President's Message

Membership of the AEG in Israel increased by 50% between 1992 and 1996. This would be a major achievement in those countries that are heavily populated with exploration geochemists, but Israel does not quite fall into that category — at least, not yet. We all know that statistics can be used as much to obscure as to illuminate and, to paint a more accurate picture in this case, that 50% increase merely reflected a swelling of our numbers from two AEG members to three. Now who, in their right mind, would have the audacity to put forward a proposal to host the 18th International Geochemical Exploration Symposium (IGES) in Jerusalem when there were so few exploration geochemists in the country? Well, the Israelis did and I think I may now have a slightly better understanding of that expressive Yiddish word, chutzpah. What’s more they delivered a thoroughly professional symposium, together with field trips to northern and southern Israel, that blended good science with good friends - both old and new — in a fascinating and unique part of the world. The test of a successful meeting is that it seems to be over almost before it starts and that is what happened in the last week of May 1997. Our thanks go to many people — to the professional congress organisers (Kenes) who were ever-present and always helpful; to the Renaissance Hotel which provided an excellent setting for the symposium; to the sponsors, and in particular to the Geological Survey of Israel for its support and for its commitment of staff and resources; but above all to committee, so ably and energetically led by their co-chairmen, Ron Bogoch and Moshe Shirav, who made it all happen.

Without a large home-grown population of exploration geochemists in Israel, it is clear that the 18th IGES was always going to be smaller than some of its predecessors. Nevertheless it is a great credit to the organisers that they managed to attract more overseas participants than we have had in many recent symposia, and this despite the best efforts of CNN to convince the world that the country was going up in flames. It was a particular pleasure to see so many colleagues from eastern Europe and I hope we will see them participating in similar numbers in the future.

I wonder if any previous IGES has spanned quite the range of topics covered in Jerusalem. While there was a solid core of mainstream themes - Exploration Geochemistry, Hydrogeochemistry, Sampling Media, and Advances in Analytical Techniques — we were also reminded that exploration geochemists share many similar interests/problems with scientists in related disciplines. Sessions on Environmental Geochemistry and Mitigation of Geochemical Impact on the Environment broadened the range, but the final topic — Archaeology and Geochemistry - must surely have been a first in IGES history and must have gone a long way towards making the 18th IGES the most diverse ever held. It was

Technical Note

Water: A Medium for Exploration in Northern Terrains
Eion M. Cameron, Christopher Marmont, Gwendy E.M. Hall

This article is dedicated to Jack Henderson. Jack, born in the United States, represented the very best in GSC field geologists: tough, fit as a deer, imaginative, enthusiastic, supportive, generous. He is the author of the authoritative geological report on the Penrhyn Group and gave us the benefit of his considerable knowledge throughout the project. Jack died July 22, 1997.

Introduction

Recent advances in analytical chemistry have made hydrogeochemistry the cost-effective method for exploration that some geochemists envisioned more than 50 years ago. While preparing the obituary for Herbert E Hawkes we were impressed that this pioneer's first choice for a sampling medium was stream water, but his application of the medium was stifled by the crude analytical methods in the 1940's. At that time, colourimetric methods were the only practical way to measure trace metals in waters. However, the sensitivity of colourimetry was not sufficient for the ppb concentrations of these metals. Thus, Herb "invented" stream sediment sampling as an alternative. This developed into the most important geochemical approach to exploration, resulting in hundreds of mineral discoveries.

In the years since Herb Hawkes' work, analytical technology has revolutionized geochemistry. Laboratory instruments, such as the ICP-MS, can rapidly measure dozens of elements, many to the ppt level. There has also been development of portable instrumentation for field analysis. Because of the widespread familiarity with exploration methods involving the analysis of solids, an appreciation of the benefits of surface waters as a sampling medium has been slow to develop.

The benefits of using waters are most apparent in countries with a climate similar to that of Canada. The first, and most obvious feature, is the abundance of water bodies. Figure 1 is an aerial photograph of the Melville Peninsula in the Northwest Territories, where the work described in this article was located. There is an abundance of small lakes, less than a kilometre in diameter, in the

CONTENTS

President's Message 1
Technical Note
Water: A Medium for Exploration in Northern Territories 1
Notes from the Editors 2
Technical Note
Effects of Geology and Mining on the Sediment Geochemistry of the Arkansas River Drainage Basin, Colorado 6
Mineral Mapping by Remote Imaging Spectroscopy 10
Student Paper Prize 15
Calendar of Events 15
New Members 16
Recent Papers 18
AEG Publications 21
AEG Application for Admission 22
AEG Committees 23
List of Advertisers 24

Continued on Page 3
Information for Contributors to EXPLORE

Scope: This Newsletter endeavors to become a forum for recent advances in exploration geochemistry and a key informational source. In addition to contributions on exploration geochemistry, we encourage material on multidisciplinary applications, environmental geochemistry, and analytical technology. Of particular interest are extended abstracts on new concepts for guides to ore, model improvements, exploration tools, unconventional case histories, and descriptions of recently discovered or developed deposits.

Format: Manuscripts should be double-spaced and include camera-ready illustrations where possible. Meeting reports may have photographs, for example. Text is preferred on paper and 5- or 3-inch IBM-compatible computer diskettes with ASCII (DOS) format that can go directly to typesetting. Please use the metric system in technical material.

Length: Extended abstracts may be up to approximately 1000 words or two newsletter pages including figures and tables.

Quality: Submittals are copy-edited as necessary without re-examination by authors, who are asked to assure smooth writing style and accuracy of statement by thorough peer review. Contributions may be edited for clarity or space.

All contributions should be submitted to:
EXPLORE
c/o J.T. Nash, Box 25046, MS973, Denver Federal Center
Denver, CO 80225, USA

Information for Advertisers

EXPLORE is the newsletter of the Association of Exploration Geochemists (AEG). Distribution is quarterly to the membership consisting of 1200 geologists, geophysicists, and geochemists. Additionally, 100 copies are sent to geoscience libraries. Complimentary copies are often mailed to selected addresses from the rosters of other geoscience organizations, and additional copies are distributed at key geoscience symposia. Approximately 20% of each issue is sent overseas.

EXPLORE is the most widely read newsletter in the world pertaining to exploration geochemistry. Geochemical laboratories, drilling, survey and sample collection, specialty geochemical services, consultants, environmental, field supply, and computer and geoscience data services are just a few of the areas available for advertisers.

International as well as North American vendors will find markets through EXPLORE.

The EXPLORE newsletter is produced on a volunteer basis by the AEG membership and is a non-profit newsletter. The advertising rates are the lowest feasible with a break-even objective. Color is charged at key geoscience symposia.

NOTES FROM THE EDITORS

Sherman Marsh and Tom Nash

As you can see, or will see if you turn to page 11, this is a color issue — our second. One of our advertisers, GeoSoft, has again purchased a full page color ad thus allowing us to have three additional pages for scientific illustrations. We would like to thank GeoSoft for providing us with this opportunity. Color is especially useful in scientific illustrations where so much more information can be shown and understood by using color.

As Editors we would, of course, like to be able to present more issues in color and more pages in color. Unfortunately the budget for EXPLORE doesn't include color, so we have to depend on our advertisers to support this effort. In this issue of EXPLORE we present three Technical Notes that utilize color illustrations. Most of these illustrations would be difficult, if not impossible, to show in black and white and the use of color is really necessary to convey the message to the reader. Although we cannot promise color in the future, we anticipate that we will have additional opportunities. To that end, we would encourage you to think about color for your contributions. We would like to have some Technical Notes utilizing color illustrations well in advance of publication so we can plan our next color issue. Putting together a color issue of EXPLORE is not a trivial task (this issue is about a month "late") and the more lead time we have the better prepared we can be. So, if you have, or are planning to write, a short article that would be enhanced or requires the use of color, please send it to us. We will do our best to get it into the next color issue.

Our next issue will focus on the 18th IGES that was held in Israel that last week of May of this year, and on the West Africa field trip that was held just prior to the meeting. If you have any interesting photographs or a short write-up on a facet of the meeting or field trip we would appreciate hearing from you.

Sherm and Tom

Support Your Organization
Advertise in Your Magazine
President’s Message
continued from page 1
also particularly appropriate, given the long history of human occupation of this part of the world, coupled with the fact that Jerusalem itself was celebrating its 3000th anniversary. It should come as no surprise that archaeologists use geochemical techniques to identify probable sources of their samples, the only difference being that in their case the samples are ballast-stones recovered from a sunken Phoenician vessel or galena that could have been used as a source of galena cosmetics in Ancient Egypt. Whatever the topic — exploration geochemistry or a related discipline — it was a pleasure to hear the vigorous debate which was stimulated by some presentations. This quality of communication was equally high for the posters, many of which were outstanding.

While the number of abstracts received from university and government research groups was only slightly down on those received for the 17th IGES, in Townsville, there was a noticeable reticence on the part of industry to tell us about their work. A quick count shows that at the 17th IGES there were twenty-one abstracts where the senior author was from a mining/mineral exploration group. At the 18th IGES that number had dropped to just two. While I accept that there is far more incentive for university and government research groups to publish their results it is absolutely critical that we hear from industry as well, and I hope that this shyness will prove to be a temporary phenomenon. Your time to prove this is at the 19th IGES in Vancouver in 1999, so start planning now.

It was not all geochemistry: tours of the Old City and the Israel Museum gave us a greater awareness of the complex history of Israel, and how it has arrived at its place in the world today. The AEG dinner, outside in a very pleasant setting at the Ticho House, gave us a chance to announce the winner of the student paper prize (congratulations to Tracey Delaney) and we were also able to acknowledge the efforts of Ron Bogoch and Moshe Shirav in bringing us all together. As a bonus I discovered a fellow wine-label collector in Ron Bogoch, so I am now not only an expert on kosher wine but I have a very fine label to add to my collection. Exploration geochemistry has many benefits.

What have we learned from the 18th IGES? The single most important conclusion must be that it is possible to promote exploration geochemistry successfully in areas that do not have a large indigenous population of exploration geochemists. While it is essential that we cater to the needs of the majority of our members — in Australia, Canada and the USA — it is equally important that we that we do not become too introspective. One goal of AEG is to advance and promote exploration geochemistry and to do that we must be prepared to venture off the well-worn paths from time to time. The 18th IGES was a good example of this. It also proved to be an excellent opportunity to talk to geochemists in related fields; to learn from them and to have the satisfaction of discovering that there are times when they can learn from us.

To Ron and Moshe, and all who worked with them — it was great, we enjoyed it immensely and the time went all too quickly. Many many thanks from all of us who were in Jerusalem, and to those who were not — you should have been there. Next time, in Vancouver, in 1999. We hope to see you there.

David Garnett
Becquerel Laboratories
PMB 1, Menai, NSW 2234, AUSTRALIA
Tel: (612) 9543-2644
Fax: (612) 9543-2655
email: nau@bq.com.au

Footnote: AEG West Africa Field Trip
This was run as an adjunct to the 17th IGES in Jerusalem, but was coordinated by the AEG. An account of it will appear in the next EXPLORE, but our acknowledgments cannot wait till then. Our thanks go to all who made it possible, but in particular we would like to express our gratitude to Eric Hansen and his wife Fadila, and to Philippe Freyssinet who between them were largely responsible for the success of the trip.

David Garnett

Technical Note
continued from page 1
length, their location controlled by lithology or faults. What the photograph does not show is the even greater abundance of ponds, puddles and seeps in this permafrost terrane, which provide a means for follow-up surveys.

The second feature that favours waters is the high rate of oxidation of sulphide minerals. When the glaciers covering much of Canada melted about 8,000-10,000 years ago they left behind fresh rock surfaces exposing unoxidized sulphide minerals or they left tills, which are comminuted fresh rocks. These materials have provided a rich source for the dissolution of metals. The concept that cold, glaciated terrains are not favourable for sulphide oxidation, which initially discouraged geochemical exploration in northern Canada, could not be more wrong. Sulphide minerals in permafrost oxidize rapidly. Water that is cold dissolves more oxygen and thin films of water around ice and mineral grains provide a means of conveying oxygen and removing the dissolved metals.

Logistical advantages are the third feature that favours the use of waters. Lake waters can be sampled very rapidly. Using a float equipped light helicopter, it is possible to sample 200 lakes in an eight-hour day. No sample preparation is required. Experience with northern waters has shown that there is no need for filtering and no need for acidification, provided that samples are analyzed reasonably promptly after collection.

MELVILLE PENINSULA, EARLY SURVEYS
The Melville Peninsula is part of the Canadian Shield, north of the Arctic Circle (Color Plate 2, Figure 2). It contains the western portion of a Lower Proterozoic fold belt, the Foxe Fold Belt, which continues east across Baffin Island and becomes the Rinkian Belt in
West Greenland (Greenland in Color Plate 2, Figure 2 is shown in quartz-feldspar paragneiss and schist and above this by calc-silicate basement (Henderson, 1983). Basal Penrhyn is thin orthoquartzite water surveys to interpret selected anomalies defined by the 1977 grade, ending at about 1.7 Ga, and foliated granitic rocks, including abundant pegmatites, intrude the Penrhyn.

Rocks of the Foxe Fold belt on Melville Peninsula comprise the 1.86 Ga Penrhyn Group, resting unconformably on Archean basement (Henderson, 1983). Basal Penrhyn is thin orthoquartzite and rusty schist. These are succeeded by marble and biotite-quartz-feldspar paragneiss and schist and above this by calc-silicate gneiss, marble, schist and paragneiss. At the top are biotite–quartz-plagioclase schist and quartzite. In the lower part of the succession sulphide, graphic metasediments are common. Intense folding along east-northeast axes has produced broad, doubly plunging infolds of Penrhyn rocks. Metamorphism is upper amphibolite grade, ending at about 1.7 Ga, and foliated granitic rocks, including abundant pegmatites, intrude the Penrhyn.

In 1978, Cameron and Hall carried out experimental lake water surveys to interpret selected anomalies defined by the 1977 lake sediment surveys. The work was based in the Inuit community of Repulse Bay and used a Bell 206-B helicopter fitted with a specially designed sampling system (Cameron, 1978). This permitted rapid rates of collection, 30-40 lakes per hour. In a field laboratory, "total" heavy metals, pH and conductivity were measured. The heavy metals test, which principally measures Zn, is the dithizone method, using Bloom’s buffer. The detection limit of 1 ppb was more than adequate given the threshold of 5-10 ppb Zn. Waters were re-analyzed later in a laboratory for Zn, Cu and Ni using an atomic absorption spectrometer.

Results showed that most samples were typical northern Shield waters, weakly acidic, with <2.5 ppb of each of the three base metals (Cameron, 1979). Mineralized areas were outlined by tight clusters of metal-rich, often acidic waters. Zinc is the most abundant metal, with a 95 percentile of 193 ppb, followed by Ni and Cu. Soils from the mineralized areas are acidic and are partly leached of metals (which, of course, is why the metals are in the waters).

Thus ponds and seeps were used for more detailed follow-up and several contained several thousand ppb Zn and Ni. Drilling was not carried out, but rock samples showed that the source of the base metals was paragneiss, often graphitic, which contained pyrrhotite, sphalerite, pentlandite and chalcopyrite. The anomalies occurred very extensively over much of the Penrhyn basin. It was suggested (Cameron and Hattori, 1992) that in this and some other Lower Proterozoic basins in the Shield, base metal rich-fluids were originally exhaled into sulphur-poor anoxic waters. In the absence of H2S, the base metals were widely dispersed through the basin, rather than precipitating near the vent.

BHP SURVEYS

BHP Minerals Canada Ltd. came to the area with a different perspective. Several of the geological features of the Penrhyn Group suggested that there might be potential for Broken Hill type (BHT) mineralization. BHT deposits are stratabound Pb-Zn-Ag deposits hosted by high-grade metamorphic sediments, with or without volcanic rocks, of middle Proterozoic age. The massive Pb-Zn-Ag mineralization does not respond to magnetic or electromagnetic exploration techniques; although responses from associated magnetic iron formations, amphibolite and pyrrhotite bodies may provide an indirect indication of adjacent BHT deposits. In the Penrhyn Group, previous workers had identified dozens of magnetic-electromagnetic and lake sediment geochemical anomalies; many tens of kilometres of gossans had been mapped; sphalerite had been discovered by Aquitaine Canada at two locations—DUC and BAR—in 1970; and geological reasoning suggested other parts of the Penrhyn Group were also prospective for BHT deposits. The exploration problem was how to evaluate and prioritize so many anomalies within such a large area.

Following literature research, the decision had been made by BHP to carry out a grassroots exploration program in the Penrhyn Group before contact was made between BHP (Marmont) and GSC (Cameron and Hall). Following this meeting, it was concluded that hydrogeochemistry afforded a means of addressing the exploration problem, and a cooperative program was established to carry out a regional hydrogeochemical program as the basis of the BHP investigation.

Work started in the summer of 1994 from a base camp near the centre of the Penrhyn outcrop. Sampling by BHP was from a Bell 206B helicopter with floats using a simple sampling device. This consisted of an aluminum pole with holders for three 125-ml Nalgene bottles. The bottles were pushed below the lake surface and retrieved, requiring the aircraft to spend only a few seconds on the lake.

Continued on Page 5
Technical Note Continued from Page 4

At base camp a laboratory was established and equipped with two portable anodic stripping voltammetry (ASV) units, the PVD 2000, made by Chemtronics of Australia and staffed by one analyst. (A second analyst determined conductivity, pH and fluoride ion concentration of the waters). The method used to measure Zn in the waters is described in Explore (Hall and Vaive, 1991). Analysis of the waters was able to keep reasonably in pace with the sampling rate of approximately 150 per day. This was important, because it permitted immediate follow-up in areas of anomalous results. Logistical costs are high in remote areas such as the Melville Peninsula and the immediate availability of the geochemical data permitted more than the usual activities to be condensed into the first year. Samples were later analyzed for a wide range of elements by ICP-MS at ERI Ltd., Vancouver and at the GSC. The quality of results obtained in the field laboratory can be judged by the comparison of ASV and ICP-MS analyses of waters with >1 ppb Zn (Figure 3).

The summer season is relatively short so far north. However, during 6 weeks in 1994, 4,929 lake water samples were collected covering the entire area of the Penrhyn Group, which comprises almost 12,000 km2. Anomalous samples, defined as waters containing >1 ppb Zn, occur in distinct clusters. There are 25 of these clusters, or anomalous areas (Color Plate 2, Figure 4). Beginning in 1994, but mainly in 1995, all anomalies were visited on the ground and follow-up investigations were carried out on selected areas. Follow-up methods included geological mapping, geophysics (magnetics, electromagnetics, gravity) and geochemistry (soil geochemistry, lithogeochemistry, surface waters), which will not be discussed further.

INTERPRETATION

The large number of anomalies defined by the 1994 reconnaissance samples presented a challenge. Could the reconnaissance samples be used to classify and prioritize the 25 anomalies shown in Figure 4? One approach was the Se/S ratio, with both elements analyzed by ICP-MS. The basis for using this ratio is our metallogenic interpretation (Color Plate 3, Figure 5), which considers the Foxe Fold Belt to be a failed rift. Minor amphibolite within the Penrhyn sequence supports the presence of volcanism. Water pumped through volcanic rocks along the rift axis extracted base metals, which entered an anoxic basin in which carbonaceous shales formed. The anoxic waters were low in H$_2$S, a consequence of sulphate-poor marine waters or, alternatively, non-marine or brackish water in a restricted basin. In the absence of high concentrations of H$_2$S, metals were widely dispersed in the anoxic waters, rather than primarily precipitating near the vents along the rift axis.

Studies of modern oceanic rifts show that Se has a strong tendency to precipitate with the vent sulphides, whereas relatively more S enters seawater. In addition, Se is strongly associated with sulphide of igneous origin, but not with sedimentary sulphides. The lack of Se in sedimentary sulphides results from the adsorption of selenite ions by iron oxides and clays. Thus when bacteria reduce marine sulphate there is no Se in the water to enter the sulphide. These observations suggested that anomalous water samples related to metal-enriched black shale should have low Se/S ratios, whereas anomalies related to vents along the rift, of potentially greater economic interest, should have higher ratios. The availability of S data made it also possible to calculate the Zn/S ratio. Figure 6 is a plot of the median Zn/S ratio versus the median Se/S ratios for each of the anomalous areas shown in Figure 4. Most such areas plot near the origin, with low values for both ratios. Low Zn/S values indicate rocks rich in pyrrhotite, not sphalerite, and low Se/S, sedimentary not igneous sulphide, both characteristic of metal-rich black shale of minimal economic value. Anomaly 7, the DUC claims, is different, with much higher Se/S and Zn/S. This evidence was taken to indicate that DUC might be at, or close to, a submarine vent. The use of ratios is essential. Amounts of S, Zn and Se vary widely within and between anomalous areas, with S being an index of how much oxidized sulphide is in the lake water. Other anomalies had higher Zn contents than DUC.

Ground follow-up work went ahead independently of studies of prioritizing anomalies. This follow-up work also suggested that
Technical Note Continued from Page 5

DUC was the most promising target. DUC was one of nine lake water anomaly clusters selected for detailed ground surveys on the basis of Zn-water anomalies, initial prospecting (which discovered minor amounts of sphalerite at five of these areas) and geological setting. Detailed mapping of DUC by Sean Whiteford (BHP) revealed a mineral assemblage including vesuvianite, scapolite, fluorite, epidote and goldmanite (green vanadian garnet) in an isoclinally-folded synformal sequence of psammo-pelite, calc-silicate, calcitic marble, graphitic schist, tourmalinite and minor gabbro. Pyrrhotite-bearing calc-silicates and graphitic units form conspicuous gossans. Up to 7% sphalerite was found in the (locally massive) graphitic units. This assemblage suggested the presence of a significant exhalative hydrothermal system. Mapping and soil geochemistry reveal anomalous Zn over a strike length of more than 6 kilometres.

Drilling at DUC in 1996 revealed uneconomic grades of base metal mineralization, averaging 1-2% Zn in sphalerite, associated with up to 35% pyrrhotite-pentlandite (0.25% Ni in whole rock assays), minor chalcopyrite, trace galena, with conspicuous gold-maninite and dravite gangue, hosted by calc-silicate gneiss and graphitic gneiss. A vent complex is suggested by: (a) V-rich minerals and flat, MORB-type REE patterns in metamorphosed "shales"; (b) evidence of syn-sedimentary slumping in tourma-linite and massive graphitic units, perhaps associated with growth faults; and (c) pods of massive graphite, presumably the remains of bacteria that fed on the vent fluids (and which oxidized some of the igneous sulphide that might otherwise have precipitated metals).

FUTURE RESEARCH

Modern methods of analysis present the geochemist with the opportunity and challenge of using data taken from across the periodic table. Until recently, it was not possible to dream of using ratios of Se and S in waters. We have not described here the rare earth element (REE) data that even at the ppb and ppt levels produce smooth chondrite-normalized curves that helped confirm the interpretation of DUC as a vent complex. Rare earth data from waters will find a particular application in the search for kimberlites with their distinctive REE patterns. Although this study relates to the northern Canadian Shield, the techniques are, in part, an outgrowth of studies of stream and river hydrogeochemistry in British Columbia and are thus of broader application.

REFERENCES

Eion M. Cameron 1, Christopher Marmont 1, Gwendy E.M. Hall 2
1 Geografix, 865 Spruce Ridge Road, Carp, Ontario, K0A 1L0; email: ecameron@cmapmore.net
2 Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, K1A 0E8
3 Formerly with BHP Minerals Canada Ltd; independent geologist, 1165 Queen's Avenue, Oadville, Ontario, L6H 2B3.

Effects of Geology and Mining Activity on the Sediment Geochemistry of the Arkansas River Drainage Basin, Colorado

S. M. Smith, S. E. Church and G. N. Green

ABSTRACT

The distribution of major, minor, and trace elements in stream sediments is controlled by the exposure of specific rock types and mineralized areas within the Arkansas River drainage basin. Mining activities and industry contribute elements to the

Continued on Page 7
Technical Note Continued from Page 6

environment that overprint this natural geochemical background. Regional geochemical maps showing the distribution of copper, lead, and zinc in almost 9,800 stream-sediment samples demonstrate the relationship between sediment chemistry and geology, and indicate several potential source areas of these metals in the basin. River-sediment samples show that the Leadville mining district is a major contributor of copper, lead, and zinc to the Arkansas River. At least two additional areas contribute zinc-rich sediments to the river. This study demonstrates the value that regional geochemical data, originally collected for mineral exploration purposes, can have in evaluating the impact of mining and mineral processing on the geochemistry of the riparian environment at a drainage basin scale. The process of dispersion reduces the concentration of copper in river sediment to crustal abundance values within 30 km below the Leadville mining district. In contrast, lead and zinc are not diluted to near crustal abundance values until the addition of sediments derived from the Mesozoic sedimentary rocks that crop out just above Pueblo Reservoir 235 km below Leadville, Colorado.

The methods outlined in this paper describe geochemical maps and map products that can readily be developed from regional geochemical data to demonstrate the dispersion of metals from historic mining districts and their downstream impact on aquatic and riparian habitats. The derivative color ribbon maps are particularly useful in conveying the downstream impacts of historic mining activity to the lay audience.

INTRODUCTION

Historic mining activity near Leadville, Colorado, has contributed metals to the sediments of the Arkansas River, resulting in environmental degradation of aquatic and riparian habitats along reaches of the river. High concentrations of metals in sediments from Pueblo Reservoir have been attributed to contamination from mining in the Leadville mining district, 235 km upstream (Callender et al., 1989). Several mining districts and mineralized areas in addition to the Leadville mining district also contribute sediments containing elevated concentrations of metals to the Arkansas River.

In 1993, we began a study of metal distributions in the Arkansas River drainage basin of Lake County, Colorado. The existing geochemical data base was supplemented by collecting large composite samples of minus-80-mesh sediment from various river reaches. Samples of active stream sediments and cores of recent lake and river sediments were collected to evaluate the contribution of metals from potential sources near Leadville (Church et al., 1993, 1994). Lead was used as an isotopic tracer to identify specific source areas. Stream sediments from the Leadville mining district contain lead, silver, bismuth, cadmium, zinc, arsenic, and copper at concentrations 2 to 215 times the crustal abundance concentrations. Lead shows the highest enrichment factors and copper the lowest. Pre-mining concentrations of these elements in Arkansas River sediments adjacent to the district, were below normal crustal abundance; except for lead and zinc which were enriched by factors of 2 to 3 (Church et al., 1993). Stream sediments from the Leadville mining district have lead-isotope signatures that match published lead-isotopic data from the ores (Thompson and Beatty, 1990). In contrast, lead-isotope signatures of samples from stream sediments collected from tributaries outside the district, or from the Arkansas River above the district do not match those of the Leadville ores. The study was expanded in 1994 to include the entire Arkansas River drainage above the Pueblo Reservoir. This report describes the methods used to assess concentrations and sources of metal contamination in river sediments and evaluates the distribution of copper, lead, and zinc in the basin.

GEOLOGIC SETTING

The geologic data from the Arkansas River drainage basin indicate that the oldest rocks exposed in the basin are a series of Precambrian gneisses and schists developed from the metamorphism of 1.7 to 1.8 billion year (B.Y.) old sedimentary and volcanic rocks. Several zinc-copper-lead sulfide deposits occur in and are genetically related to these Precambrian metamorphic rocks.

![Figure 1. Simplified geologic map of the Arkansas River drainage basin modified from Green (1992). Localities: BV, Buena Vista; C, Climax; GC, Canon City; CR, Cripple Creek; CS, Colorado Springs; P, Pueblo; PR, Pueblo Reservoir; L, Leadville; S, Salida; W, Westcliffe; physiographic features are indicated in italics. Mining Districts: 1, Chalk Creek; 2, Climax; 3, Cripple Creek; 4, Leadville; 5, Monarch; 6, Rosita Hills; 7, St. Kevin; 8, Silver Cliff; 9, Twin Lakes.](image)
Technical Note Continued from Page 7
northwest almost to Buena Vista.

Extensive and thick Mesozoic sedimentary rocks—sandstones, marine shales, and limestones—are exposed in the Plains Region east of the Front Range and Wet Mountains. Small exposures of Mesozoic rocks preserved in grabens west of Cañon City indicate that these rocks once cropped out over a more extensive area. During the Late Cretaceous and early Tertiary, volcanic and intrusive activity accompanied a period of mountain building during the Laramide orogeny. Several large plutons of this age (Fig. 1) are in the Sawatch Range, Mosquito Range, Wet Mountains, and Front Range. In the middle Tertiary, bimodal volcanic and plutonic activity produced volcanic fields of extrusive and intrusive rocks exposed between Cripple Creek and Salida, as well as several igneous stocks such as Climax (Bookstrom, 1990). Several base-and precious-metal mining districts are associated with these Late Cretaceous and Tertiary plutons including: Climax, Leadville, Cripple Creek, Rosita Hills, Silver Cliff, Monarch, Chalk Creek, and Twin Lakes (Fig. 1).

Erosion of the rising mountain masses elevated by block faulting in the early Tertiary spread extensive sedimentary deposits eastward over the Great Plains. Subsequent erosion by the Arkansas River and its tributaries have removed most of these sedimentary rocks from the area; however, a remnant of these lower Tertiary sedimentary rocks is exposed north and east of Colorado Springs (Fig. 1). Late Tertiary and Quaternary rifting created large valleys partially filled with Tertiary rocks and Quaternary sediments in the Wet Mountain and Arkansas Valley (Fig. 1).

METHODS OF STUDY

Geochemical maps of the upper Arkansas River drainage basin were prepared from existing stream-sediment geochemical data (retrieved from the USGS National Geochemical Data Base, Hoffman and Marsh, 1994) to establish a strategy for the collection of new river-sediment samples. Stream-sediment data for a large region of central Colorado are from two large regional studies: data for 6,995 samples (minus-100-mesh) collected between 14 March 1976 and 11 October 1979 as part of the National Uranium Resource Evaluation program (NURE), and data for 2,796 samples (minus-80-mesh) collected between 1976 and 1982 for USGS mineral resource assessment studies of federal lands. The specific studies, sources of data, and the methodology used for compiling, gridding, and plotting these geochemical data are described in Smith (1994).

Data for copper, lead, and zinc were gridded and contoured using contour intervals selected as multiples (1, 3, 5, 10, and 20 times) of the crustal abundance of the element selected. Values chosen for copper, lead, and zinc-40, 20, and 75 ppm, respectively—fall between the crustal abundance value suggested for crustal rocks (Fortescue, 1992) and the average values derived for western U.S. soils (Shacklette and Boerngen, 1984). These values are also tempered by our experience with regional stream-sediment geochemistry.

Geochemical maps reflect the baseline concentrations for copper (p. 13; Smith, 1994), lead, and zinc (Color Plate 4, Figures 2 and 3) at the time the samples were collected (1976-1982). The distribution of each element is controlled primarily by the rocks exposed in the area. Mining districts, smelter sites, industrial sources of trace and heavy metals, and undisturbed mineralized areas are readily identified on geochemical maps by their elevated metal concentrations within the geologic framework.

On the basis of our regional geochemical maps, we collected composite river-sediment samples to determine the contribution of the major tributaries to the metal load of the sediments in the Arkansas River. The results from the samples of river sediments are reported in Church et al. (1993, 1994). These twenty-two river-sediment sites are plotted on Color Plate 4, Figures 2-3 as filled diamonds. Between sites, the river was plotted as a "ribbon" and assigned a value on the basis of the metal concentration at the downstream site. The stretch above the Pueblo Reservoir was assigned the value for the most recent sediment in a core sample (locality T2B; Callender et al., 1989). By overlaying the ribbon maps on the regional geochemical maps, the effects of the geochemical composition of the rocks and the extent of dispersed metal contamination from mining districts, smelter sites, industrial sources, and undisturbed mineralized areas can be evaluated.

INTERPRETATION AND DISCUSSION

Affects of Geology

The concentrations of major, minor, and many trace elements in stream sediments are controlled primarily by the exposed rocks and their derivative soils. Within the upper Arkansas River drainage basin, the concentrations of lead in stream sediments from tributary basins (Color Plate 4, Fig. 2) are generally higher than crustal abundance (20 ppm) throughout the western two-thirds of the area. On the east, there is a strong correlation with lead concentrations at or below crustal abundance and the outcrop pattern of Mesozoic sedimentary rocks. The Tertiary volcanic field between Cripple Creek and Salida, and the Cenozoic sedimentary rocks of the Wet Mountain Valley also contain lead concentrations in stream sediments that are below crustal abundance. Areas containing exposures of Precambrian metamorphic rocks, Precambrian igneous rocks, and Paleozoic sedimentary rocks are characterized by lead concentrations between 20 and 60 ppm. Stream sediments derived from the Precambrian granite batholith between Cripple Creek and Colorado Springs contain average lead concentrations between 60 and 100 ppm. Quaternary basin-fill sediments in the upper Arkansas Valley are enriched in lead and reflect the high lead content of the rocks in the Sawatch and Mosquito Ranges.

The concentrations of zinc in samples of stream sediments from tributary basins (Color Plate 4, Fig. 3) are higher than crustal abundance (75 ppm) throughout the study area with the exception of the Paleozoic sedimentary rocks that crop out on the east flank of the Sangre de Cristo Range which are at or below crustal abundance. Stream sediments derived from the Precambrian metamorphic rocks generally contain slightly enriched zinc concentrations, between 100 and 225 ppm, when compared with other rocks in the basin.

Affects of Mining Districts

Metal-enriched rocks formed during the original mineralization process are exposed at the surface at several places within the Arkansas River drainage basin. As these rocks weather, metals are released and dispersed in waters, soils, and stream sediments. The distance elements are dispersed from their original site depends upon several factors: climate, elevation, element concentration at source, geochemical behavior of the element, and the mineralogic or chemical form in which the element is transported.

Mining activities enhanced the relative concentrations of metals in the region and frequently increased the distance of element dispersion from the point source. Metal-rich soils are eroded at a faster rate when vegetation and soil are disturbed. Ore piles and mine waste dumps were often placed in or near streams, in flood plains, or on steep hillsides where they are readily eroded into streams. The exposure of additional sulfide-bearing minerals to water and oxygen caused increased acid generation, primarily as

Continued on Page 9
a result of the oxidation of pyrite, creating metal-rich acidic drainage and depositing soluble salt residues in the soils. Milling generally increases the rate of metal dispersion and acid generation because it increases the amount of surface area available for chemical reactions in the waste rock.

Several mining districts or known mineralized areas can be identified by metal enrichments on the geochemical maps for lead and zinc (Color Plate 4, Figs. 2-3). These include the Leadville, Climax, St. Kevin, Twin Lakes, Chalk Creek, Monarch, Cripple Creek, Silver Cliff, and Rosita Hills mining districts. Other mineralized areas can be identified between Westcliffe and Cañon City, on the east side of the Arkansas River between Buena Vista and Salida, and 35 km southeast of Westcliffe. Areas having anomalous metal concentrations found near Salida, Cañon City, Pueblo, and Leadville may also reflect metal contamination from historic smelters.

Distribution of Metal-Rich Sediments in the Arkansas River

The primary source of copper, lead, and zinc in the river sediments of the Arkansas watershed is the Leadville mining district. Copper concentrations are elevated just down river from the district and show a simple pattern of dilution back to crustal abundance values over a distance of only 30 km downstream (p. 13; Smith, 1994). In contrast, lead and zinc concentrations do not decline to crustal abundance values in sediments of the Arkansas River above Pueblo Reservoir 235 km downstream (Color Plate 4, Figs. 2-3). The alteration halo surrounding the Climax porphyry molybdenum deposit is an additional source of molybdenum-, lead-, and zinc-rich sediments to the Arkansas River. However, Church et al. (1993) showed that concentrations of molybdenum, lead, zinc, and cadmium in river sediments derived from the Climax district are rapidly diluted to near crustal abundance values before the river reaches the Leadville mining district. Although other sources in the drainage basin also contribute lead and copper to the Arkansas River, they do not significantly change the dispersion pattern of these two elements derived from the Leadville mining district.

The concentration of zinc in river sediments remains at least 5 times greater than crustal abundance until just below Cañon City (Color Plate 4, Fig. 3). In this vicinity, large amounts of sediment derived from the erosion of the Mesozoic sedimentary rocks dilute the river sediments. An increase in zinc concentration occurs east of Cañon City where it cuts through the Precambrian metamorphic and igneous rocks. This zinc enrichment may be associated with the Paleozoic sedimentary rocks that crop out just upstream in the drainage basin (Fig. 1). Zinc-rich sediments derived from mining districts in the Sawatch Range may also contribute to the zinc load of the Arkansas River.

ANIMAS BASIN, SOUTHWESTERN COLORADO

These same techniques have been adopted for use in the USGS Abandoned Mine Lands Initiative to demonstrate the impact of historic mining on watersheds (Church et al., 1997). In this report, the stream sediment, colloid, and water data were collected at the same time allowing for a complete interpretation of the chemistry and sediment transport dynamics of the affected river system. This study showed that the colloidal phase dominates the chemistry of the 0.45 micron filtered water, suspended sediment, and bed sediments. Water filtration at 10,000 Daltons is required to obtain dissolved concentrations of metals in waters affected by mining (Kimball et al., 1995). During low flow, these metal-laden colloids aggregate and settle into the bed sediments and reduce food-chain habitats for aquatic life. When these

Continued on Page 10
Technical Note Continued from Page 9

sediments are remobilized at high flow, the concentration of zinc that desorbs from the colloids may exceed aquatic-life standards for trout for days to weeks.

REFERENCES

S. M. Smith, S. E. Church and G. N. Green
U.S. Geological Survey, Box 25046,
Denver Federal Center, Denver, Colorado 80225
Tel: (303) 236-1192
Fax: (303) 236-3200
email: smsmith@usgs.gov

Mineral Mapping by Remote Imaging Spectroscopy
Gregg A. Swayne, Roger N. Clark, and K. Eric Live

Recent advances in infrared detectors and remote sensing technology are allowing minerals of interest to exploration and environmental scientists to be mapped from spectra obtained by high altitude aircraft. Color Plate 3, Figure 1 is an example of an application of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to help in the remediation of the California Gulch Superfund Site in Leadville, Colorado. The remotely sensed spectra are capable of locating sources of acid mine drainage and secondary iron minerals deposited from those waters.

The new airborne imaging spectroscopy instrument uses new infrared detector technology developed by NASA and the Jet Propulsion Laboratory in a high altitude NASA aircraft. Scientists at the U.S. Geological Survey have developed software to analyze the complex spectra and enhance desired features to produce maps depicting the distribution of iron minerals such as jarosite and goethite, specific clay minerals and carbonate minerals, and numerous rock-forming minerals. The new technology has a resolution of approximately 17 by 17 meters and has more than 200 channels in the visible and infrared region (0.38 to 2.50 microns) to allow reliable identification of hundreds of minerals.

Mineral maps of the Leadville site document secondary
Modern geochemical surveys are a critical tool in mineral exploration – providing high volumes of multi-element data that, through systematic evaluation, can significantly increase the potential for discovery.

Now, the CHIMERA™ Exploration Geochemistry system for Windows® 95 and NT™ gives you a distinct advantage for conducting cost-effective and efficient grassroots exploration programs, detailed follow-up or drill target selection.

Designed to provide interactive, visual software tools for field and project geologists, the CHemistry IMport, Edit, Review and Analysis system provides a versatile environment in which to apply your experience and knowledge – while staying in touch with original data and multi-disciplinary information.

CHIMERA™ delivers a world of opportunities to perform rigorous quality control and detailed geochemical analysis, classification and subsetting.

Versatile Import and Quality Control

With intelligent import tools and multiple database functionality, you can rapidly import, merge and perform quality control on data from a wide variety of sources – including field locations and observations, laboratory values (with below detection limit and missing values) and standards.

Due Diligence and Data Analysis

Statistical, mathematical and editing functions help you in performing initial due diligence. Then apply Histogram Analysis, Scatter Analysis and Colour Symbol tools to dynamically identify and interpret distinct data populations.

Rapid Classification and Mapping

Interactive, map-based and lithology code classification methods plus unique dynamic linking and visualization methods enable you to efficiently evaluate the geologic significance of data or test hypotheses – either in the field or office. Maps can be created and output in moments.

Knowledge from Data™

AUSTRALIA
Tel. 61 (8) 9322-8122
Fax 61 (8) 9322-8133
info.au@geosoft.com

EUROPE
Tel. 44 1 734 841280
Fax 44 1 734 841278
info@geosoft.com

NORTH AMERICA
Tel. (416) 369-0111
Fax (416) 369-9599
info@geosoft.com

SOUTH AMERICA
Tel. 55 (21) 285-6526
Fax 55 (21) 285-6347
geosoft.latino@openlink.com.br

AFRICA (AGENT)
Tel. 27 11 807-4800
Fax 27 11 807-4803
geosoft@geodos.co.za

Geosoft Inc., 8th Floor, 85 Richmond St. W., Toronto, Canada M5H 2C9
Plate 2, Fig. 2: Map showing Lower Proterozoic Foxe and Rinkian belts. (Referenced on Page 3)

Plate 2, Fig. 4: Map showing clusters of anomalous samples with 5 ppb or greater Zn in lake water within Penrhyn Group. Clusters 7 (DUC) and 2 are identified. (Referenced on Page 5)

The possibilities of adding color to your advertisements

Turn your LEAD . . . into GOLD!

Contact: Owen Lavin, Newmont Exploration, 2600-1700 Lincoln Street, Denver, CO 80203, USA, Tel: (303) 837-5820 - Fax: (303) 837-5851... or Sherman Marsh, U.S. Geological Survey, MS 973, Denver Federal Center, Denver, CO 80225, USA, Tel: (303) 236-5521 - Fax: (303) 236-3200.
Plate 3, Fig. 5. Metallogenic model for base metal mineralization in Foxe Belt. (Referenced on Page 5)

Plate 3, Fig. 1. Imaging spectroscopy map showing minerals at hazardous waste sites at the California Gulch Superfund Site, Leadville, Colorado. See Technical note Mineral Mapping by Remote Imaging Spectroscopy starting on Page 10.
Plate 4, Figure 2. Distribution of lead in stream sediments from the Arkansas River drainage basin; abbreviations are listed in the caption for Fig. 1 (p. 7). Lead concentrations in river sediments are shown in the ribbon map overlaying the trace of the Arkansas River. (Referenced on Page 8)

Plate 4, Figure 3. Distribution of zinc in stream sediments from the Arkansas River drainage basin; abbreviations are listed in the caption for Fig. 1 (p. 7). Zinc concentrations in river sediments are shown in the ribbon map overlaying the trace of the Arkansas River. (Referenced on Page 8)
The Association of Exploration Geochemists and XRAL Laboratories, a Division of SGS Canada, take pleasure in announcing the 1996 Student Paper Competition Award. This is awarded for the best paper in a refereed scientific journal by a student, on work performed as a student, published within five years of graduation which addresses an aspect of exploration geochemistry. The student must be the principal author and nominations may be made by anyone familiar with the student's work.

Entries closed at the end of 1996 for the Association's eleventh biennial Student Paper Competition. There were eleven entries from nine entrants from as far afield as Canada, China, USA, Australia and the UK. They were all of a very high standard and the choice was difficult. The winner, this time, was Tracy Delaney, now a Project Geochemist with Steffen Robertson and Kirsten, in Denver. Her winning paper was based on research for her M.Sc. Thesis, at the University of British Columbia, supervised by Prof. W.K. Fletcher, which she completed in 1993.

Tracy obtained her B.A. in Geology at the University of Colorado in 1984. Since then she has built varied experience in geology and geochemistry with the USGS (Denver) investigating the mineral potential of wilderness areas in the USA and Alaska, exploration in Nevada, Colorado and New Mexico with Atlas Precious Metal and Placer Dome. She has worked as a geochemical consultant, investigating trace elements in bedrock, till, soils and stream sediments and in environmental geochemistry in monitoring acid mine drainage and in developing mine closure plans with the Environmental Geochemistry section of the Ministry of Energy, Mines and Petroleum Resources of British Columbia and with Steffen Robertson and Kirsten. She is a member of the Canadian Institute of Mining, the Association of Exploration Geochemists, the Association for Women Geoscientists and she is a registered Professional Geoscientist in British Columbia.

She receives a $500 cash prize from XRAL, a two year membership in the Association, together with the Journal and Explore, a certificate of recognition and $500 towards expenses to attend an AEG-sponsored meeting, where the award will be presented. Unfortunately she was unable to attend the 18th IGES in Jerusalem.

Her award-winning paper is entitled "Size distribution of gold in some soils associated with selected gold mineralization in Canada and the United States of America" which was published in 1993 in the Journal of Geochemical Exploration Volume 48 and was co-authored with Prof. W.K. Fletcher. A copy of the abstract follows:-

"Samples were collected near known gold mineralization from anomalous and background soils developed on glacial till in British Columbia and Ontario, and in residual soils in Nevada, Utah and the Yukon Territory. After wet sieving to five size fractions finer than 2000 \(\mu m\), and separation of heavy minerals (S.G.>3.3) for the -212\+106 \(\mu m\) and -106+53 \(\mu m\) fractions, gold concentrations in each fraction were determined by fire assay-atomic absorption. In all cases more than 60% of the gold resides in the -53 \(\mu m\) fraction. For the residual soils most of the remaining gold is associated with the light mineral fractions and only a negligible proportion resides in the heavy minerals. Estimates of the numbers of gold particles and subsampling variability suggest that gold, in both heavy and light mineral fractions, is largely present as inclusions of fine gold. For exploration purposes, optimum sample representativeness would be obtained with the -53 \(\mu m\) fraction. However, because this fraction is a major component of the soils, use of a coarser size fraction (e.g., -212 \(\mu m\)) will only slightly reduce sample representativity. Also, because most of the gold is associated with the -53 \(\mu m\) and light mineral fractions, use of heavy mineral concentrates offers no significant advantage and in some cases would result in anomalous conditions being overlooked."

The Association of Exploration Geochemists would like to thank XRAL Laboratories for, once again, supporting this worthy cause, which encourages young geochemists to publish their research.

I.D.M. Robertson
Chairman, Student Paper Competition Committee

CALENDAR OF EVENTS

International, national, and regional meetings of interest to colleagues working in exploration, environmental, and other areas of applied geochemistry.

- **August 10-15, 1997, Gordon Research Conference on Inorganic Geochemistry**: Ore Deposits, New Hampton, New Hampshire. INFORMATION: Mark Reed, Dept. of Geological Sciences, University of Oregon, Eugene, OR 97403-1272, TEL 541-346-5587, FAX 541-346-4692, mrhreed@oregon.uoregon.edu or Kevin Shelton, Dept. of Geological Sciences, University of Missouri, Columbia, MO 65211, TEL 573-882-6568, FAX 573-882-5458, geosckls@showme.missouri.edu.

- **August 11-13, 1997, 4th Biennial Society for Geology**

Assays and Geochemical Analyses

ACME ANALYTICAL LABORATORIES LTD.

is proud to announce that it is **ISO 9002 CERTIFIED**

582 East Hastings St. • Vancouver • BC • Canada • V6A 1R6

E-mail: Acme_Labs@mindlink.bc.ca Web Site: www.info-mine.com/supp_bootti/acme

Ask for Acme ICP packages from the following affiliated laboratories

- **Acme Analytical Laboratories (Chile)**
 - 15 Elements + Au Assay: $15.00
- **Activities Laboratories**
 - 30 Elements ICP: $22.00
- **American Assay Laboratories Ltd.**
 - 35 Elements Total: $18.00
- **American Laboratories**
 - 25 Elements ICP: $20.00
- **American Visual Analytical Laboratories**
 - 10 Elements ICP: $20.00
- **American XRAL Laboratories**
 - 15 Elements ICP: $20.00
- **Canadian Analytical Laboratories**
 - ICP: $20.00
- **Chemical Analysis Laboratories**
 - 15 Elements ICP: $20.00
- **Geological Analytical Laboratories**
 - 15 Elements ICP: $20.00
- **Mineral Resource Laboratories**
 - 15 Elements ICP: $20.00
- **Rock Testing Laboratories**
 - 15 Elements ICP: $20.00
- **Assay Laboratories**
 - 30 Elements ICP: $20.00
- **Geochemistry Laboratories**
 - 15 Elements ICP: $20.00
- **Geochemical Laboratories**
 - 15 Elements ICP: $20.00

Better...but not more expensive...

<table>
<thead>
<tr>
<th>Package</th>
<th>COM</th>
<th>US</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock Prep</td>
<td>$4.25</td>
<td>$3.25</td>
<td></td>
</tr>
<tr>
<td>Group 50 Element</td>
<td>$6.45</td>
<td>$4.95</td>
<td></td>
</tr>
<tr>
<td>Group 50 Element</td>
<td>$6.50</td>
<td>$5.35</td>
<td></td>
</tr>
<tr>
<td>Group 50 Element</td>
<td>$6.50</td>
<td>$5.35</td>
<td></td>
</tr>
<tr>
<td>Group 10 Element</td>
<td>$6.50</td>
<td>$5.35</td>
<td></td>
</tr>
<tr>
<td>Group 15 Element</td>
<td>$6.50</td>
<td>$5.35</td>
<td></td>
</tr>
<tr>
<td>Group 10 Element</td>
<td>$6.50</td>
<td>$5.35</td>
<td></td>
</tr>
<tr>
<td>Group 30</td>
<td>$12.00</td>
<td>$9.25</td>
<td></td>
</tr>
<tr>
<td>Group 50</td>
<td>$14.00</td>
<td>$10.80</td>
<td></td>
</tr>
<tr>
<td>Assay 15 Elements</td>
<td>$17.50</td>
<td>$13.50</td>
<td></td>
</tr>
</tbody>
</table>

Calendar of Events
Continued from Page 15

August 19-20, 1997, IMA Working group in mineral equilibria and data bases, Helsinki, Finland. INFORMATION: Pentti Holta, Geol. Survey Finland, SF-02150 Espoo, Finland. TEL 358-0-469323-12, FAX, 358-0-462205, e-mail: pentti.holta@gsf.fi.

September 1-5, 1997, Challenges to Chemical Geology, 10th Meeting of the European Geological Societies, Carlsbad, Czech Republic. INFORMATION: Dr. Martin Novak, Czech Geol. Survey, Geologicka 6, 15200 Prague 5, Czech Republic, TEL 422-581-71-20, FAX 422-581-87-48, Novak@cgu.cz.

October 5-10, 1997, 4th International Symposium on Environmental Geochemistry, Val Colorado. INFORMATION: R.C. Severson or L. P. Gough, USGS, Denver Federal Center, Box 25046, MS 973, Denver, CO 80225, TEL 303-235-5514 or 5513, iseg@helios.cr.usgs.gov.

Please check this calendar before scheduling a meeting to avoid overlap problems. Let this column know of your events.

Virginia T. McLemore
New Mexico Bureau of Mines and Mineral Resources
801 Leroy Place
Socorro, NM 87801 USA
TEL: 505-835-5521
FAX: 505-835-6333
e-mail: ginger@gis.nmt.edu

NEW MEMBERS

To All Voting Members:
Pursuant to Article Two of the Association’s By-Law No.1, names of the following candidates, who have been recommended for membership by the Admissions Committee, are submitted for your consideration. If you have any comments, favorable or unfavorable, on any candidate, you should send them in writing to the Secretary within 60 days of this notice. If no objections are received by that date, these candidates will be declared elected to membership. Please address comments to Sherman P. Marsh, Secretary AEG, U.S. Geological Survey, Mail Stop 973, Box 25046, Federal Center, Denver, Colorado 80225, U.S.A.

Editors note: Council has decided that all new applicants will receive the journal and newsletter upon application for membership. The process of application to the Nepean office, Continued on Page 17

XRAL Analytical Services
Wherever in the world your interests are...

XRAL Laboratories
1885 Leslie Street
Toronto, Ontario M3B 3J4
Tel: (416) 445-5755
Fax: (416) 445-4152

XRAL Activation Services
3915 Research Park Dr. A2
Ann Arbor, MI 48108
Tel: (313) 662-9258
Fax: (313) 662-3260

SGS del Peru S.A.
C.P. 27-0125
San Isidro, Lima 27 Peru
Tel: (51-14) 518850
Fax: (51-14) 517788

Les Laboratoires XRAL
129 Ave Réal Cauette,
C.P. 2283
Rouyn, Quebec J9X 5A9
Tel: (819) 764-9109
Fax: (819) 764-4673

SGS-UGRA Laboratories
C.P. 27-0125
San Isidro, Lima 27 Peru
Tel: (51-14) 518850
Fax: (51-14) 517788

Sample preparation: Vancouver (B.C.), Flin Flon (Manitoba), Saint John (N.B.), Yellowknife (N.W.T.), Nain (Labrador), Tumeremo (Venezuela), Medillin (Columbia).

Laboratories: Ecuador, Bolivia, Brazil, Chile, Ghana, Zimbabwe, Europe and elsewhere.

©SGS

Member of the SGS Group (Société Générale de Surveillance)
New Members
Continued from Page 16

recommendation by the Admissions Committee, review by the Council, and publication of applicant’s names in the newsletter remains unchanged.

FELLOWS

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Company/Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooks, Colin C.</td>
<td>Exploration Manager - South America</td>
<td>Aur Resources</td>
<td>Santiago, CHILE</td>
</tr>
<tr>
<td>Crow, Michael J.</td>
<td>Geologist & Sales of Training</td>
<td>British Geological Survey</td>
<td>Keyworth, UK</td>
</tr>
<tr>
<td>Day, Stephen J.</td>
<td>Environmental Geochemist</td>
<td>Dames & Moore</td>
<td>Vancouver, BC, CANADA</td>
</tr>
<tr>
<td>Lawrance, Louisa M.</td>
<td>Consultant Geochemist/Lecturer</td>
<td>University of WA</td>
<td>Nedlands, WA, AUSTRALIA</td>
</tr>
<tr>
<td>Lemiere, Bruno R.</td>
<td></td>
<td>BRGM</td>
<td>Villeurbanne, FRANCE</td>
</tr>
</tbody>
</table>

MEMBERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Company/Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avila, Graciela M.</td>
<td>Geologist - GIS</td>
<td>Prospectores Minerales Mexico</td>
<td>Hermosillo, Sonora, MEXICO</td>
</tr>
<tr>
<td>Barr, John M.</td>
<td>Senior Geochemist</td>
<td>Anglovaal Minerals</td>
<td>Johannesburg, SOUTH AFRICA</td>
</tr>
<tr>
<td>Chen, Zhizhong</td>
<td>Geochemist</td>
<td>Inst Geophys & Geochem Expl</td>
<td>Langfang, Hebei, PR. CHINA</td>
</tr>
<tr>
<td>Ferris, Bret</td>
<td>Mineral Exploration Geologist</td>
<td>Ferris Metals Pty Ltd</td>
<td>Campbell, ACT, AUSTRALIA</td>
</tr>
<tr>
<td>Jennings, Keenan</td>
<td>Senior Geologist</td>
<td>MIM Exploration</td>
<td>Mendoza, ARGENTINA</td>
</tr>
<tr>
<td>Middleton, Ross</td>
<td>Geologist</td>
<td>North Ltd</td>
<td>Ougadougou, BURKINA FASO</td>
</tr>
<tr>
<td>Murphy, Jim</td>
<td>Exploration Manager</td>
<td>Uranerz Exploration</td>
<td>Saskatoon, SK, CANADA</td>
</tr>
<tr>
<td>O’Neill, Wayne</td>
<td>Manager Exploration</td>
<td>North Ltd</td>
<td>Melbourne, VIC, AUSTRALIA</td>
</tr>
<tr>
<td>Prud’homme, Sylvie</td>
<td>Geochemist/Project Manager</td>
<td>Oliver Gold</td>
<td>Montreal, PQ, CANADA</td>
</tr>
<tr>
<td>Thomas, Rodney N.</td>
<td>VP Exploration</td>
<td>Minorco Resources</td>
<td>Toronto, ON, CANADA</td>
</tr>
</tbody>
</table>

STUDENTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bailey, Lynn</td>
<td></td>
<td>Queen’s University</td>
<td>Kingston, ON, CANADA</td>
</tr>
<tr>
<td>Brenner, Arun</td>
<td></td>
<td>(University of South Wales)</td>
<td>Coogee, NSW, AUSTRALIA</td>
</tr>
<tr>
<td>Chi, Qinghua</td>
<td></td>
<td>Inst Geophys & Geochem Expl</td>
<td>Langfang, Hebei, PR. CHINA</td>
</tr>
<tr>
<td>Liu, Dawen</td>
<td></td>
<td>Inst Geophys & Geochem Expl</td>
<td>Langfang, Hebei, PR. CHINA</td>
</tr>
<tr>
<td>Ollerton, James R.</td>
<td></td>
<td>University of Nevada - Reno</td>
<td>Reno, NV, USA</td>
</tr>
<tr>
<td>Xiaoyan, Huang</td>
<td></td>
<td>General Res Inst of Min & Metall</td>
<td>Beijing, PR. CHINA</td>
</tr>
</tbody>
</table>

At your service!

At Chemex Labs we are proud of our service record. We can offer service to the remotest sites with sample pickup or portable labs. We can also provide specialized technicians or comprehensive training. Our data is generated with the latest techniques, including ICP-MS, ICP-AES, XRF, NAA and AA spectroscopy, confirmed by a rigorous quality assurance system and whisked to you via electronic data transfer.

For detailed information about Chemex Labs and our technical services, please see our website at www.chemex.com
This list comprises titles that have appeared in major publications since the compilation in EXPLORE Number 96. Journals routinely covered and abbreviations used are as follows: Economic Geology (EG); Geochimica et Cosmochimica Acta (GCA); the USGS Circular (USGS Cir); and Open File Report (USG OFR); Geological Survey of Canada Papers (GSC Paper) and Open File report (GSC OFR); Bulletin of the Canadian Institute of Mining and Metallurgy (CIM Bull.); Transactions of Institute of Mining and Metallurgy, Section B: Applied Earth Sciences (Trans IMM). Publications less frequently cited are identified in full. Compiled by L. Graham Closs, Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401-1887, Chairman AEG Bibliography Committee. Please send new references to Dr. Closs, not to EXPLORE.

Ayras, M. et al., 1997. Regional patterns of heavy metals (Co, Cr, Cu, Fe, Ni, Pb, V, and Zn) and sulphur in terrestrial moss samples as indication of airborne pollution in a 188, 000 km² area in northern Finland, Norway, and Russia. J. Geochem. Explor. 58(2/3): 269-281.

20TH INTERNATIONAL GEOCHEMICAL EXPLORATION SYMPOSIUM, 2001

The Association of Exploration Geochemists is looking for a venue for the 20th IGES. The Association will consider all proposals for hosting this event. Proposals must include the following:

- Location
- Date
- Sponsoring organization
- Meeting title or theme
- Contact person(s)
- Suggested outline for meeting
- Suggested field trips and short courses
- Facilities
- Brief description of the locality

Any interested organizations should submit their proposals to the AEG Business Office

The Association of Exploration Geochemists
P.O. Box 26099
72 Robertson Road
Nepean, ON K2H 9R0
CANADA
Recent Papers

Continued from Page 18

Hassanen, M.A. and Harraz, H.Z., 1996. Geochemistry and Sr and Nd isotopic study on rare-metal-bearing granitic rocks, central Eastern Desert, Egypt. Precambrian Res. 88(1/2): 1-

Recent Papers

Comparison of metal attenuation in mine residue and overburden material from an abandoned copper mine. J. Applied Geochem. 12(2): 203-211.

Togashi, S. And Terasima, S., 1997. The behavior of gold in unaltered island arc tholeiitic rocks from Izu-Oshima, Fuji, and Osoreyama volcanic areas, Japan. GCA 61(3): 543-555.

Continued on Page 24
AEG PUBLICATIONS

The following special volumes are available from the AEG on a post-paid basis (surface mail) to all. Both member and non-member prices are listed.

<table>
<thead>
<tr>
<th>Sp. Vol. No.</th>
<th>Description</th>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Application of Probability Plots in Mineral Exploration (A.J. Sinclair)</td>
<td>US$ 8.00</td>
<td>US$ 12.00</td>
</tr>
<tr>
<td>14</td>
<td>PROBPLOT, An Interactive Computer Program to Fit Mixtures of Normal (or Log Normal) Distributions with Maximum Likelihood Optimization Procedures (C.R. Stanley). On a 3.5" diskette; requires 1 mb hard disk space</td>
<td>US$ 30.00</td>
<td>US$ 55.00</td>
</tr>
<tr>
<td>4+14</td>
<td>Combination offer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Gold-81, Precious Metals in the Northern Cordillera (ed. A.A. Levinson)</td>
<td>US$ 7.50</td>
<td>US$ 18.00</td>
</tr>
<tr>
<td>11</td>
<td>Exploration Geochemistry Bibliography in January 1991 (compiled by H.E. Hawkes)</td>
<td>US$ 10.00</td>
<td>US$ 20.00</td>
</tr>
<tr>
<td>11.1</td>
<td>Exploration Geochemistry Bibliography Supplement 1 to October 1994 (compiled by H.E. Hawkes)</td>
<td>US$ 10.00</td>
<td>US$ 17.00</td>
</tr>
<tr>
<td>11.2</td>
<td>Exploration Geochemistry Bibliography Supplement 2 to October 1987 (compiled by H.E. Hawkes)</td>
<td>US$ 10.00</td>
<td>US$ 17.00</td>
</tr>
<tr>
<td></td>
<td>Digital bibliography - entire AEG bibliography through 1994 A "databoke on 3.5" diskette (requires 14 mb hard disk space)</td>
<td>US$ 10.00</td>
<td>US$ 20.00</td>
</tr>
<tr>
<td>12</td>
<td>Writing Geochemical Reports (B.J. Hoffman)</td>
<td>US$ 5.00</td>
<td>US$ 7.00</td>
</tr>
<tr>
<td></td>
<td>GEOEXPO86, Proceedings of an exploration symposium focusing on Cordilleran environments held in Vancouver May 12-14, 1986 (ed. L.L. Elliott and D.W. Snee)</td>
<td>US$ 25.00</td>
<td>US$ 25.00</td>
</tr>
<tr>
<td></td>
<td>Reviews in Economic Geology Volume 3. Exploration Geochemistry; Design and Interpretation of Soil Surveys (ed. W.K. Fletcher). This volume was co-sponsored by the SEG.</td>
<td>US$ 20.00</td>
<td>US$ 25.00</td>
</tr>
<tr>
<td></td>
<td>1992 AEG Membership Listing and Directory of Exploration Geochemical and Environmental Services</td>
<td>US$ 15.00</td>
<td>US$ 20.00</td>
</tr>
<tr>
<td></td>
<td>Epithermal Gold Mineralization of the Circum-Pacific; Geology, Geochemistry, Origin and Exploration, Volumes 1 and 2.</td>
<td>US$ 160.00</td>
<td>US$ 224.00</td>
</tr>
<tr>
<td></td>
<td>Soils of the World. Colour wall chart. 95 cm x 135 cm in size. Published by Elsevier.</td>
<td>US$ 22.00</td>
<td>US$ 28.00</td>
</tr>
<tr>
<td></td>
<td>Practical Problems in Exploration Geochemistry, 1997. (A.A. Levinson, P.M.O. Bradshaw and I. Thompson 289 pp)</td>
<td>US$ 35.00</td>
<td>US$ 50.00</td>
</tr>
<tr>
<td></td>
<td>17th IIES Extended Abstracts from "Exploring the Tropics", 15-19 May, 1995, Townsville Australia (for airmail add $25)</td>
<td>US$ 50.00</td>
<td>US$ 65.00</td>
</tr>
<tr>
<td></td>
<td>Journal of Geochemical Exploration in Subscription Years 1994 and earlier, whole year or part</td>
<td>US$ 70.00</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Notes for Short Courses on Biogeochemical Exploration. Each book comprises 200-250 pages of text, figures, tables, and photos. The content of each is similar, except different aspects are emphasized. All prices quoted are for surface mailing; if airmail is desired please add (US)$15.00.

 - Note: this text includes geobotanical aspects in some detail
 - Applied Biogeochemical Prospecting in Forested Terrain (G.E. Dunn)
 - G.E.M. Hall, and Scagel)
 - Note: this text includes a 42 page discourse on plants
 - Note: This text is an expansion of the volume 'Applied Biogeochemical Prospecting in Forested Terrain' and includes several case histories from Australia." In Australia the volume can be obtained from Dr. David Cohen, Dept. Geology, Univ. New South Wales, Sydney, AUSTRALIA, for Aus$50.00.

Do you need a receipt? Include self-addressed envelope and US $2.00, otherwise your cancelled check or bank card statement is your receipt. Is your check drawn on a bank outside U.S.A. or Canada?
If yes, add US $15.00.

Do you require airmail? If yes, add US $10.00 per volume, unless otherwise noted. (Specify number of volumes)

TOTAL US $

Send Orders to: P.O. Box 26099, 72 Robertson Road, Nepean, Ontario, K2H 9R0, CANADA; FAX: (613) 828-9268
AEG APPLICATION FOR NON-VOTING MEMBERSHIP*

to the Association of Exploration Geochemists

Please complete the section relevant to the class of membership sought and supply your address on this form.

Mail the completed application, together with annual dues, to the address below.

MEMBER

I ___________________ wish to apply for election as a Member of the Association of Exploration Geochemists. I
am presently employed by: ________________________ as a ________________________.

I am actively engaged in scientific or technological work related to geochemical exploration and have been so for the past two years. Upon receipt of the Code of Ethics of the Association I will read them and, in the event of being elected a Member, agree to honour and abide by them. Witness my hand this _____ day of ______, 19______.

(Signature of applicant)

STUDENT MEMBER

I ___________________ wish to apply for election as a Student Member of the Association of Exploration
Geochemists. I am presently engaged as a full-time student at ________________________, where I am taking a
course in pure or applied science. I have read the Code of Ethics of the Association and in the event of being elected a Student Member agree to
honour and abide by them. Witness my hand this _____ day of ______, 19______.

(Signature of applicant)

Student status must be verified by a Professor of your institution or a Fellow of the Association of Exploration Geochemists. I certify that the applicant is a full-time student at this institution.

(Signature) (Printed Name and Title)

NAME AND ADDRESS

(to be completed by all applicants)

Name: __
Address: ___
Telephone: _______________________________________
bus: _____________________________
fax: _____________________________
home: _____________________________
email: _____________________________

Annual Dues

All applications must be accompanied by annual dues. Select one or two below:

1 1997 member dues US$ 70 ________
2 1997 student member dues 40 ________

If you require a receipt, include a self-addressed envelope and add
If your check is not drawn from a U.S.A. or Canadian bank, add

15 ________

TOTAL ________

All payments must be in US funds. Payment by check, International Money Order, UNESCO Coupons, International Postal Orders, VISA and Master Card are acceptable. For users of VISA or Master Card, minor variations in your billing may reflect currency exchange rate fluctuations at time of bank transaction.

If you pay by charge card, please provide the following information: type: Master Card _____ VISA _____

Credit card account number: ____________________________ Signature: ____________________________

Expiration date: ____________________________

Name: __

Please note: Your completed form should be mailed to the Business Office of the Association and will be acknowledged upon receipt. The Admissions Committee reviews all applications and submits recommendations to Council, who will review these recommendations at the next Council Meeting or by correspondence. If no objection is raised the names, addresses and positions of candidates will be listed in the next issue of the Association Newsletter. If after a minimum of 60 days have elapsed following submission of candidate information to the membership no signed letters objecting to candidates admission are received by the Secretary of the Association from any Member, the Candidate shall be deemed elected, subject to the receipt by the Association of payment of required dues. Send completed application, together with annual dues to:

Association of Exploration Geochemists, P.O. Box 26099, 72 Robertson Road, Nepean, Ontario, CANADA K2H 9R0
TEL: (613) 828-0199, FAX: (613) 828-9288, email: aeg@synapse.net

*Application for voting membership requires the sponsorship of three voting members. Request a voting member application from the Association office.
THE ASSOCIATION OF EXPLORATION GEOCHEMISTS
P.O. Box 26099, 72 Robertson Road, Nepean, Ontario K2H 9R0 CANADA
Telephone (613) 828-0199

OFFICERS
January - December 1997

David Garnett, President
General Manager
Becquerel Laboratories Pty, Ltd.
PMB 1
Menai, New South Wales
AUSTRALIA 2234
TEL: (613) 9543-2644
FAX: (613) 9543-2655
email: naa@bq.com.au

Peter R. Simpson, First Vice President
BGS Honorary Research Associate
British Geological Survey, Kingsley Dunham Centre
Keyworth, Nottingham NG12 5GG
UNITED KINGDOM
TEL: 44 1159 835-353
Fax: 44 952 355 200
email: p.simpson@bgs.ac.uk

Erick F. Wetland, Second Vice President
AGRA Earth and Environmental
5531 East Kelso Street
Tucson, AZ 85712
USA
TEL: (602) 296-5940
FAX: (602) 271-7431
email: 74761.614@compuserve.com

Sherman P. Marsh, Secretary
U.S. Geological Survey
MS 973, Denver Federal Center
Denver, CO 80225
USA
TEL: (303) 236-5521
FAX: (303) 236-3200
email: smarsh@helios.cr.usgs.gov

Gwenda E.M. Hall, Treasurer
Geological Survey of Canada
601 Booth Street, Room 702
Ottawa, ON K1A OE8
CANADA
TEL: (613) 992-6425
FAX: (613) 996-3726
email: hall@gsc.nrcan.gc.ca

1996-1998
Stephen J. Cook
Gwendy E.M. Hall (ex-officio)
Richard K. Glanzman
J. Thomas Nash
M. Beth McClennahan
Erick F. Wetland

1997-1999
Robert Clark
William B. Coker (ex officio)
John S. Cone
Stephen J. Day
Shae Clark Smith
Barry W. Smee

COUNCILLORS
Australia 1995-1997
Leigh Bettenay
Nigel Radford
Mark Elliot
Brazil 1995-1997
Marcondes Lima Da Costa
Chile 1995-1998
Chris J. Oates
China 1995-1997
Guangsheng Yan

Europe 1996-1998
Bodega de Smet
Northern Countries 1996-1998
Clemens Reimann
Southeast Asia 1996-1998
Tawosapom Nuchang
Southern Africa 1996-1998
Charles Okujeni
UK and Republic of Ireland 1996-1998
Christopher C. Johnson

COMMITTEES

Australian Geoscience Council Representative
Russell D. Birrell

Awards and Medals Committee
Gwendy E. M. Hall, Chair 1996-1997
John S. Cone
Robert G. Garrett
Günter Mathies
Barry W. Smee

Bibliography Committee
L. Graham Closs, Chair
Robert G. Garrett
Richard K. Glanzman
Eric C. Grunsky
Gwendy E.M. Hall
Peter J. Rogers

Distinguished Lecturer Committee
Graham F. Taylor, Chair

Election Official
Ray E. Lott

Environmental Committee
Richard K. Glanzman, Chair
Cecil C. Bagley
Peter H. Davenport
Gwendy E.M. Hall
Keith Nicholson

EXPLORE
J. Thomas Nash, Editor
Sherman P. Marsh, Editor
Owen P. Lavin, Business Manager

Journal of Geochemical Exploration
Eion M. Cameron, Editor-in-Chief

Admissions Committee
Lloyd D. James, Chair
L. Graham Closs
Jeffrey A. Jaacks

Admissions Committee
Lloyd D. James, Chair
L. Graham Closs
Jeffrey A. Jaacks

Publicity Committee
Andrew Bourqua, Chair
Sherman P. Marsh
J. Stevens Züker
R. Steve Frifberg

Regional Councillor Coordinator
David L. Garnett

Short Course Committee
Colin E. Dunn, Chair

Student Paper Competition Committee
Ian Robertson, Chair
Frederic R. Siegel
Arthur E. Soregaroli
Todd Wakefield

Symposia Committee
Frederic R. Siegel, Chair
Gwendy Hall
Eion Cameron
Graham F Taylor
Barry W. Smee

Betty Arseneault, Business Manager
P.O. Box 26099, 72 Robertson Road, Nepean, ON K2H 9R0 CANADA, TEL: (613) 828-0199 FAX: (613) 828-9288, e-mail: aeg@synapse.net
Technical Note
Continued from Page 10

mineral assemblages related to mine dumps and tailings rich in pyrite, the major source of acidic drainage. Field checks confirm that highly acidic waters form in the pyritic tailings and waste rocks and is gradually neutralized as it spreads. The acidic waters are neutralized and a consistent sequence of iron minerals is deposited. The iron minerals jarosite, goethite, and hematite are diagnostic in the AVIRUS spectra, and the spatial patterns permit identification of sources of acidic drainage and document the fate of the acidic waters. This technology also is useful for mapping of clay and carbonate minerals that may provide natural mitigation of acid mine drainage.

For more details on imaging spectroscopy, new mineral maps and information on publications, consult the USGS Spectroscopy home page at http://speclab.cr.usgs.gov.

Gregg A. Swayze, Roger N. Clark, and K. Eric Livo
U.S. Geological Survey
Box 25046, MS 946, Denver, CO 80225
Tel.: 303-236-1332 or 236-0925
email: rciar@spedabxr.usgs.gov;gswayne@spedab.cr.usgs.gov

Recent Papers Continued from Page 20

LIST OF ADVERTISERS

<table>
<thead>
<tr>
<th>Company</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acme Analytical Laboratories, Ltd.</td>
<td>15</td>
</tr>
<tr>
<td>Actlabs - Enzyme Leach</td>
<td>5</td>
</tr>
<tr>
<td>AEG Publications</td>
<td>21</td>
</tr>
<tr>
<td>Australian Laboratory Services P/L</td>
<td>18</td>
</tr>
<tr>
<td>Becquerel Laboratories, Inc.</td>
<td>6</td>
</tr>
<tr>
<td>Chemex Labs Ltd.</td>
<td>17</td>
</tr>
<tr>
<td>Cone Geochemical, Inc.</td>
<td>10</td>
</tr>
<tr>
<td>Geosoft, Inc.</td>
<td>11</td>
</tr>
<tr>
<td>Intertek Testing Services</td>
<td>9</td>
</tr>
<tr>
<td>MEG Shea Clark Smith</td>
<td>3</td>
</tr>
<tr>
<td>20th International Geochemical Exploration Symposium Location Search</td>
<td>18</td>
</tr>
<tr>
<td>XRAL - X-Ray Assay Labs</td>
<td>16</td>
</tr>
</tbody>
</table>

- Member Number 416 Paid thru 1997
- Dr. William Coker
- Principal Geochemist
- BHP Minerals Canada Ltd.
- 1597 Cole Boulevard, Suite 250
- Golden, CO 80401
- USA