Geochemical Exploration in the Former Soviet Union

Introduction

Geochemical studies in the former Soviet Union were extremely widespread and, in many instances, all encompassing. The issues described here are based on information up to 1991, the year of the collapse of the Soviet Union. After that date, geological exploration, including geochemical surveys, decreased dramatically. The author’s personal experience shows that field investigations in the Ukraine, as well as in the other parts of the former Soviet Union (FSU), during 1991–1994 were not more than 30–40 percent of previous “normal” years. In the last few years, however, most geological branches of the former Geological Survey of the Ukraine terminated most of their field investigations. However, during the previous active years a huge amount of confidential prospecting information was assembled in the archives of the Geological Survey of the FSU, which is empowered to publish some of the data, but also to archive almost all of the geological, geochemical, and geophysical information previously gathered. The information, including millions of geochemical sample assays, is stored in local archives. Any derivative reports may be stored in local, in regional, or in central (Moscow) archives.

Many mineral resources in the FSU are attractive potential targets to Western mining companies. Private exploration and development enterprises need, on the one hand, practical geological information, previous estimates and evaluations of the size and tenor of deposits, and, on the other hand, a comprehensive understanding of the exploration level of the deposits and occurrences in the FSU, such as recently described by Diatchkov (1994). This is especially
Information for Contributors to EXPLORE

Scope This Newsletter endeavors to become a forum for recent advances in exploration geochemistry and a key informational source. In addition to contributions on exploration geochemistry, we encourage material on multidisciplinary applications, environmental geochemistry, and analytical technology. Of particular interest are extended abstracts on new concepts for guides to ore, model improvements, exploration tools, unconventional case histories, and descriptions of recently discovered or developed deposits.

Format Manuscripts should be double-spaced and include camera-ready illustrations where possible. Meeting reports may have photographs, for example. Text is preferred on paper and 5- or 3-inch IBM-compatible computer diskettes with ASCII (DOS) format that can go directly to typesetting. Please use the metric system in technical material.

Length Extended abstracts may be up to approximately 1000 words or two newsletter pages including figures and tables.

Quality Submittals are copy-edited as necessary without re-examination by authors, who are asked to assure smooth writing style and accuracy of statement by thorough peer review. Contributions may be edited for clarity or space. All contributions should be submitted to:

EXPLORE

c/o J.T. Nash, Box 25046, MS973, Denver Federal Center
Denver, CO 80225, USA

Information for Advertisers

EXPLORE is the newsletter of the Association of Exploration Geochemists (AEG). Distribution is quarterly to the membership consisting of 1200 geologists, geophysicists, and geochemists. Additionally, 100 copies are sent to geoscience libraries. Complimentary copies are often mailed to selected addresses from the rosters of other geoscience organizations, and additional copies are distributed at key geoscience symposia. Approximately 20% of each issue is sent overseas.

EXPLORE is the most widely read newsletter in the world pertaining to exploration geochemistry. Geochemical laboratories, drilling, survey and sample collection, specialty geochemical services, consultants, environmental, field supply, and computer and geoscience data services are just a few of the areas available for advertisers. International as well as North American vendors will find markets through EXPLORE.

The EXPLORE newsletter is produced on a volunteer basis by the AEG membership and is a non-profit newsletter. The advertising rates are the lowest feasible with a break-even objective. Color is charged on a cost plus 10% basis. A discount of 15% is given to advertisers for an annual commitment (four issues). All advertising must be camera-ready PMT or negative. Business card advertising is available for consultants only. Color separation and typesetting services are available through our publisher, Network Graphics, Inc.
Prognostic resources in the FSU

Prognostic resources include four classes: mineral potential, P₃, P₂, and P₁ (Table 1-see page 4). Prognostic resources can be part of evaluated or explored deposits but the main usage of prognostic resources is in conjunction with geologic mapping and follow-up physical prospecting for actual deposits. An evaluation of the prognostic resources in an area precedes the determination of the presence of reserves in a deposit, and in sensu lato, reserves are primarily part of the resources. The quality of prognostic resource estimates improves and becomes more accurate and reliable from stage to stage during geologic mapping and progress of prospecting by increasing density of geological, geochemical, and geophysical investigations, as well as drilling and trial mining. Estimation of prognostic resources in the FSU is similar to evaluation of potential resources based on deposit models (Cox and Singer, 1986; Kirkham and others, 1993). Descriptive characteristics and selection of respective deposit type or world-wide known analogs (as used in the FSU) or deposit models (as used in the USGS, and the Geological Survey of Canada (GSC)) are similar. The grade and tonnage models with probabilities of undiscovered deposits (as used in the USGS, and GSC) and subjectively inferred range of deposit size (small, medium, or large, as used in the FSU) are major differences between the two systems. Resource estimation based on geochemical data is common in the FSU.

Geochemical surveys during geological exploration

Geochemical surveys accompany geological investigations at all stages of exploration, which, in the FSU, combine specific types, scales, and intensities of geological investigation and result in required products in a certain order. Geochemical surveys and geochemical survey targets have changed over time, according to the most recent geochemical concepts:

- individual anomalies formed the major targets of geochemical surveys until the middle of the 1980s, and geochemical surveys followed certain statistical procedures that allowed a focus on specific anomalous samples by statistical methods;
- complex haloes were the major targets of geochemical surveys from the middle of the 1980s to the early 1990s, and the interpretation of geochemical surveys included the use of computer software that focused on correlations among elements and their zonation, as well as the identification of complex haloes that show specific ratios of distal and proximal metals as indicators;
- geochemical fields, their structure, and an empirical hierarchy of elements in the geochemical fields, which might correlate with certain metallogenic units including ore regions, zones or trends, ore districts, deposits, and ore bodies, became the major targets of geochemical surveys in the 1990s.

Geological exploration, as the term is used in the FSU, includes three major stages: geologic mapping, prospecting, and mining, where the latter is beyond the scope of this short
Prognostic Resources in the Former Soviet Union

<table>
<thead>
<tr>
<th>Exploration Stage</th>
<th>Metallogenic Structure</th>
<th>Prognostic Resources Type</th>
<th>Prognostic Resource Description</th>
<th>U.S. Resource Category*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small-scale mapping (from 1:500,000 to 1:200,000)</td>
<td>Region, zone, or trend (10^3-4 sq. km)</td>
<td>Mineral, or geological potential, and P_3</td>
<td>Subjectively inferred ("quality assessment") resources of metal in an ore region, which is divided into high, medium and low categories; based on general geological situations, geological structures, rock types, and broad anomalies in stream sediments. Mineralogical potential could be a result of reevaluation of well-known areas on the basis of application new or different deposit models.</td>
<td>Speculative and hypothetical resources**</td>
</tr>
<tr>
<td>Large-scale mapping (from 1:50,000 to 25,000)</td>
<td>District (10^2-3 sq. km)</td>
<td>P_3 (2)</td>
<td>Rough estimated resources of metal in an ore district, which are based on inferred mineralized rocks in cross-sections, haloes in bedrock, broad anomalies in secondary haloes, and geophysical anomalies. These resources may be based on proven or probable applicability of a specific deposit model.</td>
<td>Speculative or inferred resources</td>
</tr>
<tr>
<td>Prospecting (>1:10,000)</td>
<td>Deposit (10^1-2 sq. km)</td>
<td>P_2 (1)</td>
<td>Quantified resources of metal in an ore deposit have been confirmed by presence of mineralized rocks with subeconomic or economic grades in several cross sections, partly based on geochemical haloes in bedrocks (in exposed regions, such as Kazakhstan, Uzbekistan, and eastern part of Russia). These resources are based on proven deposit models, their morphology, tonnage, and grade.</td>
<td>Inferred or indicated resources</td>
</tr>
<tr>
<td>Detailed prospecting (or prospect evaluation)</td>
<td>Bodies (10^0-1 sq. km)</td>
<td>P_1-(C_2)</td>
<td>Precisely estimated (reserve estimation methods) resources in delineated ore bodies, which are based on detailed geological studies, a network of drill holes, or single mines. Grid spacing of the net depends on deposit type. Model has to be present in three-dimensional view. These estimates provide basic data for preliminary exploration. C_2 is a category of reserve, which is characterized by the lowest grid of mining or drilling.</td>
<td>Indicated or measured resources</td>
</tr>
</tbody>
</table>

*Geological Survey Circular 831 (1980); ** As shown, categories are overlapping because of inexact correlations between prognostic resources in the former Soviet Union and resource category in USA.
Technical Notes
Continued from Page 3

note. Each stage is subdivided on the basis of scale, and on the basis of required geologic products, where resource and reserve assessment is a major purpose (Table 1).

Geologic mapping includes small- (from 1:500,000 to 1:200,000 scale), and large-scale (from 1:500,000 to 1:25,000 scale) geological surveys. The former were conducted mainly in 1960s and 1970s. Stream-sediment sampling and collection of various types of panned concentrates are the major types of geochemical surveys at this stage. The density of sampling varied from 1 to 0.1 sample per square km. Any geochemical haloes, which could be correlated with an ore region, zone or trend, had to be recognized and ranked during this type of work. It was not required to estimate resources at the time, but recently, small-scale geologic mapping or remapping has been accompanied by a statement of the mineral potential or a P3 resource assessment of the region being studied, as well as the testing of any previous mineral potential inferred by previous workers.

Large-scale geologic mapping was performed mainly from the 1980s until recent times, and such studies found mostly exposed deposits. Geological surveys at a scale 1:25,000 are carried out only in mining districts. Large-scale geologic mapping could include various types of geochemical surveys, including broad soil or bedrock sampling with grids that range from 500x100 m to 100x20 m. Rapid drilling of shallow holes along traverse lines in lateritic terranes is common in the colluvial-covered regions of Kazakhstan, Russia, and Ukraine, especially if any unexposed deposits or geologic structures with mineral potential are the major target of the surveys. Other types of geochemical surveys, including plant, groundwater, and soil-gas sampling, are rarely used. Geochemical haloes, which can be correlated with similar haloes in mining districts elsewhere or with individual deposits, are screened, ranked, and tested during this stage. This stage of exploration is accompanied by P2, P3 resource assessments and testing of any previous mineral potential, or P3.

Prospecting includes investigations at different scales, and is represented by prospecting and detailed prospecting (or prospect-evaluation) at scales from 1:25,000 to 1:2,000. Prospecting generally is performed within the boundaries of an already established ore district or mining district or within inferred ore fields or on their flanks. Broad sampling of bedrock on the surface or core sampling in shallow drill holes within the boundaries of the prospect are the major type of geochemical surveys; soil sampling is common also. The density of sampling varies from 500 (100x20 m) to 2,000 (20x20 m) samples per square km. Geochemical haloes, which could reflect the presence of ore deposits, and possible ore bodies are selected during detailed geochemical surveys. These endeavors are accompanied by P2, P3, and C2 resource and reserve estimates and testing of any previous resource evaluations.

Historical cases

Geochemical surveys in the FSU accompanied geological exploration commonly from the 1930s, when the earliest "copper" surveys were performed, and a number of discoveries of porphyry copper and molybdenum deposits resulted from the geochemical surveys. For instance, the Balkiti porphyry copper deposit in the Almalyk district (Figs. 1, 2) was discovered after a "copper" survey, which included chip sampling of all scattered sparse outcrops, and widely-spaced shallow drill holes in weakly exposed areas that include cover rocks more than ten meters thick. This survey was accomplished in 1932-1933 (Zenin, 1937) in an area close to the well-exposed, world-class Kalmakty, and smaller Dzhambek and Akchoku copper-gold porphyry deposits, and was one of the first successes of geochemical surveys in the FSU.

Recently, geochemical surveys have focused not only on metal anomalies and halo detection, but on their evaluation, including an evaluation of any inferred resources present, as well as an estimate of the erosion level of any potential mineralization present. Interpolation methods, which are based on comparisons between distribution and content of metals in endogenic haloes, and ore bodies, and metal content in secondary haloes, as well as the possibility of leaching of molybdenum and copper, now are commonly applied during geochemical surveys in the FSU. Calculated metal ratios or coefficients are important in the P3 and P2 resource estimations, which may be expressed by the formula: P = M x C, where the P is a prognostic resource, M is a content of metal in a sampled layer, and C is a variable coefficient, which is based on the mobility of the respective metal (molybdenum or copper, for example) in the oxidized zone and soil in the respective climate zone being sampled (arid, humid, or polar). This method was applied to weathered rocks particularly during soil sampling at many porphyry deposits including Kounrad, Koktenkol, Sorskoe

Continued on Page 8
Figure 1. Major porphyry copper districts of the Asian part of the former Soviet Union (modified from Zvezdov and others, 1993).
Figure 2. Almalyk porphyry copper district (modified from Zenin, 1937). Increasing intensity of gray shades within the area sampled in 1932-1933 indicates increasing abundance of copper.
Technical Notes
Continued from Page 5

(all in Kazakhstan) (Pokalov, 1984); Verba (Ukraine) (Voynovski and Kotlyar, 1988; Kotlyar and others, 1995); Peschanka in the Baimsky district (Fig. 5) (Kaminskiy and others, 1988), and numerous other mining districts in the FSU (Fig. 1). The Peschanka discovery is significant because it extended the area of porphyry copper potential from Central Asia to the Far East of Russia.

As previously known, the major porphyry copper districts in the Asian part of the FSU were confined to Kazakhstan (Kounrad and Boshchecul districts), and Uzbekistan (Almalyk district). In spite of permissive geologic environments, the Far East of Russia for a considerable time was characterized as having a lack of significant copper and copper-molybdenum deposits (Zvezdov and other, 1993). Small-scale reconnaissance mapping performed in these regions during the 1960s and 1970s discovered only subeconomic low-grade molybdenum-copper deposits (Zvezdov and other, 1993). Therefore, it was concluded by many (Radkevich, 1984), that the Russian Far East and the Alaskan part of Circum-Pacific ring are characterized by a general lack of major deposits of copper and molybdenum in comparison with the Central American and particularly South American parts of the ring. Nevertheless, numerous porphyry copper occurrences and deposits were discovered in the Russian Far East during subsequent large-scale geologic mapping and geochemical prospecting, involving significant stream sediment and soil sampling, during the last decade. These prospects are clustered mainly in the Baimsky district (Fig. 1) (Migachev and others, 1984; Kaminskiy, 1987, 1989; Kaminskiy and others, 1988; Nokleberg and others, 1995). The Peschanka deposit (66°35.52'N; 164°29.55'E) contains 940 million metric tonnes of ore at 0.51 percent Cu, and 0.42 ppm Au (W. J. Nokleberg, oral commun., 1996), and its location demonstrates significant potential in this part of the world. Soil samples over the Peschanka deposit are characterized by relatively low contents of copper and other metals over both barren rocks and ore-bearing porphyry monzodiorite (respectively, >50 ppm and 70-120 ppm Cu). The values for other elements analyzed include molybdenum (2 ppm and 3-5 ppm), gold (4 ppb and 10-65 ppb), silver (12 ppb and 17-36 ppb), lead (11 ppm and 16-35 ppm), and zinc (52 ppm and 80-160 ppm). These metal contents in soil at the Peschanka deposit are from 10 to 20 times lower, for example, than respective concentrations in soil samples from the Tanama and Helecho deposits in Puerto Rico (Learned and others, 1992). This relation could reflect significant dispersion and oxidation of copper in a permafrost environment, a process that has been pointed out by other researchers (e.g., Ptitsyn and Sysoyeva, 1988). However, contour maps of these elements exhibit perfect zonation, where a proximal group of metals, (including copper, molybdenum, gold, and silver) form haloes over the major ore bodies, and distal haloes of lead, and zinc, as well as some gold and silver probably reflect polymetallic or gold vein and (or) replacement mineralized rocks.

Continued on Page 10

C.F. Mineral Research Ltd.

Our lab offers heavy mineral concentration of bulk samples for micron Au, Pt, base metals, microdiamonds and diamond indicators as well as highest quality Cameca SX-50 Microprobe, and Scanning Electron Microscope, analysis. We have four state of the art instruments enabling reliable and timely mineral and polished thin section analysis. The compositions of all indicator grains are mineralogically classified in a manner that identifies compositions of P & E garnets, chromites, olivines, orthopyroxenes etc. that grow with diamond.

Phone: (604) 860-8525
Fax: (604) 862-9435
Explanation

- volcano-sedimentary rocks
- monzodiorite, granodiorite
- quartz monzodiorite porphyry
- ore stockwork

Figure 3. Metal distribution in soils at the Peschanka porphyry copper-gold deposit (modified from Kaminskiy and others 1988; Migachev and others 1984). Increasing intensity of gray shades indicate increasing abundance of respective metals present.
Technical Notes
Continued from Page 8

In addition, there is another factor that affects the discovery of ore-bearing plutons in the Russian Far East. Ore-bearing and altered plutons, which commonly have areas less than 1.5 square km, are typically characterized by relatively high porosity. These rocks generally are confined to small depressions, small valleys, or to the lowest parts of slopes in the present landscape. The rocks do not crop out well and could not have been discovered without geochemical surveys and drilling because of the permafrost. All these data suggest that previous negative evaluations of the copper potential in the Russian Far East could result from a lack of adequate geochemical surveys and drilling.

Conclusion
A general understanding of the various stages of geological exploration employed and the particulars of prognostic resource estimates in the FSU is critical to evaluating existing geological information, the accuracy of inferred resource estimates, and the overall level of exploration in certain areas. Nonetheless, in some cases it must be emphasized that prognostic resources P2, and (or) its combination with C2, could be compared to indicated or even measured reserves in the USBM and USGS classification scheme, because it was a common practice in the FSU to over-explore mineral deposits (Serenko and Kordestani, 1996) and occurrences.

It is obvious that any long term investment in the mineral industry of Russia today is associated with a variety of risks, including the political situation and an unstable legal framework, economic chaos, cultural differences, and conflict between local and federal interests. There is also some geologic risk for private companies that are interested in concessions in the potential areas. I believe that areas where large-scale geological surveys with prognostic resource estimates with a P2 designation provide a relatively high risk of investment. In contrast, those areas where prospecting, and especially detailed prospecting (or prospect-evaluation) efforts resulted in prognostic resources classes P1 and the presence of reserves C2, provide the safest opportunities for investment.

Acknowledgments
The author wishes to thank T. G. Theodore and Steve Ludington from U.S. Geological Survey, and Eric Seedorff from BHP-Copper Co. for their careful reviews, and helpful suggestions earlier versions of this paper.

REFERENCES:

Boris B. Kotlyar
Consultant Geologist and USGS Volunteer
U. S. Geological Survey
345 Middlefield Rd., MS 901
Menlo Park, CA 94025
415-329-5356
e-mail: boris@mojave.wr.usgs.gov (Boris)
The Fifth Brazilian Geochemical Congress was held at the Federal Fluminense University, Rio de Janeiro, October 23-27, 1995. The well attended meeting included major sessions on: Lithogeochemistry (37 papers, 22 posters), Environmental geochemistry (23 papers, 36 posters), and Isotope geochemistry (22 papers, 5 posters). Other sessions were held on Geochemical analysis and Exploration geochemistry. The meeting also included invited lectures, round table discussions, and a short course on geochemical mapping. Lectures were given by Dr. A.G. Darnley, Geological Survey of Canada (International Geochemical Mapping) and J. Fortescue (Aspects of Global Geochemistry-1995). The round table discussions were on Perspectives for Geochemical Exploration in Brazil, International Geochemical Mapping (IGM) Project phases I/II. Abstracts and proceedings of the Congress are available on compact disk.

John Fortescue
Escondido, CA 92027

Natural and Anthropogenic Hazards in Development Planning by Frederic R. Siegel has been published by Academic Press. The monograph deals with a broad range of geoscience issues in development planning, including volcano hazards, earthquakes, landslides, floods, hazardous wastes, and water. Siegel points out that many environmental hazards need to be anticipated in the planning stages of development rather than fixing them when something goes bad. The book can be obtained from Fred (202-994-6194; e-mail: ndfrs@gwuvm.gwu.edu) for $7 or through Academic Press.

The Association’s annual election of Councilors was in January and four new Councilors were elected. In addition, one previous Councilor was reelected for a second two year term and our “ex officio” President, Gwenda Hall, becomes a Councilor. The newly elected Councilors are: Steven J. Cook, Richard K. Glanzman, Beth McLenaghan, and J. Thomas Nash. Eric F. Weiland was reelected to a second two year term. Out of the 352 Fellows eligible to vote 173 cast their ballots. This represents a 49% voter turn out. Somewhat disappointing but about average for the last few elections.

Our thanks to Russell Birrell for promoting the interests of the AEG while he was Regional Councilor for Western Australia. His term has now expired and we welcome Leigh Bettenay and Nigel Radford as joint replacements for this region. We also welcome three other new Regional Councilors.

Over the years, Bondar-Clegg has established a reputation for both quality and turnaround. Some think that this comes at a higher price. Our clients know differently. Our services combine high quality with competitive rates. If you haven’t talked to us lately about your analytical requirements, we suggest that you give us a call. You’ll find that our stringent quality control program includes random screening for sample preparation quality control; repeat analysis in every test run; frequent inclusion of certified reference materials; frequent “blind” sample submittals, and randomly positioned blank and standard in each test run. These value-added quality services are provided to you at no extra cost.

Ottawa, Ontario Tel: (613) 749-2220 Fax: (613) 749-7170
North Vancouver, B.C. Tel: (604) 985-0681 Fax: (604) 985-1071
Elko, Nevada Tel: (702) 738-5712
Sparks, Nevada Tel: (702) 359-9330 Fax: (702) 359-9386
Val d'Or, Quebec Tel: (819) 825-0178 Fax: (819) 825-0256

Accuracy and Precision Through Discipline
Bondar Clegg
Incheape Testing Services
Geological, Environmental and Industrial Analytical services

Continued on Page 12
Election Results
Continued from Page 10

Councilors: Mark Elliott (eastern Australia); Tawsaporn Nuchanong (south-east Asia) and Yan Guang-sheng (China).

The positions of Regional Councilor Europe, Northern Countries and Southern Africa are currently vacant. Please contact David Garnett or Sherman Marsh if you would like to volunteer for one of these.

David Garnett

REDUCTION IN FORCE AT USGS

In October, 1995, an unprecedented reduction in force (RIF) impacted 775 of 2,192 people in the Geologic Division of the U.S. Geological Survey. The RIF was required when there were insufficient funds for program operations, caused by gradual inflation of salaries and fixed operating costs contrasted with essentially level funding. The RIF resulted in the termination or involuntary retirement of 466 permanent and nonpermanent employees, downgrading of 124 positions, and reassignment of 169 people. The RIF impacted scientists and support staff at all USGS centers and field offices, but there was a higher percentage of RIF’s at the Menlo Park, CA center. The terminations, demotions, and reassignments were effective October 15, 1995.

Concurrent with the RIF was a structural reorganization that emphasizes several Geologic Division programs, including geologic hazards, characterization of abandoned mine lands, and geologic influences on sources of water supply. Chemical laboratories have been reorganized, staff cut, and many functions transferred to central labs in Denver, CO. Following reorganization the majority of geochemists are now in three programs: 1) global change, 2) environmental aspects of energy resources, and 3) mineral resources surveys that include sub-programs for resource assessment, deposit investigations, geo-environmental studies, and baseline characterization.

The RIF, driven by the need to identify programs with inadequate current and anticipated funds, hit staff of energy and mineral resources programs especially hard. Scientists formerly involved in uranium and radon studies were either reassigned or RIF’ed. Geochemists in applied studies of environmental-geochemical hazards tended to be retained, whereas many ranking pure research geochemists were separated. The current staff of Mineral Resources Surveys is approximately 250, down from more than 600 in 1992, as a result of numerous early retirements, reassignments and separations. Some notable losses were AEG members Howard McCarthy (Reno) and James Erdman (Denver). Fortunately, the USGS expanded its emeritus program to allow hundreds of career scientists including McCarthy, Erdman, T.T. Chao, Gary Nowlan, and Paul Theobald continued use of offices and facilities.

GSC: MAKING A DIFFERENCE IN GEOSCIENCE

A handsome new publication, Geoscience Making a Difference, describes the downsizing and redirection of the Geological Survey of Canada (GSC) for many of us who have heard only rumors of change. Although the colorful booklet tries to be upbeat, its best efforts can not brighten the sunset of this productive and relevant organization. The Honourable Anne McLellan, Minister of Natural Resources, introduces the new agenda: “...balancing the need for the best...information...against the long-term federal commitment to fiscal restraint.” She continues: “A rigorous rethinking of past services is underway...what has emerged is a validation of the need for a national geoscience infrastructure delivered in collaboration with the provinces and territories.” On February 27 major reductions in spending over the next three years were announced: the budget for Natural Resources Canada “will fall from C$1,012 billion to C$435 million. As part of this, the GSC will experience a 32% reduction in overall resources over this period. Reductions of this magnitude mean significant staff reductions and will alter the way the Survey does business.” Ouch. Our sympathies to GSC scientists and to industries the GSC has served so well.

New directions include transfer of responsibilities to the provinces and increased cost-sharing with clients. Sadly, this comes at a time when provincial surveys also are struggling for support and the private sector is shifting effort to countries outside North America. The GSC plans to “maintain its commitment to national programs connected to energy and minerals deposits research, resource assessments, marine geoscience, bedrock and surficial mapping, the development of new exploration technology, and research

Continued on Page 13
GSC: Making a Difference...
Continued from Page 12

linked to natural hazards, climate change and groundwater."

Programs highlighted for recent successes include a
geochemical survey in the Yukon that led to the discovery of
a new polymetallic deposit by Cominco; several geochemical
research programs that aid exploration for diamonds and
several kinds of metal deposits; studies of seafloor hydro-
thermal systems and ancient analogues; and geological maps
of the world (one of stratiform copper deposits) on CD-
ROM. Do we see a paradox here? These and other accom-
plishments of which the GSC is justly proud were based on
years of good support for staff, fieldwork, and lab studies
(including essential geochemical work), support that will be
difficult or impossible to sustain in austerity. Do politicians
and the public believe that effective geoscience can be done
from desktops? As the booklet says, "The minerals and
metals industry makes important contributions to the
economic well-being of Canadians." The GSC has played an
important role in the discovery of many ore deposits; the
investment in the GSC studies has been repaid many times in
taxes paid by the mining companies and thousands of
employees in the mining and service industries. The political
system must continue to invest adequate funds to make the
difference.

Looks like hard times ahead for many friends in Canada.
Too few, with too little, asked to do too much. Good luck.

JTN

INTRODUCTION

Antimony is a common associate of many types of gold
deposits and is a potentially useful pathfinder. During the
past ten years, exploration geochemists have switched to
multi-element packages that provide a large suite of ele-
ments at a low price. The current norm, in North America, is
to run gold and a multi-element inductively coupled plasma-
emission spectrometry (ICP-ES) analysis. However, many
geochemists have discovered that an ICP-ES technique does
not provide sufficient sensitivity for the determination of Sb.

The crustal abundance of Sb is about 0.2 ppm and Xie
and Yin (1993) have pointed out that the threshold value of
regional anomalies is 1.0 ppm to 2.0 ppm. This sensitivity is
not provided by direct ICP-ES measurement and an
alternate procedure is necessary. For Sb, better sensitivity can
be obtained by neutron activation analysis (NAA) or by
hydride analysis or by using pre-concentration before
measurement or by ICP-MS. Most explorationists are not
aware that chemical problems cause low and erratic results
Technical Notes
Continued from Page 13

for antimony analysis by these three latter techniques. The consequence is that Sb is often ignored as a pathfinder for gold because analytical problems disguise the true patterns.

Although X-ray fluorescence (XRF) analysis is less sensitive, it still may be an applicable method when the Sb levels are elevated. Both XRF and NAA measurements are normally made directly on solid samples. These physical procedures report total values, although some samples still require extra attention. For exploration samples, NAA may have difficulty with Sb analysis, such as in samples containing arsenic at per cent levels. This may cause peak overlap but the complication is recognized immediately, because NAA is a multi-element technique. Since it is based on radioactive decay, the peak resolution improves when the samples are recounted several days later after the arsenic signal has decayed significantly. A longer-lived Sb isotope can also be used to confirm the result.

Analytical problems exist for all methods of antimony analysis, and we propose no new fool proof innovations. We will discuss the problems and warn geochemists to be careful when selecting a method. For now the best methods are XRF and NAA because they do not encounter problems such as incomplete dissolution or unstable analyte solutions.

RESULTS AND DISCUSSION

The chemical methods (ICP-ES, hydride and pre-
Technical Notes
Continued from Page 14

(Jarvis and Jarvis, 1992). The erroneous ICP-ES results shown on the two graphs in Figure 2 are likely due to interferences from other elements.

Figure 2. Sb by direct ICP-ES vs. NAA on environmental assessment samples

These landfill samples had a high metal content and were analysed by an environmental laboratory using the accepted protocol of an aqua regia digestion. In Hole #13, these results are high by hundreds of ppm. This high bias for the ICP-ES results is likely due to another element giving a false reading for Sb.

Besides the digestion problems, the hydride generation process is very complex and prone to interferences. Most transition metals cause liquid-phase interferences by precipitating as the metal and causing the hydride to break down or by precipitating as metal antimonides. This means that Sb hydride results may be low when the base metals are high. Gas-phase interferences may also occur due to the formation of diatomic particles such as AsSb. Some of these interferences can be controlled, if they are recognised. Hydride analysis for Sb is inexpensive and the perception is that the low detection limits indicate accurate results. However, this technique is not as robust as others such as fire assay for gold, atomic absorption for copper or NAA. These latter procedures are not as affected by different sample matrices or variable analysis conditions.

Figure 3 shows selected results from a series of drill holes samples submitted to different labs for analysis. Only samples with Sb levels that were 50-100 times background are plotted. The chemical results are plotted as a percentage of the total results by NAA/XRF. The analysis by chemical techniques did not detect the high Sb values for the samples A-65 through A-235. Note that the two chemical analyses give similar results despite a different digestion and measurement but clearly these are partial analyses. This could still have geochemical relevance, if the partial analysis values are not erratic. However, it is apparent for these samples that the chemical procedures did not provide consistent extractions on different samples. At the top of drill hole A, the extraction is 52% but drops as low as 2%, as one goes deeper, then increases again to 95% at depth. This appears to be a sample dissolution problem.

A possible explanation is that the variable extraction is due to changes in the Sb mineralogy. Antimony occurs in many different forms: as sulphides (eg. stibnite); as oxides; as sulphosalts; and combined with metals as antimonides. The mineral acids attack only some of these forms. The physical techniques do not depend upon the form of the Sb. Because a broad mineralogy is often found in hydrothermal systems, a mineral acid digestion is not suitable. Unfortunately, a digestion with a strong oxidant such as perchloric acid may cause loss of Sb by volatilization (Bajo, 1992).

CONCLUSIONS

Antimony analysis using routine chemical techniques often delivers results that have no relationship to the total Sb in the sample. These procedures can suffer from incomplete digestion and/or solution and/or instrumental problems consequently reporting background instead of elevated values. The chemical analyses may provide useful informa-
Technical Notes
Continued from Page 15

tion such as a change in mineralogy but data interpretation is difficult at best. Although routine Sb digestions sometimes provide total values, special digestions or possibly fusions are probably needed for chemical techniques. In contrast, NAA and XRF analysis provide total values for Sb and NAA is commonly used as a reference procedure for the certification of standard materials.

References:

Steven Simpson,
Becquerel Laboratories Inc.
4-6790 Kitimat Rd.,
Mississauga, Ont.,
Canada L5N 5L9
e-mail: 70252.1646@compuserve.com

George Cartwright
Inchcape/Bondar-Clegg
Pemberton Ave., N.
Vancouver, B.C.,
Canada V7P 2R5

Gold collector for “No-see-um”/
undetectable gold

by David Garnett and Dean Butler

Geochemists are cautious people. Claims that there is much more gold in a sample than can be measured by conventional techniques tend to be rejected out of hand and little or no attempt is made to explain what might be causing the discrepancy in values. Is there more gold in a sample than is indicated by conventional assays, and if there is not, what is responsible for generating the high values reported by “no-see-um” gold supporters? At the Analytical Methods workshop of the 18th IGES in Townsville Dean Butler described his modified leach technology (MLT). The method was briefly described in EXPLORE No.88. The MLT method has yielded a value of 6.15 ppm Au for Canmet Standard MA2 (recommended value: 1.86 ppm Au), while another sample giving a value of 0.22 ppm Au by conventional analysis gave 14.6 ppm Au using MLT. Too good to be true? Here are details of the MLT gold extraction process and we hope that at least some readers will attempt to replicate it.

Figure 1. Schematic diagram of apparatus for gold extraction.

The equipment (Figure 1) can be constructed from readily available materials.
1. Plastic tray of approximate dimensions 400mm x 250mm x 50mm.
2. Two baffles made from strips of plastic 250mm wide x 20mm high x 4mm thick, with twelve holes of 3mm diameter at a height halfway up strip. The inflow baffle has the holes offset to the ends so that the entering liquor is deflected when striking the solid section in the centre of the strip. The baffles are glued across the tray approximately 30mm from each end. They are there to prevent
Technical Notes
Continued from Page 16

agitation of the ore particles by the liquor flow. Any floating particles are prevented from fouling the carbon by the baffle at the exit end of the tray. It is of the utmost importance that no ore particles are allowed to be washed into the carbon column.

3. Plastic pipes (about 10 - 13mm black poly pipe irrigation fittings) glued into each end of the tray as close to the bottom of the tray as possible. The inlet pipe is connected to a pump as in Fig 1. An adaptor may be required to connect the delivery hose to the pump. NOTE: The glue used must be of the hot melt type. Do not use two part epoxy or other liquid glues since these can easily scavenge gold from the liquor. For example, jewelers glue can extract enough gold to allow it to be burnedish.

4. Activated carbon column. PVC tube (900mm high by 30mm ID) with a push fit cap drilled with 10 x 3mm holes covering the base. This rests in the pump reservoir while the upper end remains open and receives the liquor flow from the tray outlet. Water wash approximately 500ml Pica G210 AS carbon from a freshly opened pack in order to remove fines, using a suitable screen. Place this in the PVC tube.

Extraction of gold is done in the following steps.
1. Size the ore sample to +38 mm (up to about 200 mm is acceptable, but ideally it should be mainly close to 38 mm). Spread about 10g of this between the inlet and outlet baffles on the tray in a layer a single particle thick.
2. Introduce 2.5 to 3 litres of 1 g/L NaCN or KCN into the system and circulate at a flow rate near 500 ml per minute. No other chemicals are used and pH is maintained by the cyanide alone.
3. Circulate the solution for at least three days.
4. Remove the carbon and ash in an electric muffle at 600 C. Digest the ash in aqua regia, extract the gold with DIBK/ Aliquat 336 and read against standards on flame AAS.
5. Analyse the liquor for the very low level of gold it will be carrying. In order to obtain a reliable reading this generally requires acidification of 200 ml of the liquor with 10 ml of HCl in a fume hood, followed by extraction into 5 ml of DIBK.

Dangers of contamination
Extreme care must be taken to avoid contamination, particularly at theashing and digesting stages. Glassware, crucibles and muffle used in this work should be dedicated solely to it. Both crucibles and glassware should undergo a double contact with aqua regia, with water rinse between. A third aqua regia contact should then register zero Au. The standard contamination test is to carry out the entire procedure, including heating the crucibles in the muffle and aqua regia washing of the cooled crucibles, without carbon present. If the crucibles and glassware have been used in previous gold analytical procedures it will take at least one full cleaning cycle to remove all gold from the utensils. Once the carbon and glassware have reported zero the leaching circuit should also be run, without ore present, first without carbon and then with carbon present. Once the entire circuit has reported zero the extraction is then ready to proceed.

Comment
This approach is somewhat different from many of those reported previously in that it relies on a single, extended extraction to generate the measured gold content of the sample. Previous methods often depended on summing the apparent gold content of many cycles of extractions, using dilute solutions that may well have been close to the detection limits of the analytical system. These would be vulnerable to the claim that the 'gold' reported was simply the sum of a lot of analytical noise. In this case a single measurement is made. Dean Butler has offered to supply a sample that reports about 0.1 ppm Au using conventional analytical techniques. Butler has run this sample using the above, and has obtained about 0.5 ppm Au after three days; about 1.0 ppm Au after five days; or about 2.0 ppm Au after ten days. Contact Butler if you would like to obtain some of this sample or have any queries. Alternatively, use your own sample. Please send any relevant results and/or comments to EXPLORE.

David Garnett
Requerel Laboratories Pty. Ltd.
Menai, NSW, Australia
Tel: (612) 543-2644
FAX(612) 543-2655

Dean Butler
Action Gold
Adelaide, Australia
Tel: (618) 388-7466
FAX(618)-388-7271

ON THE WEB

Many new sites on the World Wide Web provide information of interest to geochemists at no charge. The AEG will soon have a site, thanks to the efforts of Gwendy Hall and Erik Grunsky. Two sites of possible interest include: 1). NEWSMINE, for distribution of mining-related news releases at: www.info-mine.com 2). MINE DRAINAGE Interest Group, chiefly scientists in the USGS, at: http://www.water.wr.usgs.gov/mine/home.html.

Readers who have found useful web sites are encouraged to spread the word through EXPLORE. Just send a short note to Sherm or Tom.

CALENDAR OF EVENTS

International, national and regional meetings of interest to colleagues working in exploration, environmental, and other areas of applied geochemistry.

- April 22, '96, Societal Needs and the Environment: Earth Sciences and Public Health, Forum, Washington, D.C. (Frederic R. Siegel, Department of Geology, George Washington University, Washington, D.C. 20052; FAX: 202-994-0450; E-mail: NDFRS@GWUVM.GWU.EDU)
- Apr. 22-23, '96, New Developments in Metallogenic Research, Townsville, Queensland, Australia, by EGRU (Pat Williams, TEL: 077/815223; FAX: 077/251501)

Continued on Page 18
Calendar of Events
Continued from Page 17

□ May 27-29, '96, Geological Association of Canada/Mineralogical Association of Canada, joint ann. mtg., Winnipeg, Manitoba (G.C. Clark, Dept. of Geological Sciences, University of Manitoba, Winnipeg, R3T 2N2; TEL: (204)-474-8857; FAX: (204)-261-7581).

□ July 29-Aug. 3, '96, Proterozoic Evolution in the North Atlantic Realm, Goose Bay, Labrador, by Int'l Basement Tectonics Assn. (Charles F. Gower, Newfoundland Department of Natural Resources, P.O. Box 8700, St. John's, Newfoundland A1B 4J6, CANADA; TEL: (709) 729-2118; FAX: (709) 729-3493; E-mail: cfg@zeppo.geoserv.gov.nf.ca)

□ Aug. 4-14, '96, 30th International Geological Congress, Beijing, China (Prof. Zhao Xun, Deputy Secretary General, 30th International Geological Congress, P.O. Box 523, Beijing 100037, PR. China; TEL: 86-10-8327772; FAX: 86-10-8328928; E-mail: zhaos@bepc2.ihep.ac.en).

□ Sept. 4-11, '96, Age and isotopes of South American Metalligeneic Provinces, mtg., Salvador, Bahia, Brazil (M. Zentilli, Department of Earth Sciences, Dalhousie University, Halifax, B3H-3J5, Canada. TEL: (902) 494-3873; FAX: (902) 494-6889; E-mail: marcos.zentilli@dal.ca).

□ Sept. 17-19, '96, Andean Geodynamics, int'l mtg., St. Malo, France (Denis Gapaia, ISAG '96, Geosciences Rennes, Université Rennes 1, 35042 Rennes cedex, France; FAX: (33) 99 28 67 36; E-mail: isag96@seth.univ-rennes1.fr).

□ Sept. 22-25, '96, The Interactions between Sediments and Water, 7th Int'l Symp., Baveno (Stresa), Italy (Dr. E.D. Ongley, NWRI, 867 Lakeshore Rd., P.O. Box 5050, Burlington, Ontario, Canada L7R 4A6; TEL: (416)336-6439; FAX: 7th Int'l Symp. in Italy: 39-2-33220299).

□ Nov. 10-14, '96 Society of Exploration Geophysicists, mtg., Denver (AAGP Convention Dept., Box 979, Tulsa, OK 74101; TEL: (918) 584-2555).

□ May 19-21, '97, Geological Association of Canada/Mineralogical Association of Canada, joint mtg., Ottawa, Ontario (Secretariat, Geological Survey of Canada, Room 757, 601 Booth St., Ottawa, K1A 0E8; TEL: (613) 947-7649; FAX: (613) 947-7650; E-mail: ottawa97@emr.ca).

□ May 25-29, '97, 18th International Geochemical Exploration Symposium, Jerusalem, Israel (Organizing Committee, International Geochemical Exploration Symposium, P.O. Box 50006, Tel Aviv 61500, Israel; TEL: (972 3) 5140014; FAX: (972 3) 5175674/660325; E-mail: iges@mail.gsi.gov.il).

□ Oct. 5-10, '97, 4th International Symposium on Environmental Geochemistry, Vail, Colorado (4th ISEG, c/o USGS/CEGG, Federal Center, Box 25046, MS 973, Denver, CO 80225; FAX: (303) 236-3200; E-mail: iseg@helios.cr.usgs.gov).

□ June 29-July 1, '98, International Platinum Symposium, IAGOD/CODMUR, Johannesburg, South Africa (C.A. Lee, Box 68108, Bryanston 2021, South Africa; TEL: (2711) 4112253; FAX: (2711) 6923693).

Please check this calendar before scheduling a meeting to avoid overlap problems. Let this column know of your events.

Fred Siegel
The George Washington University
Department of Geology
Washington, DC 20052
USA
TEL: (202) 994-6194
FAX: (202) 994-0450
E-mail: ndfrs@gwuvm.gwu.edu

NEW MEMBERS

To All Voting Members:
Pursuant to Article Two of the Association’s By-Law No.1, names of the following candidates, who have been recommended for membership by the Admissions Committee, are submitted for your consideration. If you have any comments, favorable or unfavorable, on any candidate, you should send them in writing to the Secretary within 60 days of this notice. If no objections are received by that date, these candidates will be declared elected to membership. Please address comments to Sherman P. Marsh, Secretary AEG, U.S. Geological Survey, Mail Stop 973, Box 25046, Federal Center, Denver, Colorado 80225, U.S.A.

Editors note: Council has decided that all new applicants will receive the journal and newsletter upon application for membership. The process of application to the Nepean office, recommendation by the Admissions Committee, review by the Council, and publication of applicant’s names in the newsletter remains unchanged.

FELLOW

Querol-Sune, Francisco
Research Associate
Institute of Geology
Hermosillo, MEXICO

MEMBERS

Baughman, James G.
Staff Geologist
MK Gold Company
Boise, ID, U.S.A.

Bideaux, Richard A.
Mineralogist and General Partner
Mineral Data Publishing
Oro Valley, AZ, U.S.A.

Bizzarro, Martin
Geologist
Monopros
Val d’Or, PQ, CANADA

Bowtell, Robert J.
Geochemist
STeffen, Robertson and Kirsten
Cardiff, U.K.

Delgado, Sergio de L.
Geologist/Geochemist
COMIG-CIA
Belo Horizonte, BRAZIL

Creel, Kevin
Exploration Geochemist
BHP Minerals Exploration
Golden, CO, U.S.A.

Gendall Ian R.
Sr. Geologist
GEMS
Quito, ECUADOR
New Members
Continued from Page 18

Griguta, Marin
Senior Engineer
Expl Div. GEOMEEC
Polsingen, GERMANY

Haggerty, Stephen E.
Univ. of Massachusetts
Amherst, MA, U.S.A.

Jemielita, Richard A.
Consulting Geologist
Glasgow, SCOTLAND

Lipten, Eric
Staff Geologist
Newmont Exploration
Paxton, IL, U.S.A.

Lormand, Carol
Golden Star Resources
Georgetown, GUYANA

Lucas, Robert T.
Project Geologist
Ashton Mining of Canada
Thunder Bay, ON, CANADA

McCorquodale, Joan
Winspear Resources
Vancouver, BC, CANADA

Milne, Bruce D.
Exploration Geologist
Pangea Minerals
Mwanza, TANZANIA

Muchsin, Machali A.
Head, Geochem & Min Inf Div
Directorate of Min Resources
Bandung, INDONESIA

Muller, Daniel
Geologist
North Ltd
Parkes, NSW, AUSTRALIA

Munoz, Florentino
Manager of Exploration
Industrias Luismin
Durango, MEXICO

Peters, Douglas C.
Principal Investigator
USBM
Golden, CO, U.S.A.

Poliquin, Duane
Explorationist
Vancouver, BC, CANADA

Powell, Jon L.
Geologist
Lexam Explorations
Lakewood, CO, U.S.A.

Rangel Pedro de A.
Geologist
Companhia Baiana de Pesquisa Mineral
Salvador, BRAZIL

Sauvage, Jean-Francois
Sr. Exploration Geologist
Guyanor Resources
Cayenne, FRENCH GUYANA

Schmidt, Bryon L.
Geologist
North Exploration
Melbourne, VIC, Australia

Shakesby, Simon R.
Sr. Geologist
Newcrest Mining
Perth WA, AUSTRALIA

Soebari, Lasito
Geologist
Freeport Indonesia
Jakarta, INDONESIA

Steele, Kenneth
Geoscientist
Ontario Geol Survey
Toronto, ON, CANADA

Strand, Pamela
District Geologist
Dept Indian Affairs and N Devel
Yellowknife, NWT, CANADA

Talbot, David K.
Geochemist
British Geol Survey
Keyworth, U.K.

Taranik, Dan
Inf Tech Coordinator
RTZ
Madrid, SPAIN

Twomey, Richard F.
Regolith Geochemist
Egerton Gold
Bicton, WA, AUSTRALIA

Vicuna, Edelmira C.
Exploration Geologist
Minera Yanacocha
Lima, PERU
The list comprises titles that have appeared in major publications since the compilation in EXPLORE Number 90.

Journals routinely covered and abbreviations used are as follows: Economic Geology (EG); Geochimica et Cosmochimica Acta (GCA); the USGS Circular (USGS Cir); and Open File Report (USGS OFR); Geological Survey of Canada Papers (GSC Paper); and Open File Report (GSC OFR): Bulletin of the Canadian Institute of Mining and Metallurgy (CIM Bull); Transactions of Institute of Mining and Metallurgy, Section B: Applied Earth Sciences (Trans IMM). Publications less frequently cited are identified in full. Compiled by L. Graham Closs, Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401-1887, Chairman AEG Bibliography Committee. Please send references to Dr. Closs, not to EXPLORE.

Recent Papers
Continued from Page 20

Deadlines for the Next Four Issues of EXPLORE
Contributors's deadlines for the next four issues of EXPLORE are as follows:

<table>
<thead>
<tr>
<th>Issue</th>
<th>Publication date</th>
<th>Contributor's Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>July 1996</td>
<td>May 31, 1996</td>
</tr>
<tr>
<td>93</td>
<td>October 1996</td>
<td>August 31, 1996</td>
</tr>
<tr>
<td>94</td>
<td>January 1997</td>
<td>November 30, 1996</td>
</tr>
<tr>
<td>95</td>
<td>April 1997</td>
<td>February 28, 1997</td>
</tr>
</tbody>
</table>
18th INTERNATIONAL GEOCHEMICAL EXPLORATION SYMPOSIUM

JERUSALEM, ISRAEL

MAY 25-29, 1997

SYMPOSIUM THEMES

* Arid zone geochemistry
* Advances in geochemical mapping
* Data processing
* Exploration geochemistry in the Mediterranean area and Africa
* Advances in analytical techniques
* Hydrochemistry and environmental hydrochemistry
* Environmental geochemistry
* Organic matter and biogeochemistry in geochemical exploration
* Geochemistry of radon
* Geochemistry and archaeology
* Radioactive tracers
* Mitigation of environmental impact from mining and waste disposal

FIELD TRIPS

Four-day pre-and post-symposium field trips will be held in:
Central and northern Israel; Southern Israel; Cyprus, and will include sites of geological, archaeological and general interest.
* A special pre-symposium field trip to West Africa is also being planned.

WORKSHOPS

Workshops on selected topics including:
* Modern techniques in geochemical analyses - an update
* Environmental and legislative uses of regional geochemical baseline data for sustainable development
* Morpho- and soil stratigraphy of alluvial sediments in arid zones
* Hydrochemistry: sampling and analytical techniques, environmental impact
* Advances in geochemical mapping

ACCOMPANYING MEMBERS PROGRAM

* Broad selection of exciting trips and activities

We are privileged to invite you to attend the 18th IGES to be held in the beautiful city of Jerusalem. For further information and suggestions please contact:

Ron Bogoch and Moshe Shirav, Co-Chairmen
Geological Survey of Israel, 30 Malkhe Israel St., Jerusalem 95501, Israel, Fax: 972-2-380688
e-mail: iges@vms.gsi.gov.il
ASSOCIATION OF EXPLORATION GEOCHEMISTS
SPECIAL BOOKS OFFER 1995/1996

The following books published by ELSEVIER SCIENCE are available from the AEG on a post-paid basis. Members are entitled to a reduction of the normal price.

<table>
<thead>
<tr>
<th>Author/Title</th>
<th>Non-member Price US$</th>
<th>Member Price US$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augustithis, S.S. Atlas of Metamorphic-Metasomatic Textures and Processes</td>
<td>245.75</td>
<td>147.50</td>
</tr>
<tr>
<td>Bárdossy, G. and Aleva G.J.J. Lateritic Bauxites</td>
<td>234.50</td>
<td>140.70</td>
</tr>
<tr>
<td>Buchanan, D.L. Platinum-Group Element Exploration</td>
<td>133.25</td>
<td>79.00</td>
</tr>
<tr>
<td>Butt, C.R.M. and Zeegers, H. Regolith Exploration Geochemistry in Tropical and Subtropical Terrains</td>
<td>258.75</td>
<td>155.00</td>
</tr>
<tr>
<td>Chapman, N.A. et al. The Poços de Caldas Project: Natural Analogues of Processes in a Radioactive Waste Repository</td>
<td>249.50</td>
<td>149.00</td>
</tr>
<tr>
<td>Das, H.A., Faanhof, A. and van de Sloat, H.A. Radioanalysis in Geochemistry</td>
<td>167.00</td>
<td>100.00</td>
</tr>
<tr>
<td>David, M. Handbook of Applied Advances Geostatistical Ore Reserve Estimation</td>
<td>120.75</td>
<td>72.00</td>
</tr>
<tr>
<td>Didier, J. and Barbarin, B. Enclaves and Granite Petrology</td>
<td>212.00</td>
<td>127.00</td>
</tr>
<tr>
<td>Fletcher, W.K. Analytical Methods in Geochemical Prospecting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Govett, G.J.S. Rock Geochemistry in Mineral Exploration</td>
<td>216.25</td>
<td>130.00</td>
</tr>
<tr>
<td>Gulson, B.L. Lead Isotopes in Mineral Exploration</td>
<td>142.00</td>
<td>85.00</td>
</tr>
<tr>
<td>Hedenquist, J.W., White, N.C. and Siddely G. Epithermal Gold Mineralization of the Circum-Pacific: Geology, Geochemistry, Origin and Exploration</td>
<td>380.00</td>
<td>228.00</td>
</tr>
<tr>
<td>Howarth, R.J. Statistics and Data Analysis in Geochemical Prospecting</td>
<td>212.50</td>
<td>127.00</td>
</tr>
<tr>
<td>Kauranne, L.K., Salminen, R. and Eriksson, K. Regolith Exploration Geochemistry in Arctic and Temperate Terrains</td>
<td>201.25</td>
<td>120.00</td>
</tr>
<tr>
<td>Kwak, T.A.P. W-Sn Skarn Deposits and Related Metamorphic Skarns and Granitoids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laznicka, P. Breccias and Coarse Fragmentites</td>
<td>279.50</td>
<td>167.00</td>
</tr>
<tr>
<td>Mysen, B.O. Structure and Properties of Silicate Melts</td>
<td>142.00</td>
<td>85.00</td>
</tr>
<tr>
<td>Naqvi, S.M. Precambrian Continental Crust and its Economic Resources</td>
<td>190.75</td>
<td>114.00</td>
</tr>
<tr>
<td>Handling Fee</td>
<td>10.00</td>
<td>10.00</td>
</tr>
</tbody>
</table>

Total Payment enclosed

Orders must be accompanied by payment. Orders will be shipped by surface mail.
Send orders to AEG, P.O. Box 26099, 72 Robertson Rd., Nepean, Ontario K2H 9RO, Canada. Fax orders (+1) 613-828-9288

Please note that cheques, International Money Orders, UNESCO coupons, International Postal Orders, VISA and MasterCards are acceptable. All payments are in US funds.

For users of VISA or MasterCard, minor variations in billing may reflect currency exchange rates at the time of bank posting. Please note that the cheques drawn on overseas banks require an additional US$15.00 to be submitted to reimburse the AEG for bank charges.
AEG PUBLICATIONS

The following special volumes are available from the AEG on a post-paid basis (surface mail) to all. Both member and non-member prices are listed.

<table>
<thead>
<tr>
<th>Sp. Vol. No.</th>
<th>Description</th>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Application of Probability Plots in Mineral Exploration (\text{(A.J. Sinclair)})</td>
<td>US $8.00</td>
<td>US $12.00</td>
</tr>
<tr>
<td>14</td>
<td>PROBPLLOT, An Interactive Computer Program to Fit Mixtures of Normal (or Log Normal) Distributions with Maximum Likelihood Optimization Procedures (\text{(C.R. Stanley)})</td>
<td>US $30.00</td>
<td>US $50.00</td>
</tr>
<tr>
<td>4+14</td>
<td>Combination offer</td>
<td>US $35.00</td>
<td>US $60.00</td>
</tr>
<tr>
<td>10</td>
<td>Gold-91, Precious Metals in the Northern Cordillera (\text{(ed. A.A. Levinson)})</td>
<td>US $7.50</td>
<td>US $15.00</td>
</tr>
<tr>
<td>11</td>
<td>Exploration Geochemistry Bibliography to January 1981 (\text{(compiled by H.E. Hawkes)})</td>
<td>US $10.00</td>
<td>US $20.00</td>
</tr>
<tr>
<td>11.1</td>
<td>Exploration Geochemistry Bibliography Supplement 1 to October 1984 (\text{(compiled by H.E. Hawkes)})</td>
<td>US $10.00</td>
<td>US $17.00</td>
</tr>
<tr>
<td>11.2</td>
<td>Exploration Geochemistry Bibliography Supplement 2 to October 1987 (\text{(compiled by H.E. Hawkes)})</td>
<td>US $10.00</td>
<td>US $17.00</td>
</tr>
<tr>
<td>12</td>
<td>Digital bibliography - entire AEG bibliography through 1994. A dbf file on 3.5" diskette (\text{(requires 1 mb hard disk space)})</td>
<td>US $10.00</td>
<td>US $20.00</td>
</tr>
<tr>
<td>12</td>
<td>Writing Geochemical Reports (\text{(J.J. Hoffman)})</td>
<td>US $5.00</td>
<td>US $5.00</td>
</tr>
<tr>
<td>12</td>
<td>GEOEXPO88, Proceedings of an exploration symposium focussing on Cordilleran environments held in Vancouver May 12-14, 1990 (\text{(ed. J.I. Elliot and B.W. Smith)})</td>
<td>US $25.00</td>
<td>US $25.00</td>
</tr>
<tr>
<td>12</td>
<td>Reviews in Economic Geology Volume 3, Exploration Geochemistry; Design and Interpretation of Soil Surveys (\text{(ed. W.K. Fletcher). This volume was co-sponsored by the SEG)})</td>
<td>US $20.00</td>
<td>US $25.00</td>
</tr>
<tr>
<td>12</td>
<td>1992 AEG Membership Listing and Directory of Exploration Geochemical and Environmental Services</td>
<td>US $10.00</td>
<td>US $20.00</td>
</tr>
<tr>
<td>12</td>
<td>Epithermal Gold Mineralization of the Circum-Pacific; Geology, Geochemistry, Origin and Exploration, Volumes 1 and 2.</td>
<td>US $22.00</td>
<td>US $28.00</td>
</tr>
<tr>
<td>13</td>
<td>Soil of the World, Colour wall chart, 96 cm x 135 cm in size. Published by Elsevier.</td>
<td>US $35.00</td>
<td>US $50.00</td>
</tr>
<tr>
<td>14</td>
<td>Practical Problems in Exploration Geochemistry, 1997 (\text{(A.A. Levinson, P.M.D. Bradshaw and I. Thomson)}) (\text{269 pp}})</td>
<td>US $35.00</td>
<td>US $50.00</td>
</tr>
<tr>
<td>14</td>
<td>IGES Extended Abstracts from "Exploring the Tropics", 15-19 May, 1995, Townsville Australia (\text{(for airmail add $20)})</td>
<td>US $50.00</td>
<td>US $55.00</td>
</tr>
<tr>
<td>14</td>
<td>Geochemistry in Mineral Exploration (second edition, published 1979) (\text{(A.W. Rose, H.E. Hawkes, and J.S. Webb) - airmail US$10.00 additional})</td>
<td>US $60.00</td>
<td>US $80.00</td>
</tr>
</tbody>
</table>

Journal of Geochemical Exploration in Subscription Years 1994 and earlier, whole year or part

Note: Members may order back issues or volumes for the usual membership fee. The member may elect to receive all issues of that subscription year or just the issue/volume desired (the price is the same). The 1995 subscription year will be "back issued" six months after completion (ca. Oct., 1995).

Do you need a receipt? Include self-addressed envelope and US $2.00, otherwise your cancelled check or bank card statement is your receipt.

Is your check drawn on a bank outside the U.S.A. or Canada? If yes, add US $15.00. US $15.00

Do you require airmail? If yes, add US $10.00 per volume, unless otherwise noted. (Specify number of volumes) US $10.00

TOTAL US $
AEG APPLICATION FOR NON-VOTING MEMBERSHIP

to the Association of Exploration Geochemists

Please complete the section relevant to the class of membership sought and supply your address on this form.

Mail the completed application, together with annual dues, to the address below.

I wish to apply for election as a Member of the Association of Exploration Geochemists. I am presently employed by: __________________________ as a _____________________________.

I am actively engaged in scientific or technological work related to geochemical exploration and have been so for the past two years. Upon receipt of the Code of Ethics of the Association I will read them and, in the event of being elected a Member, agree to honour and abide by them. Witness my hand this _______ day of __________ 19 _________.

(Signature of applicant)

STUDENT MEMBER

I wish to apply for election as a Student Member of the Association of Exploration Geochemists. I am presently engaged as a full-time student at ____________________________, where I am taking a course in pure or applied science. I have read the Code of Ethics of the Association and in the event of being elected a Student Member agree to honour and abide by them. Witness my hand this _______ day of __________ 19 _________.

(Signature of applicant)

Student status must be verified by a Professor of your institution or a Fellow of the Association of Exploration Geochemists. I certify that the applicant is a full-time student at this institution.

(Signature)

(PRINTED NAME AND TITLE)

NAME AND ADDRESS

(to be completed by all applicants)

Name: ____________________________
Address: ____________________________
Telephone: ____________________________
bus: ____________________________
fax: ____________________________
home: ____________________________
ext: ____________________________
email: ____________________________

Annual Dues

All applications must be accompanied by annual dues. Select one or two below:

1 1995 member dues $70
2 1995 student member dues $40

If you require a receipt, include a self-addressed envelope and add $2
If your check is not drawn from a U.S.A. or Canadian bank, add $15

TOTAL $_______

All payments must be in US funds. Payment by check, International Money Order, UNESCO Coupons, International Postal Orders, VISA and Master Card are acceptable. For users of VISA or Master Card, minor variations in your billing may reflect currency exchange rate fluctuations at time of bank transaction.

If you pay by charge card, please provide the following information: type: Master Card VISA VISA

Credit card account number: ____________________________ Expiration date: ____________________________

Name: ____________________________ Signature: ____________________________

Please note: Your completed form should be mailed to the Business Office of the Association and will be acknowledged upon receipt. The Admissions Committee reviews all applications and submits recommendations to Council, who will review these recommendations at the next Council Meeting or by correspondence. If no objection is raised the names, addresses and positions of candidates will be listed in the next issue of the Association Newsletter. If after a minimum of 60 days have elapsed following submission of candidate information to the membership no signed letters objecting to candidates admission are received by the Secretary of the Association from any Member, the Candidate shall be deemed elected, subject to the receipt by the Association of payment of required dues. Send completed application, together with annual dues to:

Association of Exploration Geochemists, P.O. Box 26099, 72 Robertson Road, Nepean, Ontario, CANADA K2H 9R0
TEL: (613) 828-0199, FAX: (613) 828-9288, email: aeg@synapse.net

*Application for voting membership requires the sponsorship of three voting members. Request a voting member application from the Association office.
Introduction

Since the 3rd Symposium in Krakaw, Poland, 1994, interests in environmental geochemistry have developed in areas that are driven by human and ecosystem health considerations. For example, in the Rocky Mountains of North America, abandoned mines on public lands and mine drainage that affects surface and ground water resources, as well as wildlife, are of great concern. Air quality is being affected by rapidly growing urban centers and the high reliance on the automobile for transportation. Radon gas that is emitted naturally from certain geologic terranes is being mapped and the effect is might have on human health is debated. Hazardous materials disposal (including radionuclides) remains a hotly debated issue and an understanding is needed of the processes and technologies that confine toxins. Experience has shown that interaction needs to be strengthened between scientists and regulators of environmental laws—especially at this time when revisions to laws are being made.

Proposed Themes

1. Environmental analytical techniques
2. Mine-drainage formation and geochemistry
3. Use and determination of baselines and backgrounds
4. Natural and man-made radiogenic hazards
5. Methods of geochemical monitoring, modeling, and mapping
6. Geomedical research
7. Industry/government cooperation
8. Environmental models (mineral deposits, global change, pollution migration, waste disposal)
9. The “acid” problem (air deposition, natural and mine drainage, ecosystem buffering)
10. Trace substances, ecosystems, and bio-accumulations
11. Environmental geochemistry and health
12. The importance of geology in environmental geochemistry.

Venue

The Westin Resort and Convention Center, Vail, Colorado, is located 160 km west of Denver, Colorado, in the scenic Rocky Mountains. It is easily accessible by public transportation from Denver International Airport (DIA). Vail village is world-renowned for its beauty, outdoor activities, shops, and accommodations.

Accommodations

Full details and a booking form will be included in the next circular. The Westin Resort in Vail is a 5-star hotel with more than 300 rooms and first-class meeting facilities. They are offering a very attractive conference rate for this Symposium.

Publishing

Papers presented by invited and volunteer speakers and poster presenters will be published, following peer review, in special issues of Environmental Geochemistry and Health and/or the Journal of Exploration Geochemistry.

Deadlines and Key Dates

Return of First Circular: Jan. 1, 1996
Second Circular mailing/call for papers: June 1996
Submission of abstracts: March 1997
Final registration and payment: March 1997
Confirm payment and hotel: May 1997
Final Circular and preliminary program: July 1997
Submission of manuscripts: Oct. 6, 1997
Symposium: Oct. 5-10, 1997
Publication of papers: July 1998

Language

English

Registration Fees

This information will be included in the Second Circular.

Correspondence

Contact persons:
Drs. R. C. Severson or L.P. Gough
U.S. Geological Survey, Federal Center
Box 25046, MS 973
Denver, CO 80225 USA
Phone: 303-236-5514 or 5513
Fax: 303-236-3200
e-mail: iseg@helios.cr.usgs.gov

Please share this information with colleagues.
THE ASSOCIATION OF EXPLORATION GEOCHEMISTS
P.O. Box 26099, 72 Robertson Road, Nepean, Ontario K2H 9R0 CANADA
Telephone (613) 828-0199

OFFICERS
January 1996 - December 1997

William B. Coker, President
Geological Survey of Canada
601 Booth Street
Ottawa, Ontario K1A 0E8
CANADA
TEL: (613) 992-2378
FAX: (613) 896-3726
e-mail: coker@gsc.emr.ca

David Garnett, First Vice President
Beecroft Laboratories Pty. Ltd.
P. M. B. 1
Menai, New South Wales 2234
AUSTRALIA
TEL: (612) 543-2644
FAX: (612) 543-2655
e-mail: bq@atom.ansto.gov.au

Peter R. Simpson, Second Vice President
British Geological Survey
Keyworth Nottingham NG12 5GG
United Kingdom
TEL:
Fax: 44 602 363 200
e-mail: k.prs@utx.a.nerc.keyworth.ac.uk

Gwendy E.M. Hall, Treasurer
Geological Survey of Canada
Room 702, 601 Booth Street
Ottawa, Ontario K1A 0E8
CANADA
TEL: (613) 992-6425
FAX: (613) 996-3726
e-mail: hal!@gsc.emr.ca

Sherman P. Marsh, Secretary
U.S. Geological Survey
MS 973, Denver Federal Center
Denver, Colorado 80225
USA
TEL: (303) 236-5521
FAX: (303) 236-3200
e-mail: smarsh@helios.cr.usgs.gov

COUNCILLORS

1995-1997
Graham F. Taylor (ex-officio)
John S. Cone
Mark A. Fedikow
R. Steve Friberg
Alastair J. Sinclair
Barry W. Smeee

1998
Stephen J. Cook
Gwendy E.M. Hall (ex-officio)
Richard K. Glanzman
J. Thomas Nash
M. Beth McClennaghen

1994-1996
Leigh Betterany
Nigel Radford
Mark Elliott
Brazil 1983-1995
Marcondes Lima Da Costa
Chile
Chris J. Oates

COMMITTEES

Australian Geoscience Council Representative
Russell D. Birrell

Canadian Geoscience Council Representative
Colin E. Dunn

Awards and Medals Committee
Gwendy E. M. Hall, Chair 1995-1997
John S. Cone
Robert G. Garrett
Günter Mathies
Barry W. Smeee

Bibliography Committee
L. Graham Closs, Chair
Robert G. Garrett
Richard K. Glanzman
Eric C. Grunsky
Gwendy E.M. Hall
Peter J. Rogers

Distinguished Lecturer Committee
Graham F. Taylor, Chair

Education Committee
Alastair J. Sinclair, Chair

Election Official
Ray E. Lett

Environmental Committee
Richard K. Glanzman, Chair
Cecil C. Begley
Peter H. Davenport
Gwendy E.M. Hall
Keith Nicholson

EXPLORE
Sherman P. Marsh, Editor
J. Thomas Nash, Editor
Owen P. Lavin, Business Manager

Journal of Geochemical Exploration
Elon M. Cameron, Editor-in-Chief

Admissions Committee
Lloyd D. James, Chair
L. Graham Closs
Jeffrey A. Jaacks

Publicity Committee
Andrew Bourque, Chair
Sherman P. Marsh
J. Stevens Zuker
R. Steve Friberg

Regional Councillor Coordinator
David L. Gamett

Short Course Committee
Colin E. Dunn, Chair

Student Paper Competition Committee
Ian Robertson, Chair
Frederic R. Siegel
Arthur E. Soregaroli
Todd Wakefield

Symposia Committee
Frederic R. Siegel, Chair
Gwendy Hall
Elon Cameron
Graham F. Taylor
Barry W. Smeee

Betty Arseneault, Business Manager
P.O. Box 26099, 72 Robertson Road, Nepean, Ontario K2H 9R0 CANADA, TEL: (613) 828-0199 FAX: (613) 828-9288, e-mail: aeg@synapse.net
LIST OF ADVERTISERS

Acme Analytical Laboratories, Ltd ... 19
Actlabs - Enzyme Leach ... 5
AEG Publications ... 24
Becquerel Laboratories, Inc ... 12
Bondar Clegg & Company, Ltd ... 11
C. F. Mineral Research Ltd 8
Chemex Labs Ltd ... 13
Cone Geochemical, Inc ... 10
Elsevier ... 23
MEG Shea Clark Smith ... 16
North American Exploration .. 16
XRAL - X-Ray Assay Labs ... 14

Newsletter for The Association of Exploration Geochemists
P.O. Box 9777, University Station, Reno, Nevada 89507-9777, USA

Please send changes of address to:
Association of Exploration Geochemists
P.O. Box 26099, 72 Robertson Road, Nepean, Ontario, K2H 9R0, Canada • TEL: (613) 828-0199 FAX: (613) 828-9288
e-mail: aeg@synapse.net