Outline

- Introduction
- Methods
- Case Study - Porphyry Copper
- Case Study - VMS
- Other Examples
- Future Directions
- Summary
Why groundwater geochemistry?

- Aqueous geochemistry (in the broadest sense this includes ground and surface water and stream sediments) has been successfully used in mineral exploration for some time.
- Significant challenge for mineral exploration is to find new and deeper deposits, particularly in areas where either thick cover exists.
- Where past exploration has already discovered shallow mineralization and exploration must extend to greater depth.
Utility of groundwater geochemistry

- Groundwater recharges to depth, resulting in greater likelihood of interacting with buried mineralization compared to surface geochemical methods, and thus providing a three dimensional perspective.
- Advances in understanding of ore formation processes, water-rock interaction and metal transport/attenuation in the secondary environment are enhancing the efficacy of groundwater geochemical exploration.
- New analytical technologies are resulting in lower detection limits, cheaper and more rapid analytical costs and permitting routine analysis of previously unavailable isotopes.
Natural waters vs AMD

Field methods

Sample return
- N₂ gas to sample head
- N₂ gas to packers
- Sample head
- 1 psi cracking valve
- Upper packer
- Groundwater flow
- Groundwater flow
- Sample entry chamber (with 45 μm in-line filter)
- Lower packer
Field methods
Packer versus bailer
The best way to sample groundwater!
pH and Eh
Redox
To filter or not to filter, that is the question
Lab methods

- Variety of methods used, depending on the nature of the study
- Major cations by ICP-OES
- Trace metals/metalloids by ICP-MS
- Anions by chromatography, but S can also be done by ICP
- Alkalinity by titration
- Isotopes by various forms of MS (TIMS, IRMS, MC-ICP-MS etc)
Speciation and modeling

Log[H+]^2 + log[Cl]^2 vs. Log P_{CO2}

- Atacamite: Cu_4(OH)_6Cl_2
- Azurite: Cu_3(OH)_2(CO_3)_2
- Tenorite: CuO
- Malachite: Cu_2(OH)_2CO_3

SI_atacamite vs. [Cu^{2+}] (μM)

[Image of graphs showing the relationship between chemical speciation and modeling parameters.]

Exploration '07 - Sept 8, 2007
Speciation and modeling

![Graph showing the relationship between SI_Anglesite and Pb (μg/L)]

- Halfmile Lake
- Restigouche
- Mines
Routine Exploration

- Sampling methods
 - Bailer
 - Pump
 - Double valve, Grundfos

- Depth of sampling
 - One sample = at least 5 m below water table
 - Multiple samples = different depths based on stratigraphy, changes in conductivity, well logs

- Samples
 - One aliquot
 - 250 or 500 ml Nalgene

- Field measurements
 - pH, conductivity

- QA/QC
 - 1 in 20 duplicate
 - 1 in 20 CRM standard
 - Several field blanks
 - Major ions - ICP-OES
 - Trace elements - ICP-MS
 - Ag, Au require other preservation
 - Store cold

- Analytical
 - Ag, Au - preserve with BrCl or carbon sachets
Case studies

<table>
<thead>
<tr>
<th>Type of deposit</th>
<th>Major components</th>
<th>Minor components</th>
<th>Labile componentså</th>
<th>Relatively immobile componentsβ</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMS</td>
<td>Fe, S, Cu, Zn, Pb</td>
<td>Cd, Hg, Au, As, Sb, Ba, Bi, In</td>
<td>Fe, S, Zn, Cu, As, Cd, Hg, Sb</td>
<td>Pb, Bi, In, Au, Ag, Ba</td>
</tr>
<tr>
<td>Porphyry Cu ± Mo</td>
<td>Cu, Mo, S</td>
<td>Fe, Ag, Au, Se, Re, As</td>
<td>Cu, Mo, S, Fe, Se, As, Re</td>
<td>Ag, Au</td>
</tr>
<tr>
<td>SEDEX</td>
<td>Fe, S, Cu, Zn, Pb</td>
<td>Ag, Au, Ba, Cd</td>
<td>Fe, S, Zn, Cu, Cd</td>
<td>Pb, Ba, Au, Ag</td>
</tr>
<tr>
<td>Gold (vein)</td>
<td>Au, Ag</td>
<td>As, Sb, Se, Te, S, Hg</td>
<td>S, Se, As, Hg, Te, Sb</td>
<td>Au, Ag</td>
</tr>
<tr>
<td>Ni-Ci-PGE</td>
<td>Ni, Cu, PGE</td>
<td>Cr, Co, S</td>
<td>Cu, S, PGE</td>
<td>Co, Ni, Cr</td>
</tr>
<tr>
<td>Kimberlite (diamond)</td>
<td>Sr, Nb, Ba, Cr, Ni</td>
<td>LILE, HFSE, REE</td>
<td>Sr, LILE</td>
<td>Ba, HFSE, Nb, Ba, Cr, Ni, REE</td>
</tr>
<tr>
<td>Unconformity uranium</td>
<td>U</td>
<td>Se, Mo, V, Cu, Pb</td>
<td>U, Se, Cu, Mo</td>
<td>U, Pb, V</td>
</tr>
</tbody>
</table>

A. Under oxidizing and near neutral conditions
B. Under normal conditions; e.g., Ba is immobile in the presence of S as SO₄ owing to insolubility of barite.

LILE, large ion lithophile elements; HFSE, high-field strength elements; REE, rare earth elements

Table modified after McMartin and McClenaghan (2001)
Case study: porphyry copper (Chile)

Spence deposit
Case study: porphyry copper (Chile)

- Porphyry copper deposit, with 74.8 Mt @ 1.24% oxide Cu, 238 Mt of sulfide Cu @ 1.03%
- Hosted in andesitic volcanic rocks, associated with three quartz-feldspar porphyrries
- Supergene alteration prior to mid-Miocene, produced leached cap - enriched oxide zone over supergene and hypogene sulfides
Case study: porphyry copper (Chile)

Groundwaters
- East (upflow)
- Within deposit
- West (downflow)
- North
- South

Evaporation line for $\alpha = 1.009$

Binary mixing ($Y - Z$)
Case study: porphyry copper (Chile)
Lessons from Spence groundwater - soil geochemical anomalies
Lessons from Spence groundwater - soil geochemical anomalies
Conceptual model
Lessons from Spence groundwater - Tamarugal
Lessons from Spence groundwater - Tamarugal

![Graphs showing δ^2H and δ^18O vs. TDS with annotations and data points]

- Fritz et al. (1981)
- Tamarugal
- Spence waters:
 - East of deposit
 - Within deposit
 - West of deposit
 - North of deposit
 - South of deposit

![Graph showing S/Se vs. TDS with annotations]

- Regional meteoric waters
- Spence saline waters

Exploration '07 - Sept 8, 2007
Case study: VMS (Bathurst Mining Camp)
Case study: VMS (Bathurst Mining Camp)

Restigouche deposit

Murray Brook deposit
Case study: VMS (Bathurst Mining Camp)

Exploration Geochemistry - Basic Principles and Concepts
Case study: VMS (Bathurst Mining Camp)
Case study: VMS (Bathurst Mining Camp)
Case study: VMS (BMC)
Case study: VMS (Bathurst Mining Camp)

Exploration Geochemistry - Basic Principles and Concepts
Duc Prospect Melville Peninsula

Duc Prospect Melville Peninsula

Kimberlites
Kimberlites
Future directions

• Incorporation of isotopic methods; sourcing, fingerprinting

• Widespread availability of quadrupole-based ICP-MS and increasing penetration of MC-ICP-MS should result in:
 • Non-traditional isotopes being used in exploration
 • Rapid and cheap analysis of more well characterized systems such as Pb, Sr, S
Future directions

Layton-Matthews et al., 2006; in prep
Ehrlich et al., 2004. Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS. Chemical Geology, 209, 259-269
Future directions

Exploration Geochemistry - Basic Principles and Concepts
Future directions

• Better understand the role of bacteria in sulfide oxidation and silicate hydrolysis
• Development of better models to understand metal migration in different environments
• Development of better models to distinguish between real and false anomalies (to what extent can we really use species not specifically ore-related?)
• More systematic application of hydrogeochemical methods in prospective but areas but without known mineralization
Where to find out more

<table>
<thead>
<tr>
<th>Type of deposit</th>
<th>Main pathfinders</th>
<th>Secondary pathfinders</th>
<th>Key analytical methods</th>
<th>Key publications</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMS</td>
<td>Zn</td>
<td>Low pH, Pb, SO₄,</td>
<td>ICP-MS – metals IC,</td>
<td>Cameron, 1978;</td>
<td>Sulfide-Pb sources typically isotopically distinct; Pb isotopes can fingerprint ore versus non-ore Pb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ICP-OES - S</td>
<td>Leybourne et al., 2003; Goodfellow, 2003</td>
<td></td>
</tr>
<tr>
<td>Porphyry Cu ± Mo</td>
<td>Distal – Se, Re,</td>
<td>Pb, Zn</td>
<td>ICP-MS – metals IC, IC,</td>
<td>Cameron and Leybourne, 2005; Cameron et al., 2002; Leybourne and Cameron, 2006, in press</td>
<td>S isotopes also useful as a complimentary vector</td>
</tr>
<tr>
<td></td>
<td>Mo, As</td>
<td></td>
<td>ICP-OES - S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proximal - Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEDEX</td>
<td>Zn</td>
<td>Ag, Au, Ba, Cd</td>
<td>ICP-MS – metals IC, IC,</td>
<td>Goodfellow, 1983; Jonasson et al., 1987; Kelley and Taylor, 1997</td>
<td>Sulfide-Pb sources typically isotopically distinct; Pb isotopes can fingerprint ore versus non-ore Pb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ICP-OES – S TIMS, MC-ICP-MS – Pb isotopes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold (vein)</td>
<td>Au</td>
<td>Se, As, Sb</td>
<td>Activated carbon preconcentration or BrCl (see text)</td>
<td>Carey et al., 2003; Giblin, 2001; Gray, 2001</td>
<td></td>
</tr>
<tr>
<td>Cu-Ni-PGE</td>
<td>Ni, Cu, Pd</td>
<td>As, Cr, Co, S, PGE</td>
<td>ICP-MS – metals IC, IC,ICP-OES - S</td>
<td>Hattori and Cameron, 2004</td>
<td>Pd mobility is enhanced under alkaline conditions relative to other pathfinders</td>
</tr>
<tr>
<td>Kimberlite</td>
<td>Low Mg, elevated K/Mg, pH > 10</td>
<td>Ni, Co, Cr, high Co/Mg and Ni/Mg</td>
<td>ICP-MS – metals IC, IC,ICP-OES - S</td>
<td>Sader et al., 2003, 2007</td>
<td>Also, formation of Mg hydroxides (brucite), silicates (serpentine) and carbonates (magnesite)</td>
</tr>
<tr>
<td>Kimberlite (diamond)</td>
<td>Low Mg, elevated K/Mg, pH > 10</td>
<td>Ni, Co, Cr, high Co/Mg and Ni/Mg</td>
<td>ICP-MS – metals IC, IC,ICP-OES - S</td>
<td>Sader et al., 2003, 2007</td>
<td>Also, formation of Mg hydroxides (brucite), silicates (serpentine) and carbonates (magnesite)</td>
</tr>
<tr>
<td>Unconformity uranium</td>
<td>Oxidizing – U, radon</td>
<td>Se, Mo, As, V, Cu, Pb</td>
<td>ICP-MS – metals IC, ICP-OES – S TIMS, MC-ICP-MS – Pb isotopes</td>
<td>Deutscher et al., 1980; Dickson and Giblin, 2006; Earle and Dreyer, 1983; Giblin and Snelling, 1983; Langmuir and Chatham, 1980</td>
<td>Radiogenic ^{207}Pb/^{206}Pb and ^{208}Pb/^{204}Pb should prove useful</td>
</tr>
<tr>
<td></td>
<td>Reducing – Se, Mo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary - Aqueous geochem the simple way

- Regional - lake and stream waters
- Lake waters can be collected by helicopter
- No preservation, no field testing, no filtering
- Analyze rapidly to ensure no loss of metals to the bottle walls or to precipitates that form during transport to the lab
- Groundwaters can be collected using plastic bailers
- Analysis by multi-element ICP-MS only
Summary - Aqueous geochem the less easy way

• Exploration companies may choose the easy way, but:
• Dual-use programs (exploration and environmental baseline) would require more adherence to environmental guidelines
• Characterization/pilot studies require more detailed sample collection and analytical approaches
• More closely spaced samples
• In field testing, especially for pH, redox, alkalinity
• Filtering in situ; acid preservation
• Isotopes
Thanks!

• Beth McClanaghan
• Jan Peter, Wayne Goodfellow
• Jamil Sader, Clinton Rissmann
• Stew Hamilton, Dan Layton-Matthews, Gwendy Hall
• CAMIRO
• BHP-Billiton, NSF, TGI, EXTECH
• Dan Boyle
• GNS Science