Indicator Mineral Methods in Mineral Exploration

Survey Design

Chris Benn
BHP Billiton
Design of Indicator Mineral Surveys

• Survey design is the most important part of an indicator mineral survey.

• Sample density, sample material and sample depth all must be chosen according to the needs of the exploration program.

• The design should be optimised to cost effectively detect the signature of the deposit style being targeted.

• Field collection of samples is the most expensive part of an indicator mineral survey.
Design of Indicator Mineral Surveys

Although there are tremendous variations between indicator mineral surveys the basic parameters are the same. This talk will focus on glaciated terrains with some mention of survey design in arid, temperate and tropical terrains.
Design of Indicator Mineral Surveys

Preliminary survey design should include identifying the sample medium that has the best potential to be indicative of the target sought.

In glaciated terrains this medium is till which is a first cycle sediment deposited by glacial ice.

In temperate and arid terrains the sample medium could be stream sediments from areas that have outcrop with potential for hosting mineralization. Lag type samples can be taken when working in deeply weathered terrains.
Before undertaking a survey, a geological framework is needed and a surficial geology map that shows the distribution, thickness, and type of all surficial deposits is important.

Design of Indicator Mineral Surveys

2) Superimposed on topography.

Different cover types superimposed on topography.

Work by Ralph Stea

Landsat Imagery

Pre-Pleistocene

In situ material

Bouldery to pebble gravel

Till veneer

Till blanket

20 kms Ice Flow

Ice Flow

Page: 5 September
Design of Indicator Mineral Surveys

Example of surficial geology map and glacial striations
Scale of Survey and Sample Density
Scale of Survey and Sample Density
Glaciated Terrains

Sampling scale for indicator minerals is determined by the objective of the exploration program and can vary from a province scale density of 1 sample per 500 to 1000 km² to local surveys at a density of 1 sample per 2 to 5 km².

Cost is a major consideration with many programs in glaciated terrains being helicopter supported.
Scale of Survey and Sample Density

Glaciated Terrains

Province Scale

Coverage 10000 km2

1 sample /500 km2

Size of sample 30 kgs < 2mm

Results from this scale of survey can be useful for identifying mineral provinces and environmental purposes.
Reconnaissance Scale
Coverage 1000’s km²

Size of sample 30 kgs < 2mm

1 sample /225 km² for detecting kimberlites
1 sample /25 km² for massive sulphide indicator mineral surveys

In Canada the topography is subdued and has little influence on the design so a grid approach is often used.
Scale of Survey and Sample Density

Glaciated Terrains

Regional Scale

Coverage 100’s km²

Size of sample 15 kgs < 2mm

1 sample /25 km² for kimberlites

Local Scale

Sample density 1 sample per 0.5-5 km²

Sample spacing as close as 250 m has been used

Follow up to indicator minerals of interest from reconnaissance scale
Scale of Survey and Sample Density
Stream Sediment HMC Sampling

Chalcopryrite grain counts
(10 kg samples)

Regional stream sediment survey in the Ungava Bay region of northern Quebec, done on behalf of WMC
Heavy Mineral Stream Sampling in the Eastern Succession, Australia, 1984

- **Pb – Zn prospect**
- **Gahnite abundance**
 - 1 – 4
 - 5 – 11
 - 12 – 21
 - 22 – 36
 - 37 – 2000

All gahnites are BHT prospective

Regional Geology
- Cainozoic cover
- Mary Kathleen Group
- Mesozoic sediments
- Soldiers Cap Group
- Williams Batholith

Arid Terrains – example of low density stream sediment sampling
Sampling Depth and Sample Media
Sampling Depth and Sample Media
Glaciated Terrains

The preferred sample media for detecting mineral deposits in glaciated terrains is till because it reflects the primary composition of the bedrock source.

The proportion of far-travelled material to local debris typically increases upwards in till deposits so concentrations of indicator minerals increase with depth towards its source.

As the surface part of the till blanket represents a wider source area, sampling should be close to the surface (0.5-1 m) in reconnaissance and regional scale surveys.

In local surveys till sampling should be close to the bedrock.
Complications can occur in the near-surface environment due to surface weathering and oxidation effects. This is particularly important for secondary trace metal variations. Weathering processes are significantly different in forested areas from those in the tundra. Important to have proper identification and descriptions of the overburden/soil profile.
In glaciated terrains the C-horizon developed on till is preferred because indicator minerals are usually fresh or weakly oxidised and form dispersal trains as result of mechanical processes.

In forested areas the B-horizon is often developed and there is often a transition into the C-horizon. Here the till sample was taken where the trowel is located – this was from a project in Labrador.
In this case there are two tills from different ice directions and sources separated by a stone line (unconformity). The upper till is exotic and contains clasts from a distinct geology (Apatity – carbonatite some 50 km away on the Kola Peninsula, Russia). But below the stone line is a good lodgement till – compact and containing clasts that are composed of almost 100% of the underlying mafic rocks.
Sampling Depth and Sample Media

Glaciated Terrains

In permafrost areas of Northern Canada – north of the tree line physical weathering is the dominant process in the near-surface and soils are generally thin and immature.

An ideal sample site for indicator minerals is the mudboil (also known as the frostboil) which is formed by relatively unweathered material extruded to the surface because of high water pressures.
Sampling Depth and Sample Media

Glaciated Terrains – Example of Mudboils

Mud boils from high up in the helicopter

Mud boils from a lower elevation as the helicopter comes in to land

Sampling the mud boil

Sandy till successfully obtained
Sampling Depth and Sample Media

Glaciated Terrains

Another key sample material is lodgement till which is glacial debris smeared onto the bedrock surface by the movement of the glacier.

The lodgement process occurs when the frictional drag between the bed and debris is more than the shear stress created by moving ice. Stress is enough to inhibit further movement of the till.

In areas of very thin cover or extensive till cover the most effective procedure is to dig pits with a shovel or pick. Quite often it is possible to find lodgement till within 1m of the surface.
Sampling Depth and Sample Media

Glaciated Terrains

Good sample sites of lodgement till are usually found on the down-ice side of bedrock highs when the younger surficial deposits are often thin or in depressions on the bedrock.
• Glaciomarine sediments overlying till.
• Last ice flow to NW and lodgement till was collected on S-SE slopes of bedrock ridges, by digging through the glaciomarine sediments.
Sampling Depth and Sample Media
Glaciated Terrains

Close up of pit on S side of bedrock ridge

Close up of glaciomarine sediments overlying dark grey lodgement till at the bottom of the hole which is in permafrost.

Hope Bay Belt, NWT Canada.
Temperate Terrains

Preferred sample sites are natural sites of accumulation of heavy minerals in stream and rivers such as rock barriers and point bars.

Pan concentrates are sometimes collected although a coarse sieved sample is usually preferred to reduce sample weight and so that a more controlled separation can be carried out in the lab.
Samples taken in tropical terrains should be taken with full knowledge of the weathering regime.
Arid terrains

10-20 kg samples are normally taken and sieved to <2mm depending on the target.

A major issue is that many streams do not have significant length and sample density is unnecessarily increased.
Covered Terrains
Transported cover that has no connection to source rock is a major problem for indicator mineral surveys in all terrains.

Series of raised beaches—NW of Ekati

This type of material has to be avoided.
Sampling Depth and Sample Media

Covered Terrains

Marine sediments – near Pelly Bay

Marine sediments can form thick cover in coastal areas and impede surveys. This material should be avoided.
Sampling Depth and Sample Media

Covered Terrains

Esker system east of Ekati NWT

Braided and deflated esker system in Labrador
Sampling Depth and Sample Media

Covered terrains – sampling methods in thin drift areas

After decisions on sampling depth and medium have been made then the choice of sampling equipment becomes important

Hand excavation – take samples with a pick or shovel. Natural exposures and road cuts can provide occasional easy access

Trenching – use of a backhoe excavator can be very effective for digging trenches 3 to 5 m deep. Major issue is the environmental impact
Sampling Depth and Sample Media

Covered terrains – sampling methods in thin drift areas

Road Cuts
Hand Excavation

In forested areas pits can often be dug to a depth of 1m. Compact forest root systems can be challenging.
Trenching

Photos: Roger Paulen
Sampling Depth and Sample Media
Covered terrains – sampling methods in thick drift areas

Typical scenario – Abitibi Belt, Canada
Sampling Depth and Sample Media

Covered terrains – sampling methods in thick drift areas

The main forms of drilling are:

Reverse Circulation Drilling – used in areas of till cover of 10-100m and whee till is stony. Issues are the loss of all clay sized material and some silt sized material

Rotasonic drilling – particularly useful for areas with extremely thick glacial sediments (100’sm). Used when more detailed stratigraphic information is required. Technique uses high frequency resonant vibration and rotation to drill through glacial sediments and recover a continuous core.

Portable drilling - Low frequency hammer or percussion drills are most common and have been used extensively in geochemical surveys in Finland.

A single till sample is collected at the bottom a drill hole with a maximum of 8 to 10 m depth in sandy till with few boulders.

Rigs weigh 10-25 kg. Main drawbacks are limited depth penetration and small sample (200-300 gms). Not suitable for indicator mineral sampling unless multiple holes are drilled.
Reverse Circulation Drill

- overburden 10 to 125 m thick
- stony/bouldery till
- tricone bit
- mud and chip slurry
- clay-sized material lost
Rotasonic Drill

- overburden 10 to 125 m thick
- stony/bouldery till
- detailed stratigraphy
- continuous 9 cm core
- high costs

Bit with tungsten carbide bit
Rotasonic Drill

Sand

Glaciolacustrine

Till

Bedrock
Portable Power Auger

Photos: Roger Paulen
Sampling Depth and Sample Media
Covered Arid Terrains

Lag sampling – Arid terrains

Dune fields – deflation sampling
Quality Control and Field Data Capture
Control Samples

HMC surveys need at least two types of control samples:

• **Field duplicates** – a second sample taken every 15-20 samples which is treated in same way as the first sample; and,

• **Standards** – for indicator minerals this is a spiked sample with a known quantity of indicator minerals – typically laser etched garnets when KIM’s are being traced and gahnites in the case of indicators for BHT base metal deposits.

Laboratories

• These need to be audited and visited to observe the setup and operation
Field Data Capture

Careful collection of field data is extremely important for interpretation and understanding the limitations of the sampling technique.

Any survey design should include provision for the use of a portable data capture device.

These devices provide more efficient, reliable and consistent description of field samples.
Electronic Field Data Capture - Hardware

Good hardware for effective field data capture requires:

- Sufficient battery life for all-day use
- Anti-glare screen for use in direct sunlight
- Sufficient memory for data storage
- Ability to run Windows Mobile Operating system
- Sufficient processing power for applications like ArcPad
- Integrated GPS (no typing/writing coordinates!)
- Cost-effectiveness

Ideally mobile devices will also be ruggedized (ie: shock/water/dust-proof) but $$$$

Portable PDA devices with Bluetooth GPS receivers

Surveys were helicopter supported and costs are in $CND

<table>
<thead>
<tr>
<th>Survey Description</th>
<th>Collection Costs/sample</th>
<th>Analytical Costs/sample</th>
<th>Overall Cost/sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey 1 (200 samples). 1 sample/125 km²</td>
<td>1500</td>
<td>450</td>
<td>1950</td>
</tr>
<tr>
<td>Survey 2 (280 samples). 1 sample/25 km²</td>
<td>1200</td>
<td>310</td>
<td>1510</td>
</tr>
</tbody>
</table>

In general field collection costs are 70% of total costs
Summary - Design of Indicator Mineral Surveys

• Survey design is the most important part of an indicator mineral survey.

• Sample density, sample material and sample depth all must be chosen according to the needs of the exploration program.

• The design should be optimised to cost effectively detect the signature of the deposit style being targeted.

• Field collection of samples is the most expensive part of an indicator mineral survey.
The End
Reverse Circulation Drill

+10 mesh on screen for logging

Sample recovered in bucket