

Rutile Compositions at the Big Bell Au Deposit as a Guide for Exploration

Keith Scott¹ & Nigel Radford²

¹CRC LEME Dept Earth & Marine Sciences, ANU and CSIRO Exploration & Mining ²Newmont Australia (Exploration)

Acknowledgements

- Graham Rankine, formerly Senior Exploration Geologist, Big Bell
- Normandy Poseidon Group (now Newmont) for supporting the study
- CSIRO colleagues, especially Ken Kinealy, Jeff Davis and David French for assistance with analysis of the rutiles

Hydrothermal Rutile Formation

K(Fe, Mg, Ti)₃(Si₃ Al)O₁₀(OH)₂ +S₂ \rightarrow Biotite

> $K(Mg, Fe)_{3}(Si_{3}Al)O_{10}(OH)_{2} + FeS_{2} + TiO_{2}$ Phlogopitic biotite

 $\begin{array}{ccc} 2(\text{Fe},\text{Ti})_{3}\text{O}_{4} + \text{S}_{2} \rightarrow & \text{Fe}_{3}\text{O}_{4} + \text{FeS}_{2} + \text{TiO}_{2} \\ \text{Ti Mte} & & \text{Mte} \end{array}$

FeTiO₃ + S₂ \rightarrow FeS₂ + TiO₂ Ilmenite CaTiSiO₅ + CO₂ \rightarrow TiO₂ + CaCO₃ + SiO₂ Sphene

Rutile Distribution in Porphyry Systems

Ionic Radii (Å) of Likely Components of Rutile

W ⁶⁺	0.62
Sb ⁵⁺	0.62
Cr ³⁺	0.63
Fe ³⁺	0.64
Ta ⁵⁺	0.68
Ti ⁴⁺	0.68
Nb ⁵⁺	0.69
Sn ⁴⁺	0.71
V^{3+}	0.74
Fe ²⁺	0.74

Backscattered Electron Images of Rutile

Backscattered Electron Images of Rutile

Preparation and Analysis of Rutile Grains

- Sample (100 150g)
- Crush and size to 250 + 45µm (if required)
- Separation of heavy mineral fraction (SG>2.9 Superpanner)
- Clean with HF/aqua regia
- Mount and polish in epoxy resin block
- Analysis of rutile by electron microprobe (major and minor elements)

Location of Big Bell and the Regional Geological Setting

After Chown et al., 1984

Regional Geological Setting, Big Bell

After Barnes, 1996

Big Bell Samples

Rutiles - Ore Zone - Big Bell (Nth)

Rutile Compositions - Big Bell

Rutile Compositions - Big Bell

V-Sb-W Rich Rutiles – Big Bell

W and V in Rutiles, Big Bell

W and Sb in Rutiles, Big Bell

Trivalent vs Hexavalent and Pentavalent Ions in Rutiles, Big Bell

Coupled Substitutions in Rutile at Big Bell

$$M^{3+} + (Nb, Sb, Ta)^{5+} = 2Ti^{4+}$$
$$2M^{3+} + W^{6+} = 3Ti^{4+}$$

Rutile at Big Bell

- W+V+Sb+Fe in rutile associated with ore
- Coupled substitution W and Sb balanced by trivalent ions
- Similar rutile geochemistry to Hemlo Au deposit
- W+V+Sb+Fe association in rutile extends for up to 200m footwall

Rutile Compositions – Regional Deposits

Rutile Compositions – Regional Deposits

Rutile Compositions – Regional Deposits

Features of Mineralization Big Bell area

Deposit	V	W	Sb	Fe	Nb
Big Bell	\checkmark	\checkmark	\checkmark	\checkmark	Х
Fender	\checkmark	\checkmark	\checkmark	\checkmark	Х
Nth Fender	Х	\checkmark	Х	\checkmark	\checkmark
Indicator	\checkmark	\checkmark	\checkmark	\checkmark	Х

- Rutiles at Big Bell are enriched in V, W, Sb, Fe (*cf.* Hemlo Au deposit)
- These features commonly present in footwall (up to 200m) and perhaps 30m in hanging wall
- Rutile associated with mineralization at Indicator and Fender also has enriched V, W, Sb and Fe
- Rutile at Nth Fender has elevated W, Fe and Nb, *i.e.* affected by different fluids than at Big Bell
- Features seen in highly weathered samples
 ⇒ Big Bell type alteration can be identified in regolith samples
- Rutile geochemistry allows targets to be ranked

V-Sb-W Rich Rutiles – Big Bell

- Rutiles at Big Bell are enriched in V, W, Sb, Fe (*cf.* Hemlo Au deposit)
- These features commonly present in footwall (up to 200m) and perhaps 30m in hanging wall
- Rutile associated with mineralization at Indicator and Fender also has enriched V, W, Sb and Fe
- Rutile at Nth Fender has elevated W, Fe and Nb, *i.e.* affected by different fluids than at Big Bell
- Features seen in highly weathered samples
 ⇒ Big Bell type alteration can be identified in regolith samples
- Rutile geochemistry allows targets to be ranked

