Overview of indicator mineral recovery methods for sediments and bedrock: 2013 update

M. Beth McClenaghan

Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, Canada K1A 0E8
(e-mail: bmcclena@nrcan.gc.ca)

These short course notes are a summary of a more detailed paper (McClenaghan 2011) describing common sample processing methods (Fig. 1) used to reduce sample volume, concentrate heavy minerals, and recover indicator minerals in support of mineral exploration. It is an updated version of previously published workshop notes presented in 2009 and 2011 (McClenaghan 2009, 2011).

The application of indicator mineral methods to mineral exploration has expanded and developed significantly over the past two decades and these methods are now used around the world to explore for a broad spectrum of deposit types including kimberlite (diamonds) (e.g. McClanaghan & Kjarsgaard 2007), lode gold (e.g. McClanaghan & Cabri 2011; Moles & Chapman 2011), magmatic Ni-Cu-PGE (e.g. Averill, 2001, 2011; McClanaghan et al. 2011), metamorphosed VMS (e.g. Heiman et al. 2005), porphyry Cu (e.g. Kelley et al. 2011; Averill 2011), Mississippi Valley-type Pb-Zn (e.g. Paulen et al. 2011), U, Sn, W, IOCG (e.g. McMartin et al. 2011), and rare metals (e.g. Averill 2001).

Indicator minerals, including ore, accessory and alteration minerals, are usually sparsely distributed in their host rocks. In sediments derived from rocks, these indicator minerals may be even sparser, thus sediment samples must be concentrated in order to recover and examine the indicators. Most indicator minerals have a moderate to high specific gravity; therefore most processing techniques use some type of density separation, often in combination with sizing and/or magnetic separations, to concentrate the minerals. The presence of specific indicator minerals in unconsolidated sediments provides evidence of a bedrock source and, in some cases, the chemical composition of the minerals may reflect the ore grade of the bedrock source. As few as one sand-sized grain of a specific indicator mineral in a 10 kg sample may be significant. To recover such potentially small quantities (equivalent to ppb) of indicator minerals, samples are processed to reduce the volume of material that must be examined. The processing techniques employed must retain the indicator mineral(s) without contaminating the sample and must have a reasonable cost.

Indicator minerals can be recovered from a variety of sample media, including stream, alluvial, glacial, beach, or eolian sediments, and residual soils. They can also be recovered from weathered and fresh bedrock, as well as mineralized float. The combinations of processing techniques used for recovering indicator minerals by exploration companies and government agencies are quite variable (e.g. Gregory & White 1989; Peuranen 1990; Davison 1993; Towie & Seet 1995; Chernet et al. 1999; McClanaghan et al. 1999; Gent et al. 2011; Plouffe et al. in press). The processing methods used will depend on the commodities being sought as well as the cost per sample. Most oxide and silicate indicator minerals are easily recovered from the medium to coarse sand-sized (0.25–2.0 mm) fraction. Therefore, concentration techniques that recover the sand-sized heavy minerals can be used. In contrast, a significant proportion of gold, platinum group minerals (PGM), sulphide minerals, and rare metal minerals (Laukkonen et al. 2011) are silt-sized (<0.063 mm), thus concentration of these indicators requires a preconcentration technique that includes recovery of the silt- as well as the sand-sized fractions.

SAMPLE WEIGHT

The sample weight of material required for indicator mineral studies will vary depending on the type of surficial sediment collected, the grain size characteristics of the sample material, the commodity being sought, and shipping costs (Table 1). For example, in glaciated terrain clay-rich till samples may have to be 20 to 30 kg (or more) to recover a sufficient weight of sand-sized heavy minerals (Table 2, #5) (e.g. Spirito et al. 2011). In contrast, coarse-grained silty sand till typical of shield terrain
Table 1. Examples of variation in sample weight and processing procedures with sample and target type at Overburden Drilling Management Ltd’s heavy mineral processing laboratory (Averill & Huneault 2006).

<table>
<thead>
<tr>
<th>Target</th>
<th>Typical Sample Weight</th>
<th>Required Separations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Table Micropan Heavy Liquid (specific gravity)</td>
<td>Ferromagnetic separation?</td>
</tr>
<tr>
<td>A. Sediment Samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold</td>
<td>10</td>
<td>Single</td>
</tr>
<tr>
<td>Kimberlite</td>
<td>10–30</td>
<td>Double</td>
</tr>
<tr>
<td>Massive sulphides</td>
<td></td>
<td>Single</td>
</tr>
<tr>
<td>(Ni-Cu-PGE, BHT, VMS, IOCG, MVT, skarn)</td>
<td>(PGM only)</td>
<td></td>
</tr>
<tr>
<td>Porphry Cu</td>
<td>0.5</td>
<td>No</td>
</tr>
<tr>
<td>Uranium</td>
<td>10</td>
<td>Single</td>
</tr>
<tr>
<td>Heavy mineral sands</td>
<td>20</td>
<td>Triple</td>
</tr>
<tr>
<td>(grade evaluation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tampering (investigation)</td>
<td>Variable</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Rock Samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold, PGE, base metals</td>
<td>1</td>
<td>Optional</td>
</tr>
<tr>
<td>Kimberlite</td>
<td>1-10</td>
<td>Optional</td>
</tr>
<tr>
<td>Tampering (investigation)</td>
<td>1</td>
<td>No</td>
</tr>
</tbody>
</table>

BEDROCK PREPARATION

Bedrock or float (mineralized boulders) samples often need to be disaggregated or crushed prior to processing to reduce rock fragment/mineral grain size to <2 mm. Electric pulse disaggregation (EPD) using an electric current from a high-voltage power source in a water bath is an efficient means of liberating mineral grains from a rock (Cabri et al. 2008). The major advantage of this method is that individual mineral grains can be recovered in their original shape and form regardless of grain size. Conventional rock crushers may also be used, however, they 1) are more difficult to clean between samples and thus pose a higher risk of cross contamination, 2) often cause rock fragments to break across grain boundaries, and 3) mark/damage grains as they are liberated. Barren quartz can be disaggregated or crushed as a blank between routine rock samples to reduce and monitor contamination.

PRECONCENTRATION

If sample shipping costs are an issue, samples may be partly processed in the field to reduce the weight of material shipped to the processing laboratory. Samples may be sieved to remove the coarse (>1 or >2 mm) fraction, which may reduce weights from a few % to 30% (e.g. Table 2, columns B-C). Preconcentrating samples using a pan, jig, sluice box or centrifugal concentrator also may be carried out in the field to further reduce the weight of material to be shipped. Preconcentrates may be examined in the field, significantly reducing the time to obtain results for follow up. However, preconcentrating in the field can itself be expensive and time consuming and the available methods may not provide optimal recovery of the indicator minerals of interest. Field setup of concentrating equipment may be more rudimentary than at the processing laboratory, thus extra care is required to avoid cross contamination or material loss during the pre-concentration procedures.

Whether sieved off in the field or in the laboratory, the coarse >2 mm fraction may be examined to provide additional infor-
nformation about sample provenance and transport distance. The <2 (or <1 mm) fraction is preconcentrated most commonly using sieving and/or density methods (e.g. jig, shaking table, spiral concentrator, dense media separator, pan, centrifugal concentrator) to reduce the weight of material to be examined without losing indicator minerals. Some of the more common preconcentration equipment and techniques are described below.

Pans

Panning is the oldest method used to recover indicator minerals, primarily for gold and PGM. Sediment is placed in a pan and shaken sideward in circular motion while being held just under water. Heavy minerals sink to the pan bottom and light minerals rise and spill out over the top (Zeschke 1961; Silva 1986; English et al. 1987; Ballantyne & Harris 1997). Pans have varying shapes (flat bottomed or conical) and sizes, and can be made out of plastic, metal or wood. The advantages of this technique include that it can be a field or laboratory-based operation, is inexpensive in terms of equipment costs, and if used in the field it reduces sample shipping weight and thus cost. If field based, indicator minerals can be examined immediately and results can be used to guide on going exploration while still in the field. Panning is often used in combination with other preconcentration and/or heavy liquid methods to recover silt-sized precious metal grains (e.g. Grant et al. 1991; Leake et al. 1991, 1998; Ballantyne & Harris 1997; Wierchowiec 2002). The disadvantages of this method are that it is slow, is highly dependent on the experience and skill of operator and therefore requires consistent personnel to perform the panning. It is considered to be a rough concentrating method when used in the field and is followed up with further laboratory-based concentration techniques (e.g. Zantop & Nespererein 1979; Stendal & Theobald 1994).

Shaking tables

Preconcentration using a shaking (e.g. Wilfley) table is another one of the oldest methods for concentrating and separating heavy minerals on the basis of density. It recovers silt- to coarse sand-sized heavy minerals for a broad spectrum of commodities including diamonds, precious and base metals, and uranium (Averill & Huneault 2006). A brief description of the method is summarized below from Sivamohan & Forssberg (1985), Silva (1986), and Stewart (1986). The table consists of a deck with up to 1 cm high riffles covering over half the surface. A motor mounted on one end drives a small arm that shakes the table along its length. A slurry of <2.0 mm sample material is put across the shaking table to prepare a preconcentrate. If kimberlite indicators are targeted, the sample is tabled twice to ensure higher recovery of the key lower density minerals (Cr-diopside and forsteritic olivine) and the coarsest grains. The advantages of this method are the ability to recover both silt- and sand-sized indicator minerals for a broad spectrum of commodities at a moderate cost. It is a well established method for the recovery of precious metal mineral grains as well as kimberlite indicator minerals (e.g. English et al. 1987; McClanaghan et al. 1998, 2004). The disadvantages of this method include the loss of some coarse heavy minerals as well as the finer <0.10 mm grains (Gent et al. 2011), the lengthy time required to process each sample; and its dependency on the skill of the operator.

Dense Media Separators

A micro-scale dense media separator (DMS), which is used in commercial labs, employs a gravity-based method to preconcentrate kimberlite indicator minerals. An overview of the method described by Baumgartner (2006) is presented below. Heavy mineral concentration is carried out using a gravity-fed high-pressure cyclone. The <1 mm fraction of the sample is mixed with fine-grained ferrosilicon (FeSi) to produce a slurry of a controlled density. The slurry is fed into the cyclone where the grains travel radially and helically, forcing the heavier particles toward the wall of the cyclone and the lighter particles toward the centre (Gent et al. 2011). The lighter and heavier particles exit the cyclone through different holes, with the light fraction discarded and the heavy fraction collected on a 0.25 or 0.3 mm screen. The heavy mineral concentrate on the screen is then dried and screened to remove residual FeSi. A Tromp curve is used to define the efficiency and precision of the DMS separation. The DMS is calibrated to recover the common kimberlite indicator minerals that have a specific gravity (SG) >3.1: pyrope garnet, chrome-spinel, Mg-ilmenite, Cr-diopside, forsteritic olivine, and diamond. It is tested using synthetic density tracers before processing samples. The density settings and cut points are checked once per day. The advantages of the micro DMS system are that it is fast, less susceptible to sample contamination than other heavy mineral concentrating techniques, and is not operator dependent. The method, however, is more expensive than other methods described here and it does not recover the silt-sized precious and base metal indicator minerals.

Centrifugal concentrators

Centrifugal concentrators were originally designed for concentrating gold and platinum from placer and bedrock samples. However, in recent years they have also been used to recover kimberlite indicator minerals from sediment samples (e.g. Chernet et al. 1999; Lehtonen et al. 2005). They can handle particle sizes from >10 µm to a maximum of 6 mm. The general processing procedure is summarized below for one type of centrifugal concentrator, the Knelson Concentrator, from the manufacturer’s website (www.knelsongravitysolutions.com). In summary, water is introduced into a concentrate cone through a series of holes in rings on the side of the cone. The sample slurry is then introduced into the concentrate cone from a tube at the top. When the slurry reaches the bottom of the cone, it is forced outward and up the cone wall by the centrifugal force generated by the spinning cone. The slurry fills each ring on the inside of the cone wall to capacity, creating a concentrating bed. High specific gravity particles are captured in the rings and retained in the concentrating cone. At the end of the concentrate cycle, concentrates are flushed from the cone into the sample collector. The advantages of centrifugal concentrators are that they are fast, inexpensive, and can be mobilized to the field and used to reduce the weight of material that must be shipped to the laboratory. However, recovery of kimberlite indicator minerals from silt-poor material such as esker sand or stream sediments is difficult due to the absence of fine-grained material to keep the slurry in suspension (Chernet et al. 1999). Alternatively, too much fine-grained material can impede the settling of fine-grained heavy minerals. Centrifugal concentrators are optimal for the recovery of gold and PGM.
Spiral concentrators

Heavy minerals can be recovered using a rotary spiral concentrator, which consists of a flat circular stainless steel bowl with rubber ribs that spiral inward; a detailed description of its use is reported by Silva (1986). A spiral concentrator is mounted on a frame so it can be tilted and has a water wash bar extending laterally from one side of the bowl to the center. As the bowl spins, water is sprayed from the bar and heavy mineral grains move up and inward along the spirals to the central opening where they are collected in a container behind the bowl. The water washes light minerals down to the bottom of the bowl. The heaviest minerals are recovered first. The advantages of the spiral concentrator are that it can be field-based and thus used to reduce sample weight to be shipped, it is inexpensive to acquire and operate, it requires little time if the material is sandy, and it recovers indicator minerals across a broad size range, from silt- to sand-sized grains. The method, however, is dependent on the experience and skill of the operator, the lower density threshold is variable, there is some loss of heavy minerals, and the method is slow if the sample is clay-rich. It is used mainly for gold recovery (e.g. Maurice & Mercier 1986; Silva 1986; Sarala et al. 2009) but in the past 10 years it also has been used for the recovery of kimberlite indicator minerals (e.g. Sarala & Peuraniemi 2007).

Jigs

Jigging is one of the oldest gravity concentration methods; this method separates heavy minerals based on differential settling velocities of mineral grains in water (Stendal & Theobald 1994). Jigging is performed by hand or by mechanically jerking a partially filled screen of material up and down underwater for several minutes. While submersed in water, mineral grains separate through suspension and gravity effects into layers of varying specific gravity. Heavier grains concentrate on the surface of the screen, with the heaviest generally concentrated towards the centre of the screen forming an ‘eye’. Very heavy minerals, such as ilmenite and magnetite, will be found at the very centre of the screen and lighter heavy mineral, such as garnet and pyroxene, will concentrate at the periphery of the eye. Diamonds tend to concentrate towards the centre, despite their moderate specific gravity (SG 3.51). A spoon is used to remove the heavy minerals in the eye for more detailed examination. For optimal recovery, the jig tailings should be re-jigged 2 to 3 times until no eye forms. The method is typically used for recovery of gold (e.g. Silva 1986) and Kimberlite indicator minerals (Muggeridge 1995). The advantages of using a jig are that it can be field-based and thus used to reduce the weight of the samples to be shipped, is inexpensive to operate, is relatively fast, and works best for fine to coarse sand-sized grains. However, it is best used in a fixed, laboratory-based setting with an experienced operator.

FINAL CONCENTRATION

Heavy liquid separation

A preconcentrate is usually further refined using heavy liquids of a precise density (Gent et al. 2011) to further reduce the size of the concentrate prior to heavy mineral selection (Table 2, column E). Heavy liquid separation provides a sharp separation between heavy (sink) and light minerals (float) at an exact known density. However, it is slow and expensive, and therefore is not economical for large volumes of sample material; hence, it is advantageous to use the preconcentration procedures described above to reduce sample volume before this step (Stendal & Theobald 1994). It is common to remove the finer fraction (<0.063 mm) of a sample by sieving before using heavy liquid separation, as this material can be difficult to separate due to its small size (M. Lehtonen, pers. comm. 2013).

The most common heavy liquids used include methylene iodide (MI) with a SG of 3.3 and tetrabromoethane (TBE) or the low-toxicity heavy liquid lithium heteropolytungstates (LST), both with SG of 2.9. The density of the heavy liquid required will depend on the indicator minerals being sought. Some laboratories use a combination of both heavy liquids, separating first using the lower density heavy liquid at about SG 2.9 to reduce the volume of material to be further separated at SG 3.2 or 3.3 (e.g. Le Couteur & McLeod 2006; de Souza 2006; Mircea 2006). The recovery of kimberlite and magmatic Ni-Cu-PGE indicator minerals requires heavy liquid separation at SG 3.2 using dilute methylene iodide to include the lowest density indicators, Cr-diopside and forsteritic olivine. Recovery of porphyry Cu indicator minerals requires separation at SG 2.8 to 3.2 to recover the mid-density indicators tourmaliyne (dravite), alunite, jarosite, and turquoise (Averill 2007). Some indicator minerals, such as apatite and fluorite, are of intermediate density but are recovered mainly from the mid-density rather than the heavy fraction.

Magnetic separation

Magnetic separation may be used to further refine heavy mineral concentrates and reduce concentrate volume for picking of mineral species with specific magnetic susceptibilities (Towrie & Seet 1995). The most common magnetic separation involves splitting the ferromagnetic from the non-ferromagnetic fraction. Ferromagnetic minerals can comprise a considerable proportion of the concentrate (e.g. Table 2, column F) and therefore removing the ferromagnetic minerals decreases concentrate size prior to indicator mineral selection and removes any steel contaminants derived, in most instances, from sampling tools or drilling equipment. The ferromagnetic fraction may then be (1) set aside, (2) examined to determine the abundance and mineral chemistry of magnetic (e.g. Beaudoin et al. 2011), pyrrhotite (McClanaghan et al. 2012), or magnetic Mg-ilmenite, as is the case for some kimberlites (e.g. McClanaghan et al. 1998), or (3) analyzed geochemically (e.g. Theobald et al. 1967). A hand magnet or plunger magnet is most commonly used to carry out this separation.

A specific size fraction of the non-ferromagnetic heavy mineral fraction may be further separated electromagnetically into fractions with different paramagnetic characteristics to help reduce the volume of material to be examined for indicator minerals (Averill & Hucanault 2006). Minerals such as diamond are nonparamagnetic; pyrope garnet, eclogitic garnet, Cr-diopside and forsteritic olivine are nonparamagnetic to weakly paramagnetic; and Cr-spinel and Mg-ilmenite are moderately to strongly paramagnetic (see Table 1 in McClanaghan & Kjarsgaard 2007). If the non- or paramagnetic portion of the concentrate contains a significant amount of almandine garnet it may be processed through a magstream separator to separate the orange almandine from similar looking eclogitic or pyrope garnet grains. In this case, magstream separation divides the concentrate into (1) a fraction containing most of
the silicates (e.g. pyrope and eclogitic garnet) and no almandine, and (2) a fraction containing ilmenite, chromite, and other moderately magnetic minerals such as almandine (Baumgartner 2006).

INDICATOR MINERAL SELECTION AND EXAMINATION

The non-ferromagnetic fraction is commonly sieved into two or three (e.g. 0.25–0.5 mm, 0.5–1.0 mm, 1.0–2.0 mm) size fractions for picking of indicator minerals; however the final size range will depend on the commodity sought. For example, kimberlite indicator minerals are most abundant in the 0.25 to 0.5 mm fraction (McClennenghan & Kjarsgaard 2007) and thus, to maximize recovery and minimize counting time and cost, the 0.25 to 0.5 mm fraction is most commonly picked.

Indicator minerals are selected from non-ferromagnetic heavy mineral concentrates during a visual scan, in most cases, from the finer size (e.g. 0.25–0.5 mm, or 0.3–0.5 mm, 0.25–0.86 mm) fractions using a binocular microscope. The grains are counted and a selection of grains is removed from the sample for analysis using an electron microprobe (EMP) to confirm their identification. Methods for examining a sample for counting/picking vary from rolling conveyor belts to dishes/paper marked with lines or grids. If a concentrate is unusually large, then a split is examined and the indicator mineral counts are normalized to the total weight of the concentrate. If a split is picked, the weight of the split and the total weight should both be recorded. Not all grains counted in a sample will be removed for EMP analyses. If this is the case, the total number of grains counted and the number of grains removed should both be recorded.

Indicator minerals are visually identified in concentrates on the basis of colour, crystal habit, and surface textures, which may include features such as kelyphite rims and orange peel textures on kimberlite garnet (e.g. Garvie 2003; McClennenghan & Kjarsgaard 2007). Scheelite and zircon in a concentrate may be counted under shortwave ultraviolet light. Gold and PGM grains may be panned from concentrates that were prepared such that the silt-sized fraction has been retained (e.g. tabling). The grains may be counted and classified with the aid of optical or scanning electron microscopy. Commonly, gold grains are classified according to their shape/degree of wear (e.g. DiLabio 1990; Averill 2001), which are characteristics that can provide information about relative transport distances (McClennenghan & Cabri 2011).

INDICATOR MINERAL CHEMISTRY

Mineral chemical analysis by EMP, scanning electron microscope (SEM), laser ablation-ICP-MS, or secondary ion mass spectrometry (SIMS) may be carried out to determine major, minor and trace element contents of specific indicator minerals because mineral chemistry is used to confirm identity, establish mineral paragenesis, and in some cases deposit grade (e.g., Ramsden et al. 1999; Belousova et al. 2002; Scott 2003; Heimann et al. 2005). For example, kimberlite indicator minerals are characterized by a specific range of compositions that reflect their mantle source and diamond grade (e.g. Fipke et al. 1995; Schulze 1997; Grütter et al. 2004; Wyatt et al. 2004). Gold, PGM and sulphide grains may be analyzed to determine their trace element chemistry or isotopic compositions (e.g. Grant et al. 1991; Leake et al. 1998; Chapman et al. 2009). Prior to indicator mineral grains being selected from a heavy mineral concentrate, newer techniques such as mineral liberation analysis (MLA), computer-controlled scanning electron microscopy (CCSEM), or quantitative evaluation of materials by scanning electron microscopy (QEMSCAN) may provide quantitative mineralogical analysis and identification of indicator minerals in a portion of the heavy mineral concentrate that has been prepared as a polished epoxy grain mount, in the 0.25 to 2.0 mm fraction of the rarely examined <0.25 mm fraction. These methods can be used to identify indicator minerals of interest and prioritize grains for further detailed and more costly EMP analysis, thus reducing EMP analytical costs. The cost per sample for these new techniques is, in general, more expensive than conventional methods.

QUALITY CONTROL

Project geologists may use a combination of blank samples (which contain no indicator minerals), spiked samples (which are known to contain a quantity of specific indicator mineral species or density blocks/beads (e.g. Gent et al. 2011)), and field duplicates, as well as repicking of 10% of the heavy mineral concentrates to monitor a laboratory’s potential for sample contamination and quality of mineral grain selection. In addition, heavy mineral processing and identification laboratories can be asked to report their own quality control monitoring procedures and test results. Quality assurance and control measures implemented at the Geological Survey of Canada for indicator mineral surveys are described in Spirito et al. (2011) and Plouffe et al. (in press).

SUMMARY

These workshop notes describe some of the procedures available for processing surficial media and rocks to recover indicator minerals for mineral exploration. The processing method used will depend on: sample media, commodities being sought, budget, bedrock and surficial geology of the survey area, as well as processing methods used for previous batches. When reporting indicator mineral results in company assessment files, government reports, or scientific papers, it is helpful to report the laboratory name, processing methods used, and sample weights. A complete list of metadata that should be reported so that the indicator mineral data can be fully understand, interpreted, and archived is reported in Plouffe et al. (in press). Monitoring of quality control is essential at each stage in the processing, picking, and analytical procedures described here and should be monitored both by the processing laboratories and clients. Geologists are encouraged to visit processing and picking laboratories so they have a clear understanding of the procedures being used and can discuss customizations needed for specific sample batches.

REFERENCES

Overview of indicator mineral recovery methods for sediments and bedrock: 2013 update

