PRESIDENT’S MESSAGE

Scientists are both producers and consumers of information. Free interchange of ideas, discoveries and methods is essential if a science is to grow and evolve, and if its participants are to benefit from the efforts and insights of others. One of the roles of the Association of Exploration Geochemists (AEG) is to encourage dissemination of information relevant to exploration geochemistry and The Journal of Geochemical Exploration (JGE) has been one of the most important outlets for that knowledge. It is sponsored by the AEG and represents a long and productive partnership between the JGE’s publisher, Elsevier, and ourselves stretching back more than twenty five years.

During that time an impressive body of knowledge on exploration geochemistry has been documented under the watchful eye of the JGE’s Editor-in-Chief, Eion Cameron. Such a relationship is not broken lightly, but recent actions by Elsevier have called into question the desirability of renewing our contract with them. Problems have ranged from petty to serious, with more than a touch of farce at times, but their cumulative effect has been to project a strange image of an organization which has somehow managed to become both increasingly amateurish and arrogant at the same time.

The single most important factor which has soured our relationship has been the arbitrary and massive increase in the institutional rates charged for the JGE by Elsevier (see Eion Cameron’s editorial on this in Explore No 94, p5). Institutional rates are the rates charged to libraries and other large organizations and they have been increased by 52% in US dollar terms between 1995 and 1997, to stand at their present level of $US 1139.00. Compare this with the institutional rate of $US 1295.00 for another Elsevier earth science journal, Geochimica et Cosmochimica Acta, which has over six times the number of pages per annum. Compare it also with other high quality journals which are not published by Elsevier. For example, The Canadian Mineralogist has an annual institutional rate of $US 310.00 while Economic Geology costs all of $US 138.00, and this despite the fact that both publish approximately fifty per cent more pages than the JGE. Clearly it is possible to publish a journal at institutional rates which are significantly lower than those charged currently for the JGE. To be fair to Elsevier they have agreed that the increase in the JGE price was exorbitant and they will be making some small reductions in the institutional rate over the next two years, but is this too little, too late? While journal prices have been increasing well ahead of the rate of inflation, libraries’ budgets have not. They have therefore had to reduce the range of journals which they can offer to their readers, and once a journal is dropped it is unlikely that it will be re-instated. Now that it has exceeded the psychological barrier of $US 1000.00 the JGE has become particularly vulnerable to elimination by librarians, desperate to stretch their funds as far as possible. So what do we do?

Our current five year contract continues until the end of December 1999. We are obliged to commence negotiations with Elsevier over the terms of a new agreement by mid 1998, with a final decision being made by the end of that year. We shall proceed with this in good faith but it would be remiss of us if we were to pin all our hopes on a satisfactory outcome to these negotiations. Elsevier exists to make a profit for its shareholders; the AEG exists to promote the science of exploration geochemistry. Those aims may have become irreconcilable. Consequently we feel that it is important to investigate alternative publishers, and we shall be doing this in parallel with our discussions with Elsevier during the course of 1998. Elsevier publishes some 1200 journals, including 21 in the earth sciences.

Having recently announced their merger with Wolters Kluwer — a rival publisher — they will become still larger with sales of $US 8 billion, making them the world’s largest publisher in the scientific and professional fields. Is big beautiful? Not necessarily, but Elsevier can claim with justification that they do offer some very real benefits to authors. Their bi-monthly newspaper is distributed free of charge to thousands of research scientists active in the field of geochemistry and geophysics. This includes abstracts and contents of recent or forthcoming issues from the JGE, thus ensuring worldwide exposure for authors. In addition the journal is distributed and marketed internationally, and is

CONTENTS

President’s Message .. 1
Notes from the Editors 2
Technical Note
Scale effects in geochemical haloes of hydrothermal mineral deposits 3
Mineral Mapping by Remote Imaging Spectroscopy 10
Pre-Conference Excursion:
The Coastal Plain and Northern Israel .. 9
18th International Geochemical Exploration Symposium (IGES) 10
IGES - Southern Israel Field Trip ... 12
IGES - West Africa Field Trip .. 14
Recent Papers .. 20
Calendar of Events ... 23
New Members ... 24
AEG Publications ... 25
AEG Application for Admission .. 26
AEG Committees .. 27
List of Advertisers ... 28

Continued on Page 3
Information for Contributors to EXPLORE

Scope This Newsletter endeavors to become a forum for recent advances in exploration geochemistry and a key informational source. In addition to contributions on exploration geochemistry, we encourage material on multidisciplinary applications, environmental geochemistry, and analytical technology. Of particular interest are extended abstracts on new concepts for guides to ore, model improvements, exploration tools, unorthodox case histories, and descriptions of recently discovered or developed deposits.

Format Manuscripts should be double-spaced and include camera-ready illustrations where possible. Meeting reports may have photographs, for example. Text is preferred on paper and 5- or 3-inch IBM-compatible computer diskettes with ASCII (DOS) format that can go directly to typesetting. Please use the metric system in technical material.

Length Extended abstracts may be up to approximately 1000 words or two newsletter pages including figures and tables.

Quality Submittals are copy-edited as necessary without re-examination by authors, who are asked to assure smooth writing style and accuracy of statement by thorough peer review. Contributions may be edited for clarity or space. All contributions should be submitted to:

EXPLORE
c/o J.T. Nash, Box 25046, MS973, Denver Federal Center
Denver, CO 80225, USA

Information for Advertisers

EXPLORE is the newsletter of the Association of Exploration Geochemists (AEG). Distribution is quarterly to the membership consisting of 1200 geologists, geophysicists, and geochemists. Additionally, 100 copies are sent to geoscience libraries. Complimentary copies are often mailed to selected addresses from the rosters of other geoscience organizations, and additional copies are distributed at key geoscience symposia. Approximately 20% of each issue is sent overseas.

EXPLORE is the most widely read newsletter in the world pertaining to exploration geochemistry. Geochemical laboratories, drilling, survey and sample collection, specialty geochemical services, consultants, environmental, field supply, and computer and geoscience data services are just a few of the areas available for advertisers. International as well as North American vendors will find markets through EXPLORE.

The EXPLORE newsletter is produced on a volunteer basis by the AEG membership and is a non-profit newsletter. The advertising rates are the lowest feasible with a break-even objective. Color is charged on a cost plus 10% basis. A discount of 15% is given to advertisers for an annual commitment (four issues). All advertising must be camera-ready PFM or negative. Business card advertising is available for consultants only*. Color separation and typesetting services are available through our publisher, Network Graphics, Inc.

Full page 254h x 178w mm (10h x 7w in) US $ 880
Half page 254h x 86w mm (10h x 3-3/8w in) US $ 480
Third page 124h x 178w mm (4-7/8h x 7w in) US $ 480
Quarter page 124h x 58w mm (4-7/8h x 2-3/8w in) US $ 210
Eighth page 60h x 86w mm (2-3/8h x 3-3/8w in) US $ 170
Business Card* 51h x 90w mm (2h x 3-3/8w in) US $ 70

Please direct advertising inquiries to:
Owen Lavin
NEWMONT EXPLORATION
2600-1700 Lincoln St.
DENVER, CO 80203
USA
TEL: (303) 837-5800
FAX: (303) 837-5851

Two recent symposia, the 18th IGES in Jerusalem, and the 4th ISEG in Vail, have brought AEG members together to share science and deepen friendships. The spirit and dimensions of the meetings is described well in the note by David Garnett. We also are committed to formal and informal publication of our science and professional views. The formal publication, *Journal of Geochemical Exploration* (JGE), has encountered difficulties under the current publisher. The AEG Council has discussed with concern the reduced number of manuscripts submitted to JGE, and the loss of institutional subscribers. President Garnett reviews this situation and calls for your input to the publication process and possible courses of action in the next year or two.

EXPLORE exists to facilitate informal communication of technical and professional information, and once again we solicit your input. Looking back a few years, it becomes obvious that only a small number of our members make the effort to communicate. Don't be bashful! We'll gladly work with you on almost anything that might be of interest to our readers. One area that is ripe for coverage is personal experiences, anecdotes, or histories—share these with newcomers before they are lost. Case histories, failed or successful, on methods, environments, and deposit types, are obvious that only a small number of our members make the effort to communicate. Don't be bashful! We'll gladly work with you on almost anything that might be of interest to our readers. One area that is ripe for coverage is personal experiences, anecdotes, or histories—share these with newcomers before they are lost. Case histories, failed or successful, on methods, environments, and deposit types, are worth sharing and placing into the written record.

Sherman Marsh and Tom Nash

Notes from the Editors

Sherman Marsh and Tom Nash

Two recent symposia, the 18th IGES in Jerusalem, and the 4th ISEG in Vail, have brought AEG members together to share science and deepen friendships. The spirit and dimensions of the meetings is described well in the note by David Garnett. We also are committed to formal and informal publication of our science and professional views. The formal publication, *Journal of Geochemical Exploration* (JGE), has encountered difficulties under the current publisher. The AEG Council has discussed with concern the reduced number of manuscripts submitted to JGE, and the loss of institutional subscribers. President Garnett reviews this situation and calls for your input to the publication process and possible courses of action in the next year or two.

EXPLORE exists to facilitate informal communication of technical and professional information, and once again we solicit your input. Looking back a few years, it becomes obvious that only a small number of our members make the effort to communicate. Don't be bashful! We'll gladly work with you on almost anything that might be of interest to our readers. One area that is ripe for coverage is personal experiences, anecdotes, or histories—share these with newcomers before they are lost. Case histories, failed or successful, on methods, environments, and deposit types, are worth sharing and placing into the written record.

BGA SERVICES

Bassem Abdul Fattah
ICPMS & ICP AES Specialist
XRF & Computer Specialist

MBE / J001 / 238 P.O. Box 15664 • Jeddah 21454
Kingdom Of Saudi Arabia
Tel / Fax No. 011-966-2-6743805
President’s Message
continued from page 1

covered by a range of indexing and abstracting services. Discounts of 30% are available on all books published by the Elsevier Science Group of companies. Finally, they are investing heavily in electronic publishing and can be expected to offer some increasingly sophisticated options in this field in the next few years.

Why, then, should we consider breaking with Elsevier? Many of the day-to-day problems could be eliminated with tighter management control and increased professionalism, but while they remain these problems continue as a constant source of irritation, particularly to Eion Cameron and Betty Arsenault, our Business Manager. However, there are two main issues which are more fundamental and potentially more intractable: who owns the science that is published in a journal and how much should we expect our fellow scientists to pay to learn what we have published? Is it not absurd that the scientists who carry out the research and write the papers should hand over copyright of these papers to Elsevier?

Is it not equally absurd that Elsevier should then be allowed to hold these papers hostage until such time as libraries pay a large ransom for release of this science to fellow scientists? This may sound melodramatic, but is it so far from the truth? We need to disseminate knowledge of exploration geochemistry as widely as possible and if Elsevier is not prepared to play their part in this then we have no choice but to look elsewhere.

Termination of our links with Elsevier would result in some profound changes and would create some very real challenges. Elsevier owns the copyright to the JGE name and can be expected to attempt to continue to publish the journal under that name. We would need to start a new journal, with a new title and would need to persuade libraries that it was of sufficient stature to be worth carrying. Our aim would be to retain ownership of the title of the new journal and to hold the copyright of papers published in it. This is a daunting proposition, and is a decision which we would not take lightly. It is also a decision which we would not want to take alone.

This is one of the most important issues that has faced the AEG in recent times and I ask for comment from as many of you as possible. When we make the final decision it is absolutely essential that we have the support of the great majority of members, and the more input we have from you the more chance we have of making the best choice. In order to bring the issue into focus, let me conclude with a series of questions: Do you agree that the present institutional price for the JGE is too high? Do you agree that we are justified in increasing the price? Do you agree that the present institutional price for the JGE is too high? Do you agree that the present institutional price for the JGE is too high?

David Garnett
Bequerel Laboratories
PMB 1, Menai, NSW 2234, AUSTRALIA
Tel: +61 2 9543 2644
Fax: +61 2 9543 2655
e-mail: naa@bq.com.au

Scale effects in geochemical haloes of hydrothermal mineral deposits.

Sergey A. Sandomirsky and Mir D. Karger

Anisotropy, zoning, and periodicity are critical components for understanding the relations of geochemical haloes of hydrothermal mineral deposits. These features create opportunities for solving many problems in applied geochemistry (such as, evaluation of truncation levels of orebodies, and correlation of ore intervals in mines and drill holes). The common situation, however, is that some geochemical regularities established in one cross-section of a mineral deposit may be inapplicable in adjacent cross-sections. We believe, nonetheless, that the principle reason of such variability of geochemical haloes, as well as ore grade distribution, is quite simple. The fact is that the pattern of exploration drill sites or sampling sites does not match the variation in the geochemical haloes. The precision and robustness of solutions of exploration tasks could be enhanced significantly if network geometry could be adapted to the patterns of geochemical haloes.

To investigate the relationships between parameters of both networks and spatial variations of geochemical observations and of geochemical haloes, two mineral deposits were selected: the Pereval'noye tin deposit (Komsomol'sk region, Russia) and the Novokonstantinovskoye uranium deposit (Ukraine).

The variation of geochemical haloes in a given direction is conveniently measured by the function, called “semivariogram” (Matheron, 1963) — we shall refer to it below simply as a variogram —, or by the autocorrelation function R(). These functions are connected by the simple expression:

$$R(0) = R()$$

The empirical value of R is equal to half the mean-squared difference between concentrations or functions of the concentrations in samples spaced a distance apart. Averaging is performed over all pairs of such samples in the given sampling interval (Matheron, 1963). A variogram is convenient for two reasons. First, it can be used to analyze the correlation patterns of the geochemical haloes in terms of variograms that are familiar to geologists. Second, variogram interpretation techniques take into account the “geometric base”, that is shapes and orientations of the samples used in description of a geochemical halo.

Scale effects in a tin deposit

The Pereval'noye deposit is confined to Jurassic and Cretaceous volcanic, volcanosedimentary and clastic rocks (Sandomirsky and Karger, 1988; Barsukov and others, 1976; Bakulin, 1970). Tin ores consist of quartz-cassiterite veins, containing substantial amount of sulfide minerals — arsenopyrite, galena, and chalcopyrite. They formed at tempera-
The morphology of the orebodies is rather simple and has been investigated fairly thoroughly. They are mainly steeply dipping vein-like bodies emplaced in fractures and fragmentation zones and, less commonly, metasomatic bodies in propylites and tourmalinites, also of vein-like shapes. The geochemical haloes of such deposits are strongly anisotropic. They are much more variable over a given distance in the transverse direction (that is, across the strike) than in the longitudinal direction (along the strike and dip) (Fig. 1). The results of D.C. arc emission spectrographic analysis of continuous core and trench-type samples were used as input data. We will show the influence of the sampling network on the pattern of anisotropy.

The anisotropy of the geochemical haloes was analyzed by comparing the variograms for tin and lead in the transverse and longitudinal directions of the ore zone. The transverse variograms were computed from logarithms of concentrations of these elements, obtained by continuous core and trench samples. The longitudinal variograms were calculated from logarithms of the weighted-average concentrations in cross sections bounded by minimum anomalous concentrations (5% significance level of background distribution). Henceforth, for simplicity, we shall denote the variograms and their parameters across strike, along dip, and along strike by subscripts t, d and s, respectively.

All variograms have similar configurations (Figs. 2, 3): as increases in the interval from 0 to a, increases, reaching some threshold value C at $>a$. The parameter a — the radius of influence of the sample — defines the minimum distance at which the samples may be assumed to be uncorrelated, and the parameter C, the threshold, is equal to the total variance over the entire sampling interval. In transverse variograms and $>a$, fluctuates around this threshold. The fluctuations are commonly quasiperiodic, which is interpreted typically as an expression of the periodicity of a geochemical halo (Matheron, 1963). Given this and physical meaning of the parameters a and C, we conclude that the geochemical haloes exhibit a multilevel quasiperiodic hierarchical structure in three-dimensional space. If this is so, then the values of at significant minima of represent the dimensions of the elements or components of which the geochemical halo is made up. At any corresponding hierarchical level, these elements may be assumed to be
Technical Note Continued from Page 4

quasihomogeneous. Note also that the dimensions of neighboring elements identified in the variograms differ by a factor of about 2.

Analysis of the geologic environment of our ore zone indicates that this configuration of the geochemical halo results from a more or less regular repetition of mineralized structures of various order (fine ore stringers are grouped into distinct, separate sequences of stringers, which, in turn, are grouped into vein-like zones, which are also grouped en echelon, and so on). A multilevel hierarchical structure of ore haloes, in particular of hydrothermal geochemical haloes, has also been noted in various other deposits (David, 1977; Kantsev and Chervonenkis, 1983; Myagkov, 1984).

The variograms plotted in different directions differ in their radii of influence, which fits the anisotropy hypothesis, but do not differ in the values of the thresholds — the relationship $C < C < C$ commonly holds for different parts of our zone. This relationship means that the variograms and, derived on identical geometric bases, express a longitudinal variability of the same scale. But in the transverse variability, expressed by the variograms, high-order variation of the geochemical halo that was not smoothed by the trench-sampling technique makes a large contribution to the overall variation. A comparison of the longitudinal and transverse variability is meaningful only after the scale of the latter is reduced to the "base scale" of the longitudinal variability. To make this conversion it is best to use less detailed concentration profiles in the transverse sections, derived by grouping of samples into aggregates. One needs not increase the size of the grouping window, with a concurrent decrease in C (Fig. 3), beyond the point at which the condition $C < C < C$ is satisfied. The size of the grouping window thus ascertained is equal to a geometric base of unknown transverse variability of the geochemical halo.

This matching of scales makes the corresponding radii of influence of all three measurements comparable over the full width of the ore zone. The most noteworthy feature is the direct proportionality between the radius of influence and the width of lateral scales of the geochemical halo bounded by the minimum anomalous concentrations in both the transverse and longitudinal directions (Fig. 4). Corresponding investigations for higher-order scales of variability produced similar results.

The results suggest the hypothesis that the variability of the geochemical halo at a given hierarchical level in our ore zone exhibits geometrical anisotropy, with a constant ratio between radii of influence in three mutually perpendicular directions (for our zone $a : a : a = 1 : 28 : 45$). The value of the radius of influence in a given direction at a given point is governed by the size of the geochemical halo in this direction. We name this manifestation as "morphological" anisotropy. These results also confirm our view of this deposit and its geochemical haloes as being made up of a set of quasihomogeneous veins or lenses of similar shape in an en echelon arrangement on each scale of variability. This representation enables us to construct a simple model of the hydrothermal deposit in which both correlation and variance pattern of the geochemical halo are defined by the morphology of the orebodies. This model can be used to forecast the longitudinal and transversal variability of geochemical and geometric characteristics of an ore zone on the basis of C.

![Figure 4. Direct proportional relationship between radii of influence and thickness of the geochemical halo of tin (1) and lead (2).](image)

The above unique services when added to our high quality INAA, ICP, XRF and Fire Assay services, provide unrivaled capabilities in the analytical industry to help you discover the mines of the future.

FOR FURTHER INFORMATION, PLEASE CONTACT:

- **ACTIVATION LABORATORIES LTD.**, 1336 Sandhill Dr., Ancaster, ON, Canada. Tel: (905) 648-9611, Fax: (905) 648-9613, Dr. Eric Hoffman
- **ACTLABS, INC.,** 11485 Frontage Road N., Wheat Ridge, CO, USA. Tel: (303) 456-2981, Fax: (303) 420-6646, Dr. J.R. (Bob) Clark
- **ACTLABS, INC., c/o M.E.G.,** 2235 Lakeshore Dr., Carson City, NV, USA. Tel: (702) 849-2235, Fax: (702) 849-2335, S. Clark Smith
- **SKYLINE LABS, INC.,** 1775 West Sahuarita Dr., Tucson, AZ, USA. Tel: (520) 422-4836, Fax: (520) 422-4065, W. (Bill) Lohmbeck
- **ACTLABS-SKYLINE PERU, S.A.** Av. de la Marina 2523, San Miguel, Lima 32. Tel/Fax: (5114) 521413, Francisco Alarcon
- **JACOB-SKYLINE ENSAYADORES Y QUIMICOS, S.A. DE C.V.,** Capeche 196(enq.Gpe. Victoria), Colonia San Benito, Hermosillo, Mexico. Tel: (62) 10-02-54, Santos Carthey
Technical Note Continued from Page 5

several isolated cross-sections. We can assume that a similar model also describes

relations between thickness of orebodies and the correlation pattern of a geochemical halo in isolated cross-sections. But it is hard to prove this model on the basis of common core and trench-type samples in the case of small thicknesses of orebodies when thickness is comparable with the sizes of the

applicable sample. In this situation, it is impossible to estimate scale parameters of geochemical halo variability. To overcome this obstacle, well-logging data can be helpful. Using well-logging data, we can simulate any desired sample length, thus providing a representative number of samples for any ore cross-section.

Scale effects in a metasomatic uranium deposit

The Novokonstantinovskoye uranium deposit, mentioned above, was selected for analysis of the local pattern of its geochemical haloes. In this deposit, gamma-ray well logging data are equivalent to geochemical sampling. The deposit is situated in the footwall of a major fault in a deep-seated tectonic part of a Precambrian shield. The deposit is confined to an elongate gneissic block, which has undergone transverse flexure both in plan and in section and is hosted by sodic rocks metasomatized at moderate temperatures of 350-450 °C (Karger and Gurevich, 1990; Omel’yanenko, 1984). The orebodies that make up the deposit are located in albite associated with numerous steeply dipping faults. At their deepest levels, the orebodies are large and lenticular, but up-dip they become flattened veins and seams.

Analysis of the local geochemical halo variability was performed on the basis of data from gamma-ray well logging along two vertical sections across the deposit. These data were then averaged so as to obtain a set of observations equivalent to continuous sampling of the core by samples of constant length. Therefore, for simplicity, we shall hereafter

* Intra-ore distance means the relative distance, measured with respect to the size of either the orebody or some element of its internal pattern. It could be the length or the thickness of an orebody. Using intra-ore distances it is convenient to compare identical parts of orebodies of different size. For example, if we use orebody length as a unit, and put the origin of coordinates in the center of orebody, then for any orebody, the intra-ore distance of its upper edge will equal to 0.5, independent of its absolute length.

Continued on Page 7
use the terms "samples" and "sampling".

The concentration profiles plotted (Fig. 5) and the autocorrelation functions calculated for them (Fig. 6 a) are typical for such data (David, 1977; Karger and Gurevich, 1990). They reflect the anisotropy of the transverse variability of the halo and its quasi-periodic nature. The curves in figure 4, while they differ in their fine details, are more similar with respect to most noticeable features — distances between points confining principal maxima or minima, for instance. As can be seen, the sizes of these features are consistent with the visible thickness of the orebody in the corresponding section (transverse sections are taken down-the-dip of the body). This example, as well as relationships established in the tin deposit, lead us to conclude that the sizes of similar-scale elements of inhomogeneity of the halo in any given transverse or longitude section are directly proportional to visible thickness or elongation of the orebody in that section. In other words, we deal here with morphological anisotropy, e.g., a tight relationship between the morphology of the orebodies and the measure of intra-ore distances* (Karger and Sandomirsky, 1986). This manifestation, however, usually cannot be observed in pure form. The reason for this is that investigation of geological objects — orebodies, particularly — by means of a network of discrete observations involves a censoring, namely selection of objects on the basis of their sizes (Karger and Sandomirsky, 1982). In this case, the censoring factor is the ratio of the parameters of observation network (sample size, sampling interval) and the size of the elements of inhomogeneity of the geochemical halo of a given scale, which varies from section to section.

Accordingly, the sensitivity of the sampling network also varies whenever the network is not tied to morphology of the orebody thus, we have the effect of non-uniform censoring of the geochemical halo, the net result of which is that observations in different sections may prove to have different orders of accuracy.

If this is so, and if we want to make assessments of orebody parameters with predictable error, we need to transform the raw observations or sampling sites to the same scale of geochemical variability of the halo or, in other words, we need to impart the same scale to all the observations in the set. For this purpose we have developed a scaling procedure.

In each profile we combine samples of original length \(l \) into samples of length \(L = lb^3 \), consequently making the concentration profile less detailed. We choose the value of \(b \) so, to obtain maximum correlation of the resulting, less-detailed concentration profile with other new less-detailed concentration profiles.

The new concentration profiles obtained by this scaling proved to be very similar in different sections. Even more similar are plots of autocorrelation functions, calculated for these new profiles and depicted on Figure 6 b. What also happened was that approximately equal numbers of enlarged samples now filled all sections comprised within the visible thickness \(h \) of orebody — that is, the thickness outlined by the cut off grade. The values of \(b \), which vary from 7.0 to 1.0, correlated closely with the thickness (Fig. 7). A value of \(b \), equal 1.0 corresponds to the profile situated in the supraore (area above orebody, possibly in outcrop) sub-background halo. As the scaling was independent of, these results seem to confirm the hypothesis of morphologic anisotropy of the geochemical halo \(b \) is the coefficient of anisotropy) and the censoring scheme of its sampling. Consequently, we actually have obtained an equal-scale set of observations distinguished by the fact that each profile through the ore interval contains a constant number of enlarged samples; that is, each ore interval has constant "effective" thickness.
Technical Note Continued from Page 7

Scale effects in the vertical dimension

Let us now deal with the problem of vertical variability of the geochemical halo. The interesting results would be expected from its analysis in frequency domain. The matter of fact is that scaling procedures, we applied to derive the equal-scale representation of the geochemical halo, caused the most substantial correction just in the frequency pattern of the geochemical halo. Let us consider the behavior through the profile of the quantity

$$ n = S(t)/S_0(t), $$

where $S(t)$ and $S_0(t)$ are average values of the spectrum $S(t)$ of orebody's thickness in the frequency ranges $[2, \alpha L]$ and $[\alpha L, \beta L]$, with $(a > b > 1)$. The $S(t)$ spectrum is calculated from the residuals of the logarithms of the raw unscaled values, taken within the boundaries of the ore interval, and remaining after subtraction of the trend. The trend was calculated on the basis of the coefficient b and represents the average for the samples occurring in a window with width of mL, $m > 2$, centered on a given sample. Figure 8 gives the values of n calculated for $m = 4$, $a = 6$, and $b = 2$. As can be seen, n increases monotonously with b. Similar results are also obtained with different values of a and b and with moderate variation of the assumed boundaries of the ore interval. Therefore, down the dip of the orebody, a monotonic redistribution of the variance of the geochemical halo occurs from high frequencies to the low ones.

In Figure 8, the intra-ore distances, mentioned above, are assumed as a measure of depth. If we use common vertical depth instead, then the uniform relationship of Figure 8 breaks down into separate relationships corresponding to individual cross-sections. Their angular coefficients are related positively to the vertical spread of mineralization over the corresponding section. Consequently, here we again run into morphological anisotropy, which can be eliminated by transforming common vertical depths into intra-ore distances.

Strange as it may seem, acquired results resemble the variability of sedimentary cross-sections without loss of intervals, for which advanced methods of cross-section correlation and matching are well developed. If this is really so, then the principles of algorithm of drill hole section's correlation are clear: they have to be the same as principles of correlation of sedimentary formations, as developed by Show (1964).

Thus, an important attribute of the geochemical haloes of a hydrothermal deposit is their morphological anisotropy, which occurs because of the tight relationship between the morphology of the orebody and the measure of intra-ore distances. In practice, this relationship usually is obscured by the effect of non-uniform censoring in sampling the halo, caused by the fact that deposits are sampled without taking into account the variability of the local pattern of the halo. But this effect can be eliminated by transforming the raw sample set into a set of observations on the same scale, matching to the scale of geochemical halo variability. Analysis of a geochemical halo, represented in equal-scale of its variability, reveals a monotonous variability of the frequency characteristics of concentration profiles in transverse sections of the halo down and up the dip of the orebodies. This fact can be used for quantitative prediction of the level of erosional or underground truncation of the orebodies, on the basis of some idealized reconstruction of the geochemistry of the identical orebody.

Conclusions

The main result of our investigation is that using a model of morphological anisotropy of a geochemical halo, as well as ore-grade distribution, we can describe their spatial variability by a single structural function (variogram or autocorrelation function), depending on a parameter related to the scale effects of variation of a geochemical halo. A specific feature of this description is its equal accuracy over the entire volume of a geochemical halo. The scaling parameter can be easily derived from a relatively few cross-sections, sampled in detail.

We believe this approach to be more effective in comparison with common geostatistical procedures, requiring subdivision of ore-bearing space into uniform parts and using combined variogram models to achieve results of equal accuracy. We also recognize that the model of morphological anisotropy with scale effects better fits hydrothermal ore deposits formed by infiltration processes. Ore deposits of different genesis — contact metamorphic, for instance — could be described by a more complicated model.

The authors would like to acknowledge the advice and tremendous work performed by Ted Theodore, U S Geological Survey, converting our Russian English into something more close to American English, that we hope helps to make our ideas more understandable to American geologists. The authors sincerely thank Boris Kotlyar for helpful recommendations and encouragement.
by Richard Mazzuchelli

The Northern Israel Excursion was a fascinating mix of geology, geochemistry, archaeology, history, and scenery, laced with cultural and culinary insights and generally good times for the small band of participants. The major geological-geographical features of central and northern Israel: the Judean Mountains, the Judean Foothills or Shefela, the Coastal Plain, Mount Carmel, the Galilee, the northern sector of the Dead Sea Rift and the Golan Heights were amply demonstrated by our affable geological guide, Dove “Dubi” Levitte of the Geological Survey of Israel, with other local guides. The geology of the Judean Mountains and Mt. Carmel is dominated by Cretaceous to Tertiary limestones, which have been quarried from antiquity for building materials, olive presses, and other uses.

We gained a good appreciation for the importance of Israel’s most crucial resources of water and agricultural land and the balance between the two, no better exemplified than by the Hula Valley Project. This part of the Jordan River Valley had been drained and the rich peaty soils cultivated during the 1950’s, but this caused problems, such as the spontaneous combustion of peat and nutrient leakage into Lake Kinneret (Sea of Galilee),

Continued on Page 10
Everything and anything is possible in today's Israel. Congratulations and thanks to the organisers and guides for a wonderful experience.

Dr. Richard H. Mazzucchelli
President
Searchtech Pty Ltd.
Kalamunda, WA
Australia

Inspecting Lake Hula Project at close quarters

Israel's main source of fresh water. The area has been re-flooded to form a recreational lake and wetland area, with careful monitoring of hydrogeochemistry. A combined hydrogeochemical-historical-hedonistic investigation was conducted by Hamat Gader, within a kilometer of the Jordanian border, where most participants on the trip tested the healing powers of the sulfurous hot springs, once one of the largest thermal bath complexes in the Roman world. The Pleistocene volcanoes and cinder cones, which mark the Golan Heights, were of interest, not only geologically, but as the strategic line of fortifications between Syria and Israel.

Didier Stroz (reclining) and bus driver look towards Mt. Herman from Golan Heights

Our archaeological guide, Didier Stroz, brought to life the 150,000 years or so of fascinating human history, which started in the Carmel Caves in the Palaeolithic Era, traced through Biblical events such as the demonstration of the Lord's supremacy over the false prophets by the prophet Elijah on Mt. Mukhraka, the birth of Christianity in Nazareth, Capernaum and Tiberius, to the Roman city of Caesarea, the Crusader era in the city of Acre and the Nimrod Fortress, the Muslim period started by Saladin's victory over the Crusaders, right up to climactic recent events such as the Yom Kippur war in 1973.

Adding to the memorable four days were luncheon stops at the Druze folk-art centre at Dalyat el Carmel, the Jewish city of mystics and art centre at Zafat and a Kibbutz near Nazareth, which conducts pig-farming on raised platforms (so the despised animals do not set foot on Israeli soil), providing pork as a speciality at the attached tourist restaurant.

We have the ancient Greeks to thank for symposia, both the concept and the word. In their infinite wisdom they defined a symposium as 'a drinking party; a convivial meeting for drinking, conversation and philosophical discussion etc' (Shorter Oxford English Dictionary). It's not entirely clear what activities are covered by the 'etc', but what is clear is that a scientific symposium is expected to be far more than a mere meeting at which scientists sit politely in serried ranks in a darkened room listening to other scientists describing their recent discoveries. Of course this is important, but I'm pleased to report that the 18th IGES in Jerusalem fully maintained that Mediterranean tradition of a true symposium. My last President's message (Explore 96) gave an overview of our activities, so let me indulge myself at a more personal level with this account. Since the above definition of a symposium lists three main features it is sensible to address each of these in turn.

1. Drinking (and eating) We all know that geochemists are eminently responsible, sensible people. Consequently it will come as no surprise that I can claim with confidence that there was absolutely no raucous behaviour or other unseemly activity during the entire course of the symposium. It was probably no more than a coincidence that the Prime Minister of Israel appeared to delay his arrival at our hotel until we had all departed for the Israeli Museum — for a very fine reception. There is good evidence that participants in symposia are like armies — they march on their stomachs. Conference organisers take note: get the food and drink right and the rest is easy. The 18th IGES Organising Committee, lead by their capable Co-Chairmen Ron Bogoch and Moshe Shirav, certainly got it right in Israel. Those of you who start the day with little more than a cup of coffee may have difficulty understanding this, but I am still trying to get back to normal after my week of breakfasts at the Renaissance Hotel. We had such a choice - fish, fresh fruit and dried fruit, cereals and many other creations that were far too tempting to resist. I had great difficulty knowing where to start or stop. In a land of milk and honey it was entirely appropriate that the highlight of this cornucopia of culinary delights was a bowl of fresh honey, still in the comb. The wide variety of restaurants gave us the opportunity to learn more about the local cuisine, influenced as it is by a variety of cultures, while some of us also took the chance to expand our knowledge of the wines of the region.

2. Conversation. Symposia are for meeting people, not just for listening to them, so the informal contacts are at least as important as the formal structured talks.
18th IGES ... Continued from Page 10

organisation like the AEG the IGES series offers a rare opportunity for Councillors to discuss issues round a table, rather than listening to each others voices emerging from the ether during our normal conference calls. Equally there is the chance to talk to other AEG members, and to others who are not yet members. In Jerusalem it also gave us the opportunity to make contact with Elsevier's representative, Charles Pallandt, to discuss the future of the Journal of Geochemical Exploration. Tours of the Old City, the Israel Museum, the outdoor AEG dinner at the Ticho House and the very generous hospitality of the organising committee at their own homes all gave us a chance to learn more about our host nation, and perhaps even to stop talking about geochemistry for a minute or two. I even had a very pleasant ten minute conversation with a lady from Israeli security immediately preceding my departure from Tel Aviv airport at the end of the symposium.

3. Philosophical Discussion. In the formal sessions one of the most stimulating features of the 18th IGES was the enthusiasm with which the audience was prepared to participate in discussion. Debate even became quite heated at times - a major achievement in the normally staid world of science. We avoided parallel sessions, another major achievement, and managed to integrate the poster sessions with the rest of the meeting. It is often claimed that it is harder to prepare a good poster than it is to prepare an oral presentation, so it was particularly pleasing to see so many outstanding poster presentations. The range of topics covered was greater than most, if not all, previous symposia. While the majority of papers focussed on some aspect of exploration geochemistry, we also had sessions on environmental geochemistry and - most unusual of all - a final topic on Archaeology and Geochemistry. Now we know where Cleopatra did, or did not, get her eye make-up.

A review of the abstracts volume shows that there is no shortage of variety in our approaches to exploration geochemistry. In terms of sample types, old stalwarts such as soils and stream sediments are now joined by soil gases, ground and river waters, and even snow - but does nobody collect fresh rock any more? There were remarkably few papers based on lithogeochemistry. Geomicrobiology, biogeochemistry, organometallics and humic substances all received attention as we become increasingly aware that organic processes can be important factors affecting element mobility. Analytical techniques continue to advance on a broad front and already offer many exciting solutions to problems if we can only ask the right questions. We still have a long way to go with speciation studies (why does As V revert to As III in distilled deionised water at room temperature?) but at least we are going in the right direction. In addition we are feeling our way towards a better understanding of dispersion processes through considerable thicknesses of overburden, using a variety of techniques. Which technique is best and how deep can we go? Regional surveys may not be so glamorous but they do provide essential baseline information and it was good to see that time, effort and resources continue to be devoted to them. It would be pointless to attempt to summarise all the papers but, to chose one theme, the following are a selection of the more intriguing findings on gold geochemistry:

- Unground light mineral fractions of soils from a variety of gold deposits in Canada and the USA yield good recoveries of gold by cyanidation even though the gold is encapsulated rather than being present as free gold.
- Organically-bound gold constitutes more than 85\% of the total gold in the dispersion halo in the humic layer of tropical rainforest soils, and is up to 30\% richer than the primary mineralization.
- Transported overburden need not represent a 'no-go' area for exploration geochemists, particularly if it has been there for a long time. Indeed, dispersion patterns in the transported materials may be of larger dimensions than in the basement below. It is even possible to accumulate ore-grade levels of metal within transported overburden.
- Gold concentrations in sewage sludge can be sufficiently high to make them economically attractive, but what is the source of the gold and why does it correlate so well with chromium?
- Further evidence continues to accumulate for movement of gold in gaseous or water-soluble forms.

It is always good to have something to look forward to and I hope that I may yet get to hear the paper on biogeophysical investigations (i.e. dowsing) in Russia. Different forms of dowsing are described in the abstract (simple and resonance with metallic frames, pendulums and needles), and although the abstract was included in the 18th IGES program the author was forced to withdraw at the last minute. Perhaps we will hear more at the 19th IGES in Vancouver in 1999. I hope so. Our thanks, once again, to Ron Bogoch, Moshe Shirav and the rest of their team for making the 18th IGES such a success on both scientific and social levels. The ancient Greeks would have been proud of you.

David Garnett
Bequerel Laboratories
PMB 1, Menai, NSW 2234, AUSTRALIA
e-mail: nau@bq.com.au

Dave Garnett at Customs: this is NOT part of the Greek definition of symposium.
DEAD SEA, NEGEV, ARAVA VALLEY, ELAT
by Naomi Porat and Ian Robertson

Seventeen participants from 10 countries joined us on June 1st for a four day post-conference excursion to southern Israel. The trip was led by Dr Naomi Porat (Geological Survey of Israel), with other leaders joining us for different parts of the route. The weather (38°C) was unusually mild for the Negev desert and, of course, completely dry. We left the Mediterranean climate of the Mountains of Judea (Upper Cretaceous chalk and chert) and, within 25 km, had reached the lowest point on land (410 m below sea level), the Dead Sea Rift Valley. This is set in the arid landscape of the Judean Desert and floored by Pleistocene to Recent marls and conglomerates of Lake Lisan, the much larger precursor to the Dead Sea.

Guides Naomi Porat and Moshe Shirav explain the geology of the Arava Valley.

Dead Sea Scrolls were discovered, provided a cultural and scenic stop and then past the historic hilltop fortress of Masada. Hot, saline, sulphur springs, aragonite and black mud were some of the features shown us by Yosi Yehieli on the shores of the Dead Sea. A short swim in its saline waters, so dense that one floats high in the water, provided a pleasant break during the lunch stop.

We then proceeded to visit most of the industrial mineral sites in southern Israel. At the Dead Sea Works, the group was shown the pond evaporative processes used to exploit minerals from the saline (>300g/l tds) Dead Sea to produce salts of K, Br, Mg and, of course, table salt. Near vertical beds of coarsely crystalline halite, exposed by quarrying, were inspected at the Mt Sedom Diapir. This has a caprock of insoluble material. In the dry bed of Nahal Heimar, natural asphalt had oozed into and cemented coarse sediments and was probably derived from crude oil or from deeply buried oil shales. We then travelled east towards Dimona and south to Mizpe Ramon. The day closed with a magnificent sunset view of the cirque at Makhtesh Ramon. Here, Jurassic and Triassic limestones, sandstones, shales and alkali magmatic rocks have been exposed beneath early Cretaceous sediments by erosion of a massive, faulted, anticlinal structure, some 40 km long.

The next day provided further synoptic and detailed views of the Makhtesh. Progressive backwards movement of the near-vertical scarp (300-400 m high) had left behind old, truncated debris fans. Gypsum and a flint clay quarries were visited within the Makhtesh. Gypsum reserves are estimated at 10 Mt. The flint clay excavations had exposed a magnificent mottled zone at the unconformity between Jurassic and Triassic sediments, complete with pisolithic structures with Boehmite and diaspore, indicating a period of intense lateritic weathering in these times (contrasting with the present arid climate). The flint clay has an alumina content of 35-55% Al2O3.

Our route took us through some stunning Negev scenery, back towards the rift-bounded Arava valley and south to the ancient copper mining area of Timna. This provided an

Ancient (8-10th century) ore processing at Millstone Wadi in the Precambrian basement.

Continued on Page 13
Southern Israel Field Trip Continued from Page 12

Examine the copper oxide minerals in sandstone, Timna area.

opportunity to visit the shafts, galleries and smelting sites of oxide-copper mines dating back 6000-3400 y, excavated with stone and bronze tools in Lower Cretaceous sandstones. Small ruins of Egyptian temples of the Pharaonic period had been dedicated to Hathor, the goddess of, among other things, mining. A brief visit to the modern oxide copper mine at Timna rounded off the day. Here, dolomites, sandstones and shales of the Lower Cambrian, which had undergone carbonate dissolution and collapse in the early Cretaceous, has produced a resource of 1-2% Cu, recently mined by open cut and underground operations. The drive to Elat provided a chance to admire the mountains of the Precambrian massif in Jordan, complete with vast alluvial fans developed along the eastern margin of the rift valley.

The next day concentrated on the quite small, but intensely faulted, Precambrian basement of Israel of metavolcanics, metasediments and granitoid gneisses. A magnificent view of intensely faulted country from the Mt Yoash lookout set the scene, showing four countries (Israel, Egypt, Saudi Arabia and Jordan). A vast erosion surface has truncated the Precambrian rocks and has been tilted southeast towards the Gulf of Elat.

Ancient exploitation and modern exploration sites in this terrain were shown us by Moshe Shirav and Ron Bogoch. At Millstone Wadi, Au had been extracted during the early Islamic period (8-10th century) by milling quartz-rich material. The exact source of the ore has not been precisely determined, despite intensive stream sediment geochemistry. Nearby, in the Har Roded gneiss, in situ Au-As anomalies have been found by recent wadi sampling. Conichalcite (Cu-Ca arsenate), Fe oxides, chrysocolla and submicroscopic Au occur near the surface and have been investigated by drilling.

The resort town of Elat provided memorable non-

Continued on Page 14
Southern Israel Field Trip Continued from Page 13

gеological activities. Colourful fish and their coral world were seen by all participants at the Underwater Observatory, a tower-like structure anchored to the coral reef in about 8 m of water. The more curious went snorkelling in the Coral Nature Reserve and the most adventurous went for a deeper scuba dive in the nearby university experimental grounds. The contrast between the prolific marine life of the Red Sea and the surrounding desert was startling.

The last day, we visited a phosphate operation 30 km east of the ancient city of Avdat, in the wilderness of Tzin. Four phosphate layers (20-28% P₂O₅), in marls, chalks and cherts of the Upper Cretaceous, are being exploited by Rotem-Amfert. They are 1-5 m thick and consist of francolite (an apatite variety) and calcite. East of Dimona, a pilot power plant, with an oil shale feedstock, managed by PAMA, has reserves of 2500 Mt at a 12% organic content. Geologists from both companies generously hosted the group and showed us around their properties.

This field trip passed mainly through hyper-arid regions, from the northern Negev, west of the Dead Sea, through the dissected central Negev mountains to the rift-bounded southern Arava valley and Elat. It provided a valuable introduction to desert landscapes and the exploration problems they present and was spiced with sites of economic, cultural and historic interest.

Naomi Porat
Geological Survey of Israel
30 Malkhe Israel St
Jerusalem 95501
ISRAEL
Email naomi@mail.gsi.gov.il

Ian Robertson
CRC for Landscape Evolution and Mineral Exploration
CSIRO Exploration and Mining
Private Bag P.O. Wembley WA 6014
AUSTRALIA
Email i.robertson@dem.csiro.au

IGES WEST AFRICA FIELD TRIP

by Ian Robertson and Paul Taufen

INTRODUCTION
This was a nine-day field trip to Birimian-hosted Au deposits in Mali and the Ivory Coast and was organised by the AEG as part of the 18th IGES. It included visits to three active mines and a number of advanced Au prospects. The trip focused on primary ore deposit geology, on landscape evolution in the area and its influence on the nature of the lateritic regolith and on strategies for geochemical Au exploration. West Africa has had a very long history of Au production, to before the 6th century.

The excursion was attended by a cosmopolitan group of 12 geologists normally based in the USA, Canada, South Africa, Australia, Belgium, Mali and Burkina Faso and was ably lead by Eric Hanssen (Iamgold) and Philippe Freyssinet (BRGM). Linguistically, there were two groups, French and English speaking, many managing both languages; consequently there was much light-hearted banter.

The field trip presentations covered geological, geophysical and remote sensing experience over the exploration leases. The field trip guide contained detailed deposit and prospect descriptions, with colour maps, and described the West African regolith and landscape from the West Mali savanna to the tropical rainforests of the southern Ivory Coast.

The regolith landscape in Mali and Ivory Coast. The regolith changes from ferruginous duricrust terrain to ferruginous latosols on moving from the dry savanna of Mali to the wet tropical forest of southern Ivory Coast. Between these is a transitional zone of preserved duricrust in latosol.

In the Malian savanna climate, which has a seasonal annual rainfall between 900 and 1500 mm, the common in-situ regolith profile is from top to bottom:

Discussion of latosols by M. Mercier, S. Prud'homme, and P. Freyssinet.
Light grey silty soil
Pisolitic gravel
Duricrust
Mottled Zone
Saprolite
Parent Rock

Other types of more complex profiles are not unusual, particularly where previous duricrusts have been dismantled and their debris (transported short or even long distances) now overlies saprolite.

Philippe Freyssinet described a simple model relating rainfall, hydration state of iron oxides, and cementation/duricrust formation in the regolith. Cementation and the formation of ferruginous duricrust is due to hematite precipitation. With greater rainfall, as one moves from savanna to rainforest, hematite becomes unstable in favour of goethite, a much weaker cement, and soil profiles change accordingly. With increased annual rainfall above 1500 mm, ferruginous duricrusts become degraded and mechanically eroded from above, and transformed into nodules with goethitic matrices due to encroachment of higher water-tables from below.

There are commonly two ferruginous duricrust laterite surfaces in the Malian savanna, an older, higher-elevation surface, and a younger, lower-elevation surface. The hiatus between the two is attributed to a dry, erosional episode. Ferruginous duricrust and derived gravels form a minor ore type in Mali, and have provided an easily-mined Au resource at the Sadiola and Syama deposits.

The Sadiola, Segala, Loulo, and Yalea deposits and resources of the Malian savanna are characterised by ferruginous duricrust landforms. Ity, Lafioune, and Angovia occur in tropical rainforests with ferruginous latosol environments. The Syama deposit occurs in a transitional regolith setting with slightly degraded duricrusts.

Gold dispersion mechanisms in the regolith. Based on observations and discussions of Au anomalies with geologists at each visited site, there are a number of mechanisms whereby Au can be dispersed in the regolith to provide the large surface anomalies commonly observed.

Gold in fresh rock and saprolite is dispersed within the duricrust; mechanical breakdown and transport of Au-anomalous duricrust can further enlarge Au anomalies. Old artisanal workings, generally shown by hummocky ground, have enlarged original anomaly patterns considerably (e.g., pristine Au anomaly at Syama Extension of 160 ppb; ancient waste dumps of about 1000 ppb Au) and this reworked material has been further dispersed by colluvial and alluvial action. In some instances, ore has been carried from ancient workings to crushing and panning sites, causing additional false anomalies. In depositional environments, alluvial Au occurrences can be close enough to the surface to provide anomalies in surface soil surveys.

THE FIELD TRIP
On flying into Mali, the visibility progressively decreased. Even at 3000 m the ground was scarcely visible due to a pale yellow haze of fine suspended dust brought south-west from the Sahara by the Harmattan winds.

Kenieba inlier - Sahel environment. The participants gathered at the picturesque Mande Hotel on the banks of the Niger in Bamako and, at dawn the next day, flew in two Cessna 420Cs to the Sadiola Mine in western Mali, near the
West Africa Field Trip Continued from Page 15

Discussion at a "breakaway" near Loulo.

Senegalese border. Here, Lower Proterozoic Birimian greenschists have been exposed by erosion within the roughly triangular Kenieba window, an inlier of about 26 000 km², and is surrounded by unconformable, mainly flat-lying Upper Proterozoic sandstones; the window is rimmed with a marked scarp. Although there is very little Upper Proterozoic weathering on this unconformity, the rocks of the Kenieba Inlier have been deeply weathered since the Mesozoic and have well-developed duricrusts.

Ancient workings at Sadiola penetrated the duricrust and extensively excavated the top of the mottled zone, where Au has concentrated. Large blocks of duricrust hangingwall have collapsed subsequently. It was re-discovered in 1987-1989 by a large-scale regional geochemical survey covering 6400 km². At Sadiola, Au is accompanied by As, Sb, Cu, Mo, W, Sn, B and F. This deposit contains reserves of approximately 4.5 million ounces. It occurs in the Kofi carbonate-siltstone formation and was emplaced in shears during the waning stages of metamorphism. Gold (fineness 850-970) is generally fine-grained, although it coarsens near the base of the duricrust and occurs with quartz, micas, smectite and kaolinite. Weathering reaches 30-40 m around the pit and 200 m in the mineralised zone. The planned pit is 2000 x 700 x 200 m.

On the way to Segala, driving through picturesque thatched Malian villages with painted walls and quaint granaries, there was an opportunity to inspect the intense activity of some locals who had sunk numerous small (600 mm dia) shafts that penetrate 7-8 m of sand to excavate and pan a thin layer of alluvial gravel beneath for coarse Au.

Old Au workings at Segala, 25 km north of Kenieba, also were rediscovered by soil geochemistry. Mineralisation at Segala is characterised by quartz-carbonate-sericite alteration in carbonated metasediments with disseminated arsenopyrite. Soil geochemistry shows clear anomalies in Au, As and

Continued on Page 17

Chemex Labs

Chemex Labs is a prominent and ever-growing analytical laboratory serving the mining industry with over 500 employees worldwide. The company has offices in Canada, the United States and Mexico and an expanding network of agency agreements throughout South America. Continued growth has outlined the need for a

CHIEF GEOCHEMIST

This will be a corporate position with the responsibility to provide Chemex clients worldwide with technical advice regarding the most effective methods of analysis for their geological environment and also to provide internal direction as to the development of new and innovative geochemical and assay procedures.

The successful candidate will have demonstrated considerable practical experience in the industry, possess at least a Master’s degree in geochemistry or geology, and have strong people skills to work with both customers and staff. Preferred applicants will be self-starters capable of working in a team environment, computer literate, goal oriented and be comfortable acting as a technical spokesperson in the context of mineral exploration.

This position will be based at one of Chemex’s major analytical facilities, either in Reno, Nevada or Vancouver, British Columbia. Compensation will be competitive and related to experience and knowledge of the industry.

Please respond to R. Turner Management Consultants Inc.:
Bob Turner, #14-5760 Hampton Place, Vancouver, BC, Canada V6T 2G1
604-671-4794(voice), 604-224-7795(fax) or rturner@istar.ca
West Africa Field Trip Continued from Page 16

W. Two zones of elevated Au have been identified to date. Worthwhile Au soil anomalies, distinct from known artisanal workings have been identified. Some very active native workings were visited which not only excavated the base of the duricrust but also followed small ore shoots into the saprolite.

The Loulo deposit is located about 40 km northwest of Kenieba, is hosted in tourmaline sandstones and contains an estimated Au resource of 1 million oz. The nearby Yalea calc-silicate skarn system is an additional 1.8 million oz resource. It was discovered in 1981 by a regional soil (paramagnetic fraction) and stream geochemical survey using pisolitic gravels. Loulo 0 occurs on a topographic high due to erosion resistance of massive tourmalinite rocks which contain the mineralisation. Adjacent is an albited pink sandstone forming part of the resource. Arsenic, W and B are associated with Au. Later soil geochemistry revealed major geochemical anomalies along the parallel, weakly mineralised, subcropping Loulo 1, Loulo 2 and Loulo 3 trend. There were plenty of arguments over the origin of the tourmaline and the timing of its emplacement and opportunities to inspect some of the regoliths and landforms left by erosion of at least two levels of duricrust, to enjoy exploration camp hospitality and haute cuisine.

Waiting at Loulo airstrip in 40°C and 80% humidity was not for those unused to Africa. It was necessary to juggle loads between the aircraft to get airborne and dodge thunderheads on track for Syama, 430 km away in southern Mali. Who had all those rocks in his rucksack? Who embarked and nearly tilted the plane on its tail? Who said ‘The walls of this plane seem awfully thin’?

Transition from Sahel to rainforest environment. The Syama mine is located in the Boundiali greenstone belt of southern Mali, about 75 km north of the Ivory Coast border. It is hosted in chlorite and epidote altered tholeiitic basalts with carbonaceous shears. Drilling to 1990 defined a Au resource of about 4.3 million oz but this may be open at depth. Exploration history at Syama is similar to deposits in the Kenieba inlier; the deposit occurs under old workings and was rediscovered by regional geochemistry which located a 20 km long Au anomaly at 10 ppb. There is also a radionuclide K anomaly which seems to have been enlarged by old mining activity. Not all geochemical Au anomalies are related to underlying mineralisation in the basement; placer Au occurrences and old Au processing sites were also identified by soil geochemistry.

There was an opportunity to examine and photograph regolith sections. These showed the transition from the duricrust-dominated profiles of the Sahel to the latosol-dominated profiles of the rainforest environment, in an
West Africa Field Trip Continued from Page 17

annual rainfall regime of 1100 mm here. Also, there were numerous umbrella-shaped termite mounds as evidence for active bioturbation.

Rainforest environment. Driving south from Syama, through the Ivory Coast border at Pogo, to Korhogo and beyond, the country changed rapidly, becoming greener and the trees taller (wooded, savanna landscape).

The Lafigue prospect is located in central Ivory Coast and was found in 1994 by a regional stream sediment and mapping survey. The <125 \(\mu \)m fraction was analysed for Au and the <63 \(\mu \)m fraction was analysed for trace elements.

Regolith '98
Third Australian Regolith Conference
New Approaches to an Old Continent
2-9th May 1998 in Kalgoorlie

- Have you or your company discovered any new mineral deposits using regolith based exploration?
- Do you have any observations of value to colleagues about using regolith geology in exploration programs?

Regolith '98 will include workshops:
- Remote techniques for regolith mapping and characterisation (Leaders: Ian Tapley and John Wilford)
- Sampling media in various Australian regolith regimes (Leader, Keith Scott)

Technical sessions:
- Regolith exploration - needs for the future
- The gold of regolith (including case studies)
- Basemetal, Ni and PGE exploration in the regolith (including case studies)
- Regolith development models (process, climate, tectonics, landscape evolution, mapping and dating)
- Mineral weathering - importance for exploration of the regolith and exploration
- The living regolith (microbiology, plants and animals)
- Advances in analytical geochemistry
- Posters

Field trips to interesting regolith sites in the Kalgoorlie region.

Abstracts for papers or posters from individuals and groups should be sent by 31 October 1997 to - Regolith '98 c/- AME, 63 Conyngham Street, Glenside SA 5065

Further Information:
Graham Taylor or Bernadette Kovacs
CRC LEME, University of Canberra, ACT 2601
Phone: 02 6201 2031/02 6201 5453.
Fax: 02 6201 5728
c-mail taylor@science.canberra.edu.au or
kovacs@science.canberra.edu.au

Discussion of laterite at Saiola by Tahon, Freyssinet, Robertson, Prud'homme, and Mercier.

environment is not all metallic; some is organically bound so the <180 \(\mu \)m fraction is preferred.

En route to Yamoussoukro, there were opportunities to examine regolith profiles over granites with mottled saprolites. Duricrust had become unstable and was in the process of transformation to latosols of kaolinite, goethite and quartz. Stone lines had developed. Between Yamoussoukro (legislative Capital of Ivory Coast) and Angovia, the landscape showed 'half orange' morphology; dominated by chemical rather than erosive degradation, with preserved duricrust on some hill tops and soil creep in the latosols on the slopes with development of stone lines.

The Angovia deposit, where mining is to commence at the end of 1997, is located in central Ivory Coast, 50 km west of Yamoussoukro. It comprises a resource of approximately 900,000 oz Au in a fault zone within mafic and felsic volcanic host rocks and some schists. Nearby basalts were dated at 2.1-2.05 billion years. It occurs in a transitional landscape of sub-bauxitic lateritic surfaces with steep, colluvium-covered slopes of ferruginous latosols. The ore zone occurs in hydrothermally altered sheeted dykes. Associated elements are Cu, Sb, Mo, B and W. There are some regional As anomalies but Angovia is not associated with these. The deposit was located by a regional stream sediment program followed by soil sampling to define a soil Au anomaly 1.8 km long and 300 m wide.

The Ity mine (discovered in 1957) is located in the western Ivory Coast (annual rainfall 2000 mm), near the border with Liberia in mainly regrown rainforest terrain (previously cleared or partly cleared for cultivation) and there are no unaltered duricrusts. It occurs in three bodies of
garnetite skarn on the tops of adjacent hills. It was indicated by stream sediment sampling and soil geochemistry but artisanal workings made it difficult to pinpoint the source of the Au anomalies which are associated with felsic-mafic rock contacts. The Au reserves are 205 thousand oz and geochemical pathfinders to the skarn mineralisation are Cu, Mo, W, Bi, Ag and, to a lesser extent, As. There has been considerable loss of carbonate by weathering with resultant collapse and enhancement of Au grades. Both the red clay matrix of the latosol and ferruginous granules are Au bearing. There is mineralised gravelly lateritic material above these deposits, with Au enrichment of 140%, particularly at Ity, and the size of the target has been enhanced relative to the saprolite.

All that remained was to return via the striking and bizarre Notre Dame de la Paix Basilica at Yamoussoukro to Abidjan. This completed the geological-geochemical traverse from savanna duricrust terrain through to rainforest latosol terrain. The large distances travelled on bumpy roads, the heat and humidity were factors to be stoically tolerated but the opportunity to see these very significant new mines, at a particularly interesting stage of development, to contrast the regolith environments and the exploration difficulties and opportunities they presented far outweighed any discomfort. It was a truly unique opportunity for those that participated.

ACKNOWLEDGEMENTS

Eric Hanssen provided excellent organisation in a difficult environment and Philippe Freyssinet provided lucid discussions of regolith geology. Contributors to the substantial field guide were Andre Tahon, Philippe Freyssinet, Jon Hill, Eric Hanssen, Germain Crestin, Mamadou Diallo, Kassoum Diakite, Matt Mullins, Peter Pelly, Robert Thivierge, Laura Duffett, Rupert Allan and Jean Kaisin. Hosting companies were Anglo American, Gencor, IAMGOLD, La Source Compagnie Miniere, Oliver Gold and Randgold.

This field trip would not have been possible without the assistance of the governments of Mali and the Ivory Coast and the cheerful assistance and hospitality of the local population. There was a flurry of very necessary pre-field trip organisation behind-the-scenes by Fadila Hanssen and Betty Arseneault. David Garnett provided both initial impetus and continued stimulus. All this is acknowledged with appreciation by the participants (Jeffrey Abbott (Golden Star Resources), John Barakso (Barakso Consultants Ltd), John Barr (Anglovaal), Eric Ewen and George Gorzsynski (Carlin Resources Corp), Jack Hamilton and Michel Mercier (Barrick Gold Corp), Sylvie Prud’homme (Oliver Gold), Ian Robertson (CRC LEME), Abou Sanogo (Randgold, Burkina Faso), Andre Tahon (Bugeco Bamako) and Paul Taufen (WMC Resources)).

Ian Robertson
CRC for Landscape Evolution and Mineral Exploration
CSIRO Exploration and Mining
Private Bag P.O. Wembley, WA 6014
Australia
Email i.robertson@dem.csiro.au

Paul Taufen
WMC Resources
191 Great Eastern Highway
Belmont WA 6104
Australia
Email Paul.Taufen@wmc.com.au
This list comprises titles that have appeared in major publications since the compilation in EXPLORE Number 96. Journals routinely covered and abbreviations used are as follows: Economic Geology (EG); Geochimica et Cosmochimica Acta (GCA); the USGS Circular (USGS Cir); and Open File Report USGS OFR); Geological Survey of Canada Papers (GSC Paper) and Open File Report (GSC OFR); Bulletin of the Canadian Institute of Mining and Metallurgy (CIM Bull.): Transactions of Institute of Mining and Metallurgy, Section B: Applied Earth Sciences (Trans IMM). Publications less frequently cited are identified in full. Compiled by L. Graham Closs, Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401-1887, Chairman AEG Bibliography Committee. Please send new references to Dr. Closs, not to EXPLORE.

20TH INTERNATIONAL GEOCHEMICAL EXPLORATION SYMPOSIUM, 2001
The Association of Exploration Geochemists is looking for a venue for the 20th IGES. The Association will consider all proposals for hosting this event. Proposals must include the following:

- Location
- Date
- Sponsoring organization
- Meeting title or theme
- Contact person(s)
- Suggested outline for meeting
- Suggested field trips and short courses
- Facilities
- Brief description of the locality

Any interested organizations should submit their proposals to the AEG Business Office

The Association of Exploration Geochemists
P.O. Box 26099
72 Robertson Road
Nepean, ON K2H 9R0
CANADA

Assays and Geochemical Analyses

ACME ANALYTICAL LABORATORIES LTD.
is proud to announce that it is

ISO 9002 CERTIFIED

Ask for Acme ICP packages from the following affiliated laboratories:

- Acme Analytical Laboratories (Chile) Santeaque, Chile
- Activation Laboratories, Vancouver, Ontario
- American Assay Laboratories Ltd., Reno, Nevada
- McPhar Geoservices (Phil) Inc., Manila, Philippines
- Mineral Assay and Services, Bangkok, Thailand
- Inner Core Mining (PVT) Ltd., Harare, Zimbabwe

Better... but not more expensive...

<table>
<thead>
<tr>
<th>Package</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock Prep.</td>
<td>15 Element ICP</td>
<td>35 Element ICP</td>
<td>36 Element Total ICP</td>
<td>35 Element Ultralow ICP</td>
<td>Whole Rock</td>
<td>Au-Pt-Pd Geochron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Prep.</td>
<td>$4.25</td>
<td>$5.45</td>
<td>$9.65</td>
<td>$16.65</td>
<td>$14.00</td>
<td>$12.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Prep.</td>
<td>$3.25</td>
<td>$4.95</td>
<td>$6.65</td>
<td>$12.45</td>
<td>$10.00</td>
<td>$9.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Prep.</td>
<td>$4.25</td>
<td>$5.45</td>
<td>$9.65</td>
<td>$16.65</td>
<td>$14.00</td>
<td>$12.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Prep.</td>
<td>$3.25</td>
<td>$4.95</td>
<td>$6.65</td>
<td>$12.45</td>
<td>$10.00</td>
<td>$9.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Prep.</td>
<td>$4.25</td>
<td>$5.45</td>
<td>$9.65</td>
<td>$16.65</td>
<td>$14.00</td>
<td>$12.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Prep.</td>
<td>$3.25</td>
<td>$4.95</td>
<td>$6.65</td>
<td>$12.45</td>
<td>$10.00</td>
<td>$9.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assay 115 Elements</td>
<td>Au Assay</td>
<td>$17.50</td>
<td>$13.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recent Papers continued from page 20

Continued on Page 22
Recent Papers Continued from Page 20

Technical Note Continued from Page 8

References

Support Your Organization

Advertise in Your Magazine
CALENDAR OF EVENTS

International, national, and regional meetings of interest to colleagues working in exploration, environmental, and other areas of applied geochemistry.

- **April 13-17, 1998**, The Seventh International Kimberlite Conference, Cape Town, South Africa. INFORMATION: Department of Geological Sciences, University of Cape Town, Private Bag, Rondebosch, 7700, South Africa, 7IKC@GEOLOGY.UCT.AC.ZA, FAX: +27 21 650 3783, TEL: +27 21 650 2931. Secretary/Treasurer: James Gurney +27 21 531 03162 FAX: +27 21 531 9887.

- **May 18-20, 1998**, Geological Association Canada/Mineralogical Association Canada, Quebec, Canada. INFORMATION: A Morin, Dept. Geologie et de genie geologique, Universite Laval, Pavillon Adrien-Pouliot Sanite-Fay, Quebec, GIK 7P4 Canada. TEL: 418-656-2193, FAX 418-565-7339; includes a 2.5 day pre-meeting MAC short course entitled Mineralized Porphyry-Skarn Systems, INFORMATION (for the short course only) Dave Lentz, TEL: (506) 547-2070; FAX:(506) 547-7694.

- **April 24-28, 2000**, 5th International Symposium on Environmental Geochemistry, Cape Town, South Africa. INFORMATION: 5ISEG, Department of Geological Sciences, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa, FAX 27-21-650-3783. Email: 5iseg@geology.uct.ac.za.

Please check this calendar before scheduling a meeting to avoid overlap problems. Let this column know of your events.

Virginia T. McLemore
New Mexico Bureau of Mines and Mineral Resources
801 Leroy Place
Socorro, NM 87801 USA
TEL: 505-835-5521
FAX: 505-835-6333
e-mail: ginger@gis.nmt.edu

ALS...

- Established over 20 years
- Convenient
- Personalised Service
- Cost competitive
- Geoanalytical experts

SERVICES...

- Fire assay Au and PGM's
- Low detection (sub-ppb) Au by Zeeman furnace AAS
- Bulk cyanide leach
- Aqua regia Au and base metals by AAS
- ICPS - multi-element
- ICPMS - trace and ultra trace multi-element
- MMI (Mobile Metal Ion Technology)
- Containerised sample preparation facilities
- Demountable laboratories
- Laboratory design and contract management

AUSTRALIAN LABORATORY SERVICES P/L
Head Office - Brisbane, Australia
Tel: 61 7 3243 7222 Fax: 61 7 3243 7218
To All Voting Members:
Pursuant to Article Two of the Association’s By-Law No.1, names of the following candidates, who have been recommended for membership by the Admissions Committee, are submitted for your consideration. If you have any comments, favorable or unfavorable, on any candidate, you should send them in writing to the Secretary within 60 days of this notice. If no objections are received by that date, these candidates will be declared elected to membership. Please address comments to Sherman P. Marsh, Secretary AEG, U.S. Geological Survey, Mail Stop 973, Box 25046, Federal Center, Denver, Colorado 80225, U.S.A.

Editors note: Council has decided that all new applicants will receive the journal and newsletter upon application for membership. The process of application to the Nepean office, recommendation by the Admissions Committee, review by the Council, and publication of applicant’s names in the newsletter remains unchanged.

FELLOWS

Cheng, Qiuming
Assistant Professor
York University
Downsview, ONT, CANADA

MEMBERS

Ball, Theodore T.
Geochemist
Tetratech
Arvada, CO, USA

Bavinton, Owen A.
Minorco
Budapest, HUNGARY

Bowen, Michael P.
Chief Geologist - Geochemistry Unit
Goldfields of South Africa
Oberholzer, SOUTH AFRICA

Briggs, Graham P.
Managing Director
Lydenburg Exploration
SOUTH AFRICA

De Waal, S.A.
Professor
University of Pretoria
Lynnwood Ridge, SOUTH AFRICA

Gilbey, Jonathan
Geologist
RTZ-CRA Exploration
Kingston, ENGLAND

Maher, Simon
Geologist
Geological Survey of Victoria
Brunswick, Victoria, AUSTRALIA

Main, Brian
Director of Geological Ventures
Business Arts
Mississauga, ONT, CANADA

Miko, Slobodan
Institute of Geology
Zagreb, CROATIA

Minton, Tracey D.
Geosoft Europe
Goring-on-Thames
ENGLAND

Morris, Paul
Geological Survey of WA
East Perth, WA, AUSTRALIA

Muusha, Miracle S.
Exploration Manager
Auridiam Zimbabwe
Harare, ZIMBABWE

Sawłowicz, Zbigniew
Jagiellonian University
Krakow, POLAND

Shirar, Moshe
Geological Survey of Israel
Jerusalem, ISRAEL

Van Ruitenbeek, Frank
Geochronist
ITC
Dieren, THE NETHERLANDS

West, Caroline
Geologist
Canamera Geological
Vancouver, BC, CANADA

Willis, James P.
Professor
University of Cape Town
Rondebosch, SOUTH AFRICA

STUDENT

Silva-Santisteban, Carlos
University of NSW
Marrickville, NSW, AUSTRALIA
The following special volumes are available from the AEG on a post-paid basis (surface mail) to all.
Both member and non-member prices are listed.

<table>
<thead>
<tr>
<th>Sp. Vol.</th>
<th>Description</th>
<th>Member Price</th>
<th>Non-Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Application of Probability Plots in Mineral Exploration (A.J. Sinclair)</td>
<td>US $8.00</td>
<td>US $12.00</td>
</tr>
<tr>
<td>14</td>
<td>PROBPLOT, An Interactive Computer Program to Fit Mixtures of Normal (or Log Normal) Distributions with Maximum Likelihood Optimization Procedures (C.R. Stanley), On 3.5" diskette; requires 1 mb hard disk space</td>
<td>US $30.00</td>
<td>US $55.00</td>
</tr>
<tr>
<td>10</td>
<td>Gold-81, Precious Metal in the Northern Cordillera (ed. A.A. Levinson)</td>
<td>US $7.50</td>
<td>US $18.00</td>
</tr>
<tr>
<td>11</td>
<td>Exploration Geochemistry Bibliography to January 1981 (compiled by H.E. Hawkes)</td>
<td>US $10.00</td>
<td>US $20.00</td>
</tr>
<tr>
<td>11.1</td>
<td>Exploration Geochemistry Bibliography Supplement 1 to October 1984 (compiled by H.E. Hawkes)</td>
<td>US $10.00</td>
<td>US $17.00</td>
</tr>
<tr>
<td>11.2</td>
<td>Exploration Geochemistry Bibliography Supplement 2 to October 1987 (compiled by H.E. Hawkes)</td>
<td>US $10.00</td>
<td>US $17.00</td>
</tr>
<tr>
<td>12</td>
<td>Geochemical Exploration 1980 • Hannover (ed. A.W. Rose and H. Gundlach)</td>
<td>US $35.00</td>
<td>US $50.00</td>
</tr>
<tr>
<td>13</td>
<td>Reviews in Economic Geology Volume 3: Exploration Geochemistry; Design and Interpretation of Soil Surveys (ed. W.K. Flotet)</td>
<td>US $20.00</td>
<td>US $25.00</td>
</tr>
<tr>
<td>14</td>
<td>Digital bibliography - entire AEG bibliography through 1994. A *.dbf file on 3.5" diskette (requires 14 mb hard disk space)</td>
<td>US $10.00</td>
<td>US $20.00</td>
</tr>
<tr>
<td>15</td>
<td>Soils of the World. Colour wall chart. 96 cm x 135 cm in size. Published by Elsevier.</td>
<td>US $23.00</td>
<td>US $28.00</td>
</tr>
<tr>
<td>16</td>
<td>Journal of Geochemical Exploration in Subscription Years 1994 and earlier, whole year or part</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>17</td>
<td>Applied Biogeochemical Prospecting in Forested Terrain (C.E. Dunn, G.E.M. Hall, and S.C. Smith)</td>
<td>US $50.00</td>
<td>US $50.00</td>
</tr>
</tbody>
</table>

Do you need a receipt? Include self-addressed envelope and US $2.00, otherwise your cancelled check or bank card statement is your receipt.

Do you require airmail? If yes, add US $10.00 per volume, unless otherwise noted. (Specify number of volumes)

Send Orders to: P.O. Box 26099, 72 Robertson Road, Nepean, Ontario, K2H 9R0, CANADA; FAX: (613) 828-9288
AEG APPLICATION FOR NON-VOTING MEMBERSHIP*

to the Association of Exploration Geochemists

Please complete the section relevant to the class of membership sought and supply your address on this form.

Mail the completed application, together with annual dues, to the address below.

MEMBER

I wish to apply for election as a Member of the Association of Exploration Geochemists. I am presently employed by:

_________________________ as a ____________________

(employer) (employment title)

I am actively engaged in scientific or technological work related to geochemical exploration and have been so for the past two years. Upon receipt of the Code of Ethics of the Association I will read them and, in the event of being elected a Member, agree to honour and abide by them. Witness my hand this ______ day of ______, 19_____.

(Signature of applicant)

STUDENT MEMBER

I wish to apply for election as a Student Member of the Association of Exploration Geochemists. I am presently engaged as a full-time student at ________, where I am taking a course in pure or applied science. I have read the Code of Ethics of the Association and in the event of being elected a Student Member agree to honour and abide by them. Witness my hand this ______ day of ______, 19_____.

(Signature of applicant)

Student status must be verified by a Professor of your institution or a Fellow of the Association of Exploration Geochemists. I certify that the applicant is a full-time student at this institution.

_________________________ (Printed Name and Title)

NAME AND ADDRESS

(to be completed by all applicants)

Name: ____________________________

Address: __________________________

_________________________ ________________________

Name: ____________________________

Address: __________________________

_________________________ ________________________

Annual Dues

All applications must be accompanied by annual dues. Select one or two below:

1 1997 member dues

2 1997 student member dues

If you require a receipt, include a self-addressed envelope and add

If your check is not drawn from a U.S.A. or Canadian bank, add

If you pay by charge card, please provide the following information: type: Master Card ______ VISA ______

Credit card account number: ____________________________ Expiration date: ____________________________

Name: ____________________________ Signature: ____________________________

Please note: Your completed form should be mailed to the Business Office of the Association and will be acknowledged upon receipt. The Admissions Committee reviews all applications and submits recommendations to Council, who will review these recommendations at the next Council Meeting or by correspondence. If no objection is raised the names, addresses and positions of candidates will be listed in the next issue of the Association Newsletter. If after a minimum of 60 days have elapsed following submission of candidate information to the membership no signed letters objecting to candidates admission are received by the Secretary of the Association from any Member, the Candidate shall be deemed elected, subject to the receipt by the Association of payment of required dues. Send completed application, together with annual dues to:

Association of Exploration Geochemists, P.O. Box 26099, 72 Robertson Road, Nepean, Ontario, CANADA K2K 9R0

TEL: (613) 828-0199, FAX: (613) 828-9288, email: aeg@synapse.net

*Application for voting membership requires the sponsorship of three voting members. Request a voting member application from the Association office.
THE ASSOCIATION OF EXPLORATION GEOCHEMISTS
P.O. Box 26099, 72 Robertson Road, Nepean, Ontario K2H 9R0 CANADA
Telephone (613) 828-0199

OFFICERS
January - December 1997

David Garnett, President
General Manager
Becquerel Laboratories Pty, Ltd.
PMB 1
Menai, New South Wales
AUSTRALIA 2234
TEL: (612) 9643-2844
FAX: (612) 9643-2855
e-mail: naa@bq.com.au

Peter R. Simpson, First Vice President
BGS Honorary Research Associate
British Geological Survey, Kingsbury Dunham Centre
Keyworth, Nottingham NG12 5GG
UNITED KINGDOM
TEL: 44 1159 363-332
Fax: 44 602 363 200
e-mail: p.simpson@bgs.ac.uk

Erick F. Weiland, Second Vice President
AGRA Earth and Environmental Services
5531 East Kelso Street
Tucson, AZ 85712
USA
TEL: (602) 296-5940
FAX: (602) 721-7431
e-mail: 747f1.614@compuserve.com

Sherman P. Marsh, Secretary
U.S. Geological Survey
MS 973, Denver Federal Center
Denver, CO 80225
USA
TEL: (303) 236-5521
FAX: (303) 236-3200
e-mail: smarshal@helios.cr.usgs.gov

Gwendy E.M. Hall, Treasurer
Geological Survey of Canada
601 Booth Street, Room 702
Ottawa, ON K1A 0E8
CANADA
TEL: (613) 992-6425
FAX: (613) 996-3726
e-mail: hall@gsc.nrcan.gc.ca

COUNCILLORS

1996-1998
Stephan J. Cook
Gwendy E.M. Hall (ex-officio)
Richard K. Glanzman
J. Thomas Nash
M. Beth McClenaghan
Erick F. Weiland

1997-1999
Robert Clark
William B. Coker (ex-officio)
John S. Cone
Stephen J. Dey
Shea Clark Smith
Barry W. Smee

COMMITTEES

Australian Geoscience Council
Representative
Russell D. Birrell

Awards and Medals Committee
Gwendy E. M. Hall, Chair 1996-1997
John S. Cone
Robert G. Garrett
Günter Mathheis
Barry W. Smee

Bibliography Committee
L. Graham Closs, Chair
Robert G. Garrett
Richard K. Glanzman
Eric C. Grunsky
Gwendy E.M. Hall
Peter J. Rogers

Distinguished Lecturer Committee
Graham F. Taylor, Chair

Election Official
Ray E. Lett

Environmental Committee
Richard K. Glanzman, Chair
Cecil C. Begley
Peter H. Davenport
Gwendy E.M. Hall
Keith Nicholson

EXPLORE
J. Thomas Nash, Editor
Bob Epping, Editor
Sherman P. Marsh, Editor
Owen P. Lavin, Business Manager

Journal of Geochemical Exploration
Eion M. Cameron, Editor-in-Chief

Admissions Committee
Lloyd D. James, Chair
L. Graham Closs
Jeffrey A. Jaacka

Publicity Committee
Andrew Bourque, Chair
Sherman P. Marsh
J. Stevens Zuker
R. Steve Friberg

Regional Councillor Coordinator
David L. Garnett

Short Course Committee
Colin E. Dunn, Chair

Student Paper Competition Committee
Ian Robertson, Chair
Frederic R. Siegel
Arthur E. Soregaroli
Todd Wakefield

Symposia Committee
Frederic R. Siegel, Chair
Gwendy Hall
Eion Cameron
Graham F Taylor
Barry W. Smee

Betty Arseneault, Business Manager
P.O. Box 26099, 72 Robertson Road, Nepean, ON K2H 9R0 CANADA, TEL: (613) 828-0199 FAX: (613) 828-9288, e-mail: aeg@synapse.net
LIST OF ADVERTISERS

Acme Analytical Laboratories, Ltd 20
Actlabs - Enzyme Leach .. 5
AEG Publications ... 25
Australian Laboratory Services P/L 23
Becquerel Laboratories, Inc .. 6
BGA Services .. 2
Chemex Labs Ltd ... 13
Chemex Labs Ltd, Chief Geochemist 16
Cone Geochemical, Inc ... 12
Cordilleran Roundup .. 17
GeoSoft, Inc ... 11
Intertek Testing Services .. 9
MEG Shea Clark Smith ... 22
Regolith '98 .. 18
20th International Geochemical Exploration
Symposium Location Search ... 20
XRAL - X-Ray Assay Labs .. 21

EXPLORE

Newsletter for The Association of
Exploration Geochemists
MS973, P.O. Box 25046, Federal Center, Denver, CO 80225-0046, USA

Please send changes of address to:
Association of Exploration Geochemists
P.O. Box 26099, 72 Robertson Road, Nepean, Ontario, K2H 9R0, Canada · TEL: (613) 828-0199 FAX: (613) 828-9288
e-mail: aeg@synapse.net

NON-PROFIT ORG.
U.S. POSTAGE
PAID
PERMIT NO. 3559
DENVER, CO

Member Number 416 Paid thru 1997
Dr. William B. Coker
Principal Geochemist
BHP Minerals Canada Ltd.
1597 Cole Boulevard, Suite 250
Golden, CO 80401
USA