canada

STUDENTS

Batista, Ana, C.
Aveiro, Portugal

Osae, Shiloh
Okayama University
Okayama, Japan

This list comprises titles that have appeared in major publications since the compilation in EXPLORE Number 85. Journals routinely covered and abbreviations used are as follows: Economic Geology (EG); Geochimica et Cosmochimica Acta (GCA); the USGS Circular (USGS Cir); and Open File Report (USGS OFR); Geological Survey of Canada Papers (GSC Paper) and Open File Report (GSC OFR); Bulletin of the Canadian Institute of Mining and Metallurgy (CIM Bull); Transactions of Institute of Mining and Metallurgy, Section B: Applied Earth Sciences (Trans. IMM). Publications less frequently cited are identified in full. Compiled by L. Graham Closs, Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401-1887, Chairman AEG Bibliography Committee. Please send new references to Dr. Closs, not to EXPLORE.

Recent Papers
Continued from Page 20

Continued on Page 22
Recent Papers
Continued from Page 21

The following special volumes are available from the AEG on a post-paid basis (surface mail) to all. Both member and non-member prices are listed.

<table>
<thead>
<tr>
<th>Sp. Vol. No.</th>
<th>Description</th>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Application of Probability Plots in Mineral Exploration (A.J. Sinclair)</td>
<td>US $ 8.00</td>
<td>US $ 12.00</td>
</tr>
<tr>
<td>10</td>
<td>Gold-81, Precious Metals in the Northern Cordillera (ed. A.A. Levinson)</td>
<td>US $ 7.50</td>
<td>US $ 12.00</td>
</tr>
<tr>
<td>11</td>
<td>Exploration Geochemistry Bibliography to January 1981 (compiled by H.E. Hawkes)</td>
<td>US $ 10.00</td>
<td>US $ 20.00</td>
</tr>
<tr>
<td>11.1</td>
<td>Exploration Geochemistry Bibliography Supplement 1 to October 1984 (compiled by H.E. Hawkes)</td>
<td>US $ 10.00</td>
<td>US $ 17.00</td>
</tr>
<tr>
<td>11.2</td>
<td>Exploration Geochemistry Bibliography Supplement 2 to October 1987 (compiled by H.E. Hawkes)</td>
<td>US $ 10.00</td>
<td>US $ 17.00</td>
</tr>
<tr>
<td>12</td>
<td>Writing Geochemical Reports (S.J. Hoffman)</td>
<td>US $ 5.00</td>
<td>US $ 7.00</td>
</tr>
<tr>
<td>14</td>
<td>PROBPLLOT, An Interactive Computer Program to Fit Mixtures of Normal (or Log Normal) Distributions with Maximum Likelihood Optimization Procedures (C.R. Stanley)</td>
<td>US $ 30.00</td>
<td>US $ 55.00</td>
</tr>
<tr>
<td></td>
<td>8087 chip (YN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Please fill in blanks. Program disk cannot be sent without this information.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 + 14</td>
<td>Combination offer</td>
<td>US $ 35.00</td>
<td>US $ 60.00</td>
</tr>
</tbody>
</table>

PRICE REDUCED

- GEOEXPO/86, Proceedings of an exploration symposium focusing on Cordilleran environments held in Vancouver May 12-14, 1986 (ed. I.L. Elliot and B.W. Snee) | US $ 25.00 | US $ 25.00 |
- Reviews in Economic Geology Volume 3, Exploration Geochemistry, Design and Interpretation of Soil Surveys (ed. W.K. Fletcher) (to USA) | US $ 20.00 | US $ 25.00 |
- Reviews in Economic Geology Volume 3, Exploration Geochemistry, Design and Interpretation of Soil Surveys (ed. W.K. Fletcher) (Foreign) | US $ 23.00 | US $ 28.00 |
- 1992 AEG Membership Listing and Directory of Exploration Geochemical and Environmental Services | US $ 10.00 | US $ 20.00 |
- Journal of Geochemical Exploration for Volumes 1-4, 6-11, 13, 16-35, 26, 30 | US $ 50.00 | N/A |
- for Volumes 5, 12, 14 | US $ 110.00 | N/A |
- for Volumes 31-50 | US $ 65.00 | N/A |

**AEG T-Shirt Size: **[S, M, L, XL, XXL, XXXL]

- Colour: Royal blue - white print, Grey - ice green print, White - rich blue print | US $ 10.00 | US $ 12.00 |

- Biogeochemical Exploration - Simplified, Short Course Notes 100 pp (C.E. Dunn, J.A. Erdman, G.E.M. Hall, and S.C. Smith) (Airmail Cost $10.00) | US $ 25.00 | US $ 40.00 |
- Applied Biogeochemical Prospecting in Forested Terrain (C.E. Dunn, G.E.M. Hall, and Scagel) (Airmail Cost $5.00) | US $ 25.00 | US $ 40.00 |
- For both of the above (Airmail Cost $15.00) | US $ 40.00 | US $ 60.00 |
- Soil of the World - Colour wall chart. 95 cm x 135 cm in size. Published by Elsevier | US $ 22.00 | US $ 28.00 |

SPECIAL 1. Practical Problems in Exploration Geochemistry, 1987, (A.A. Levinson, P.M.D. Bradshaw and I. Thomas), 260 pp. | US $ 35.00 | US $ 60.00 |

Do you need a receipt? Include self-addressed envelope and US $ 2.00, otherwise your cancelled check or bank card statement is your receipt.

Is your check drawn on a bank outside U.S.A. or Canada? If yes, add US $ 15.00.

Do you require airmail? If yes, add US $10.00 per volume. (Specify number of volumes)

TOTAL US $
Pacific Northwest Mining and Metals Conference

MINING, EXPLORATION and the ENVIRONMENT ’95

Hyatt Regency Hotel, Bellevue, Washington

Technical Sessions, May 3-5, 1995

North Pacific Section of the Society for Mining, Metallurgy, and Exploration (SME-AIME) along with the Association of Exploration Geochemists is pleased to present an exciting program of twenty technical sessions. Technical sessions will include papers on domestic and international mining and exploration activity, mechanical mining, and environmental and mine waste topics.

Program

Tuesday, May 2
• Evening
Welcoming Reception

Wednesday, May 3
• Morning
Exploration and the Environment
Extractive Metallurgy
Diamonds: Deposits and Exploration
Exploration Geochemistry

• Noon
Luncheon

• Afternoon
Acid Mine Drainage
Mechanical Mining
Exotic Minerals and New Technologies
New Instrumental Geochemical Techniques

• Evening
Banquet

Thursday, May 4
• Morning
Environmental Geochemistry
Superfund and the Mining Industry
Exploration Strategies
The Years Ahead
International Focus
Indonesia

• Noon
Luncheon

• Afternoon
AEG Sponsored session
Mine Waste Remediation
Permitting - A Global Perspective
International Focus
Russia and the Far East

Friday, May 5
• Morning
Heap Leach Pad and Tailings Pond Design
International Focus
South America
New Discoveries
Case Histories
Regional Abandoned Mine Lands

Miscellaneous Information

Registration
Meeting registration fees will be $95 for SME-AIME and AEG members and $120 for nonmembers, until April, 7 1995. There will be an additional charge for late registration. Registration packets will be available in February. Please complete and return the coupon to be assured of receiving a registration packet.

Cancellations
Meeting, field trip, and short course fees will be refunded less a 20% processing fee if written request is postmarked on or before April 7, 1995.

Hotel Reservations
A block of rooms has been set aside at the Bellevue Hyatt Regency, 900 Bellevue Way N.E., Bellevue, WA 98004, (206)462-1234. The special convention rate is $92 (single) and $102 (double). Reservations can be made by calling the hotel.
PACIFIC NORTHWEST MINING & METALS CONFERENCE

Mining, Exploration and the Environment '95
Hyatt Reagency Hotel, Bellevue, Washington

Field Trips, May 1-2 and 5-7, 1995

Upper Snoqualmie Groundwater Basin; Geologic Hazards in the Seattle Area;
Geology and Ore Deposits of the Tertiary Cascade Range, Southern WA;
Industrial Minerals in the Cement Industry; and Quartz Creek Plutons
and Copper Mineralization Snoqualmie Batholith, Cascade Range, WA

Short Courses, May 1-2, 1995

Diamond Exploration; New Lithogeochemical Exploration Techniques;
Alkalic Mineral Systems; and Bioremediation

Technical Sessions, May 3, 4, 5, 1995

We have compiled mailing lists from multiple sources
and you may receive duplicates. Please pass copies on to your colleagues. Thank you

For Registration information, please complete and return this coupon to: Mining, Exploration and the Environment '95, c/o GeoConstrux, 6401 106th Ave. NE, Kirkland, WA 98033

Name: __
Company: _______________________________________
Address: ___
City: __________ State/Prov: __________ Zip/Postal Code: __________
Telephone: (____)_____________ FAX: (____)_____________
Interests:
___ Short Courses ___ Field Trips
___ Technical Sessions
AEG APPLICATION FOR NON-VOTING MEMBERSHIP*

to the Association of Exploration Geochemists

Please complete the section relevant to the class of membership sought and supply your address on this form.
Mail the completed application, together with annual dues, to the address below.

MEMBER

I ___________________________ wish to apply for election as a Member of the Association of Exploration Geochemists.
I am presently employed by: ______________________________ as a __________________________.
I am actively engaged in scientific or technological work related to geochemical exploration and have been so for the past two years. I have read the Code of Ethics of the Association and, in the event of being elected a Member, agree to honour and abide by them. Witness my hand this ______ day of ______ 19____.
(Signature of applicant)

STUDENT MEMBER

I ___________________________ wish to apply for election as a Student Member of the Association of Exploration Geochemists. I am presently engaged as a full-time student at ____________________________, where I am taking a course in pure or applied science. I have read the Code of Ethics of the Association and in the event of being elected a Student Member agree to honour and abide by them. Witness my hand this ______ day of ______ 19____.
(Signature of applicant)
Student status must be verified by a Professor of your institution or a Fellow of the Association of Exploration Geochemists. I certify that the applicant is a full-time student at this institution.
(Signature)
(Printed Name and Title)

NAME AND ADDRESS

(to be completed by all applicants)

Name: ___________________________
Address: ___________________________
Telephone: ___________________________
business: ___________________________
fax: ___________________________
home: ___________________________
email: ___________________________

Annual Dues

All applications must be accompanied by annual dues. Select one or two below:

1 1995 member dues
US$ __________

2 1995 student member dues
US$ __________
If you require a receipt, include a self-addressed envelope and add
If your check is not drawn from a U.S.A. or Canadian bank, add

TOTAL __________

All payments must be in US funds. Payment by check, International Money Order, UNESCO Coupons, International Postal Orders, VISA and Master Card are acceptable. For users of VISA or Master Card, minor variations in your billing may reflect currency exchange rate fluctuations at time of bank transaction.

If you pay by charge card, please provide the following information: type: Master Card VISA
Credit card account number: ___________________________
Expiration date: ___________________________

Name: ___________________________
Signature: ___________________________

Please note: Your completed form should be mailed to the Business Office of the Association and will be acknowledged upon receipt. The Admissions Committee reviews all applications and submits recommendations to Council, who will review these recommendations at the next Council Meeting or by correspondence. If no objection is raised the names, addresses and positions of candidates will be listed in the next issue of the Association Newsletter.
If after a minimum of 60 days have elapsed following submission of candidate information to the membership no signed letters objecting to candidates admission are received by the Secretary of the Association from any Member, the Candidate shall be deemed elected, subject to the receipt by the Association of payment of required dues. Send completed application, together with annual dues to:
Association of Exploration Geochemists, P.O. Box 26099, 72 Robertson Road, Nepean, Ontario, CANADA K2H 9R0
TEL: (613) 828-0199, FAX: (613) 828-9288, email: aeg@geology.issi.org

*Application for voting membership requires the sponsorship of three voting members. Request a voting member application from the Association office.
OFFICERS

January 1994 - December 1995

William B. Coker, First Vice President
Geological Survey of Canada
601 Booth Street
Ottawa, Ontario K1A 0E8
CANADA
TEL: (613) 992-2373
FAX: (613) 996-3726
email: coker@gsc.emr.ca

David Garnett, Second Vice President
Becquerel Laboratories Pty, Ltd.
P.O. Box 93
Monai, New South Wales
AUSTRALIA
TEL: (612) 543-2644
FAX: (612) 543-2655
email: bq@atom.ansto.gar.au

Gwendy E.M. Hall, President
Geological Survey of Canada
Room 702, 601 Booth Street
Ottawa, Ontario K1A 0E8
CANADA
TEL: (613) 992-6425
FAX: (613) 996-3726
email: hall@gsc.emr.ca

Sherman P. Marsh, Secretary
U.S. Geological Survey
MS 973, Denver Federal Center
Denver, Colorado 80225
USA
TEL: (303) 236-5521
FAX: (303) 236-3200
email: smash@helios.cr.usgs.gov

Elon M. Cameron, Treasurer
Geochemistry Subdivision
Geological Survey of Canada
601 Booth Street
Ottawa, ON K1A 0E8, Canada
TEL: (613) 496-6420
FAX: (613) 996-9990
email: cameron@gsc.emr.ca

COUNCILLORS

1993-1995
John Fortescue
Jeffrey A. Jaacks (ex-officio)
Owen P. Lavin
Howard R. Lahti
Frederic R. Siegel
Erick P. Weilland

1995-1997
Graham F. Taylor (ex-officio)
John S. Cone
Mark A. Fedikow
R. Steve Friberg
Alistair J. Sinclair
Barry W. Smeep

1994-1996
Russell D. Birrell
Vacant
Marcondes Lima Da Costa
Chile
Xiachu Shan

1995-1996
Günter Mathies
Northern Countries 1992-1994
Agneta Stangert
Southeast Asia 1994-96
Larry P. James
Southern Africa 1995-1997
Vacant
UK and Republic of Ireland 1994-96
Peter R. Simpson

COMMITTEES

Australian Geoscience Council
Representative
Russell D. Birrell

Canadian Geoscience Council
Representative
Colin E. Dunn

Awards and Medals Committee
Graham F. Taylor, Chair 1995-1996
John S. Cone
Robert G. Garrett
Günter Mathies
Barry W. Smeep

Bibliography Committee
L. Graham Closs, Chair
Robert G. Garrett
Richard K. Glanzman
Eric C. Grunsky
Gwendy E.M. Hall
Peter J. Rogers

Distinguished Lecturer Committee
Graham F. Taylor, Chair

Education Committee
Alastair J. Sinclair, Chair

Election Official
Ray E. Lett

Environmental Committee
Richard K. Glanzman, Chair
Cecil C. Begley
Peter H. Davenport
Gwendy E.M. Hall
Keith Nicholson

EXPLORE
Owen P. Lavin, Editor
Sherman P. Marsh, Assoc. Editor
J. Thomas Nash, Assoc. Editor

Journal of Geochemical Exploration
Elon M. Cameron, Editor-in-Chief

Membership Application Committee
Lloyd D. James, Chair
W. K. Fletcher
Owen P. Lavin
Graham F. Taylor

Publicity Committee
Andrew Bourque, Chair
Sherman P. Marsh
J. Stevens Zuker
R. Steve Friberg

Regional Councillor Coordinator
David L. Garnett

Short Course Committee
Colin E. Dunn, Chair

Student Paper Competition Committee
Ian Robertson, Chair
Frederic R. Siegel
Arthur E. Soregaroli
Todd Wakefield

Symposia Committee
Frederic R. Siegel, Chair

Betty Arseneault, Business Manager
P.O. Box 26099, 72 Robertson Road, Nepean, Ontario K2H 9R0 CANADA, TEL: (613) 828-0199 FAX: (613) 828-9288, e-mail: aeg@geology.isis.org
You'll be making big decisions... You need to know how much confidence to place on the assay data your decisions are based on. LQSi has a different kind of standards program you can use for any project and any laboratory.

The LQSi Program

- Receive one standard sample per month.
- Submit the standard to the lab with your samples.
- Report the data to LQSi.
- Review LQSi's statistical summary report to compare results with laboratories worldwide on up to 26 elements.
- Use the Parameter Report (shown below) to check for bias, inconsistency and trends over time.

A unique homogenous standard sample is prepared and distributed to participants each month. Laboratories have no way of knowing what result to expect. LQSi provides rapid and informative graphical reports, which allow you to evaluate laboratory capabilities at a glance.

For a sample report and more information, contact Dick Hogan at (708)331-3249 ext. 30 or fax at (708)331-3040. LQSi: 16130 Van Drunen Rd., South Holland, IL 60473 USA.

LIST OF ADVERTISERS

Acme Analytical Laboratories, Ltd. ... 4
Actlabs - Enzyme Leach ... 3
AEG Publications ... 23
Atoka Exploration ... 15
Becquerel Laboratories, Inc. ... 8
Bondar Clegg & Company, Ltd. ... 7
Chemex Labs Ltd. ... 9
Cone Geochemical, Inc. ... 15
Elsivier .. 19
GAC ... 6
Laboratory Quality Services International (LQSi) 28
MEG Shea Clark Smith .. 15
PACRIM .. 10
SEG Meeting ... 16
Skyline Labs, Inc. ... 17
SME Pacific Northwest Mining and Metals Conf. 24-25
Society for Environmental Geochemistry and Health 16
XRAL - X-Ray Assay Labs ... 11
XRAL Heavy Liquids ... 5

EXPLORE

Newsletter for The Association of Exploration Geochemists

P.O. Box 9777, University Station, Reno, Nevada 89507-9777, USA

Please send changes of address to:

Association of Exploration Geochemists

P.O. Box 26099, 72 Robertson Road, Nepean, Ontario, K2H 6R0, Canada • TEL: (613) 828-0199 FAX: (613) 828-9288
e-mail: aeg@geology.isis.org

NON-PROFIT ORG.
U.S. POSTAGE
PAID
PERMIT NO. 3550
DENVER, CO