Workshop 3
Indicator Mineral Methods in Mineral Exploration
Sunday, September 9, 2007
Association of Applied Geochemists (AAG)
Convenors:
Harvey Thorleifson, MGS & Beth McClenaghan, GSC
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>Introduction</td>
<td>Harvey Thorleifson</td>
<td>MGS</td>
</tr>
<tr>
<td>9:30</td>
<td>Survey design</td>
<td>Chris Benn</td>
<td>BHPB</td>
</tr>
<tr>
<td>10:00</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:20</td>
<td>Processing methods</td>
<td>Beth McClenaghan</td>
<td>GSC</td>
</tr>
<tr>
<td>10:50</td>
<td>Mineral Chemistry</td>
<td>Bill Griffin</td>
<td>GEMOC</td>
</tr>
<tr>
<td>11:20</td>
<td>QA/ QC</td>
<td>Mary Doherty</td>
<td>ALS Chemex</td>
</tr>
<tr>
<td>11:50</td>
<td>Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:50</td>
<td>Precious metal exploration</td>
<td>Dave Kelley</td>
<td>Zinifex</td>
</tr>
<tr>
<td>1:20</td>
<td>Diamond exploration</td>
<td>Herman Grütter</td>
<td>BHPB</td>
</tr>
<tr>
<td>1:50</td>
<td>Base metal exploration</td>
<td>Stu Averill</td>
<td>ODM</td>
</tr>
<tr>
<td>2:20</td>
<td>Lab: field sampling</td>
<td>Mike Michaud</td>
<td>ODM</td>
</tr>
<tr>
<td>2:50</td>
<td>Exploration: India</td>
<td>Dean Pekeski</td>
<td>Rio Tinto</td>
</tr>
<tr>
<td>3:20</td>
<td>Public sector: Minnesota</td>
<td>Harvey Thorleifson</td>
<td>MGS</td>
</tr>
<tr>
<td>3:50</td>
<td>Discussion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Indicator Mineral Methods in Mineral Exploration: Introduction

Harvey Thorleifson
Minnesota Geological Survey
Mineral exploration

- Direct inspection
- Remote detection
Remote detection

- Exploration geophysics
- Exploration geochemistry
- Indicator mineral methods
Remote detection

- Exploration geophysics
- Exploration geochemistry
 - Chemical signal
- Indicator mineral methods
Remote detection

- Exploration geophysics
- Exploration geochemistry
 - Chemical signal
- Indicator mineral methods
 - Clastic signal
Chemical signal

- Transported by aqueous &/or gaseous processes
- Detected in media such as A horizon, B, horizon, vegetation, or gases
Clastic signal

- Transported by mechanical processes
- Detected by sampling clastic sediments that have undergone minimal modification
Clastic sediments
Indicator minerals

• Ideally:
 - Coarse-grained
 - Specific to exploration target
 - Visually distinctive
 - Readily recovered
 - Adequately abundant
 - Adequately resistant
Indicator mineral methods

- Drift prospecting
- Drift exploration
- Tracing float
- Boulder tracing
- Stream sediment geochemistry
- Loaming
- Overburden sampling
- Till geochemistry
- Indicator mineral tracing
Indicator mineral surveys

- Exploration, mapping, research
- Regional reconnaissance
- Follow-up
- Assessment of geophysical targets
- \textit{In situ} mineral chemistry
Objective

• Region or target

• Commodity or commodities
Media

- Stream sediments
- Shoreline sediments
- Glaciofluvial sediments
- Till
Spacing & layout

• Can vary by orders of magnitude
 – 10’s of km
 – 1 km
 – 0.1 km

• Layout
 – Grid
 – Transect
Ranch Lake, NWT,
pyrope grains in till

(McClenaghan et al., 2001)
Phase 1 ice flow
Bedrock source

Phase 2 ice flow

Phase 3 ice flow

Dispersal Vector
Resultant Vector
Resultant Dispersal Fan

(Stea, 2001)
James Bay Lowland

Stream sediments derived from till

(Kong et al., 1999)
Size

• Samples on the order of 10 litres
 - Expected frequency ~ 1 indicator mineral per litre of sand
 - May require 5 to 50 litres of sand
 - % sand varies
Collection

- Road access, aircraft
- Exposures, shovel, excavator
- Large volume & weight
- Field concentration e.g. panning
- Field screening e.g. remove gravel
Field observations

• Boulders
• Striations
Processing

- **Disaggregate**
- **Screen gravel**
 - >2 mm (10 mesh)
 - >1 mm (20 mesh)
 - >4 mm (5 mesh)
- **Retain gravel for lithology**
Pre-concentration

- **Density**
 - Jig, table, pan, spiral, wheel
 - Heavy liquid

- **Size**
 - medium to very coarse sand

- **Magnetism**
 - Reject non-paramagnetic
Concentration

• Heavy liquids
 - Methylene iodide (MI, 3.3)
 - Diluted MI (e.g. 3.2)
 - Tetrabromoethane (TBE, 2.96)
 - NaPolyW (variable)

• Superpanner
• DMS
• Magstream
Ferromagnetics

- Separator
- Hand magnet
Classification

- **Processing of nonferromagnetics**
 - Reduce picking time
 - Add information
 - Sizing
 - E.g. 0.25-0.5 mm; 0.5-2.0 mm
 - Magnetic susceptibility
 - Magstream
The graph illustrates the percentage of different iron oxides in relation to their magnetic susceptibility.

- **Ferroilmenite** shows a peak in percentage at lower magnetic susceptibility.
- **Manganooan Ilmenite** has a peak in percentage at stronger magnetic susceptibility.
- **Picrorilmenite** exhibits a peak in percentage at weaker magnetic susceptibility.

The data is sourced from McCallum and Vos, 1993.
Background

• Many aspects of processing are governed by regional heavy mineral background
Picking/panning

- Identification of possible & probable indicator minerals
- Recovery
- Morphology
- Spikes
- Re-picks
Gold grains

• Number
• Morphology
• Mass
• Composition
Oxidized Till
n = 469

Predicted Assay vs. Gold (ppb, nonmagnetic concentrate)
Oxidized Till
n = 469

Gold Grains / 10kg

Gold (ppb, nonmagnetic concentrate)
Sulphides

• Rare coated grains in aerated sediments
• Fresh sulphides in sediments obtained by drilling
Scheelite

• Lamping under short-wave ultraviolet
Base metal indicators

- e.g. resistates such as gahnite
Kimberlite indicator minerals

- Cr-pyrope
- Mg-ilmenite
- Cr-spinel
- E-garnet
- Cr-diopside
- Olivine
- Diamond
Morphology
Mineral chemistry

• Mount & polish grains
• Semi-quantitative analysis
• Quantitative major element analysis
• Mineral classification
• Trace element analysis
<table>
<thead>
<tr>
<th>Mean:</th>
<th>TiO₂</th>
<th>Cr₂O₃</th>
<th>FeO</th>
<th>MgO</th>
<th>CaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>0.58</td>
<td>1.34</td>
<td>9.32</td>
<td>20.00</td>
<td>4.82</td>
</tr>
<tr>
<td>G2</td>
<td>1.09</td>
<td>0.91</td>
<td>9.84</td>
<td>20.30</td>
<td>4.52</td>
</tr>
<tr>
<td>G3</td>
<td>0.31</td>
<td>0.30</td>
<td>16.49</td>
<td>13.35</td>
<td>6.51</td>
</tr>
<tr>
<td>G4</td>
<td>0.90</td>
<td>0.08</td>
<td>17.88</td>
<td>9.87</td>
<td>9.41</td>
</tr>
<tr>
<td>G5</td>
<td>0.05</td>
<td>0.03</td>
<td>28.33</td>
<td>7.83</td>
<td>2.44</td>
</tr>
<tr>
<td>G6</td>
<td>0.24</td>
<td>0.27</td>
<td>10.77</td>
<td>10.38</td>
<td>14.87</td>
</tr>
<tr>
<td>G7</td>
<td>0.29</td>
<td>11.52</td>
<td>5.25</td>
<td>8.61</td>
<td>21.60</td>
</tr>
<tr>
<td>G8</td>
<td>0.25</td>
<td>0.04</td>
<td>6.91</td>
<td>4.69</td>
<td>24.77</td>
</tr>
<tr>
<td>G9</td>
<td>0.17</td>
<td>3.47</td>
<td>8.01</td>
<td>20.01</td>
<td>5.17</td>
</tr>
<tr>
<td>G10</td>
<td>0.04</td>
<td>7.73</td>
<td>6.11</td>
<td>23.16</td>
<td>2.13</td>
</tr>
<tr>
<td>G11</td>
<td>0.51</td>
<td>9.55</td>
<td>7.54</td>
<td>15.89</td>
<td>10.27</td>
</tr>
<tr>
<td>G12</td>
<td>0.18</td>
<td>15.94</td>
<td>7.47</td>
<td>15.40</td>
<td>9.51</td>
</tr>
</tbody>
</table>
Prairie; Chrome Pyrope; \(n = 342 \)
DIAMOND INCLUSION CHROMITE

Cr_2O_3 (wt\%) vs. MgO (wt\%)

GURNEY AND MOORE, 1993
TANZANIA

Diamondiferous

Barren

T_{Ni} (°C)

Griffin and Ryan, 1993
Interpretation & follow-up

1992 PRAIRIE ULTRA-LOW DENSITY INDICATOR MINERAL RECONNAISSANCE
Peridotitic Garnets (0.25–2.0 mm) in 30 kg Till

GSC, 1993
OF 2745, Fig. 3
Indicator mineral surveys

- Objective
- Media
- Spacing
- Size
- Collection
- Processing
- Pre-concentration

- Concentration
- Ferromagnetics
- Classification
- Picking
- Morphology
- Mineral chemistry
- Interpretation & follow-up
Indicator Mineral Methods in Mineral Exploration: Introduction

Harvey Thorleifson
Minnesota Geological Survey
Workshop 3

Indicator Mineral Methods in Mineral Exploration

Sunday, September 9, 2007

Association of Applied Geochemists (AAG)

Convenors:
Harvey Thorleifson, MGS & Beth McClenaghan, GSC