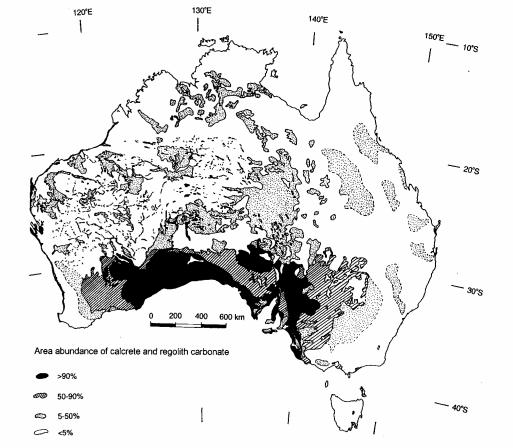
Regional biogeochemics exploration in southern Australia


Hamid R.Hemmati, Allan R. Chiv

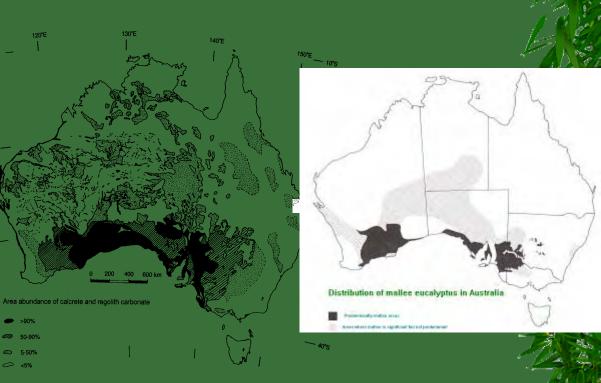
GeoQuEST Research Centre, School Earth and Environmental Sciences, Upin of Wollongong, Australia **Outline:** Introduction **Objectives Materials and Methodology Results** Conclusion

Green plants are the miners of the Earth's crust,....(Baker, 1983)

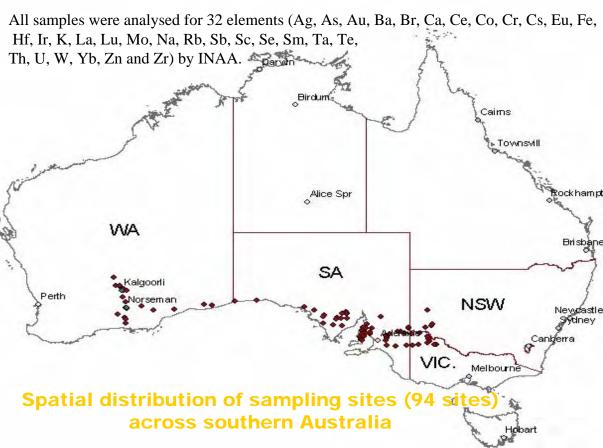
Introduction

- Baseline biogeochemical studies have not been conducted widely for Australia,
- In particular, in southern Australia, presence of a regolith carbonate (calcrete) poses some advantages and disadvantages for mineral exploration.

Objectives

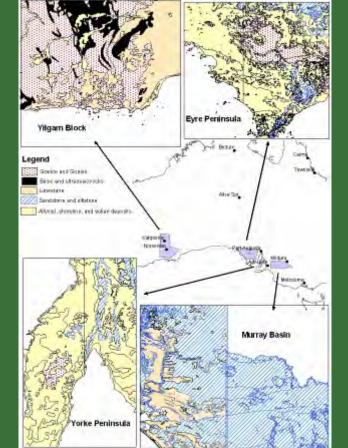

- So, we considered this large area for a multi-element reconnaissance biogeochemical investigation to achieve the following objectives:
- To establish baseline concentrations and distributions of trace elements in vegetation and their adjacent substrate
- To characterize and compare the bio- and pedogeochemical patterns of these elements between two media
- To determine the contribution of different element sources to the observed regional biogeochemical dispersions

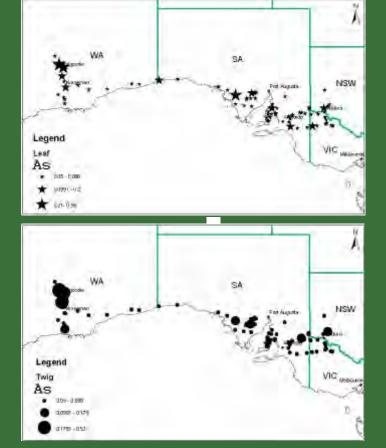
Distribution of mallee eucalyptus in Australia

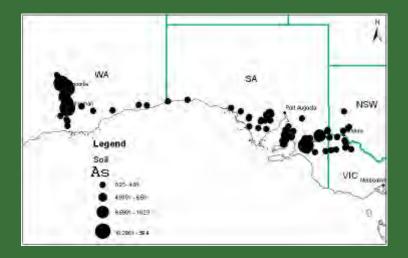


Predominantly mallee areas

Areas where mallee is significant but not predominant






1) Bio- and pedogeochemical maps
 2) Correlation Analysis
 3) Biological Absorption Coefficient

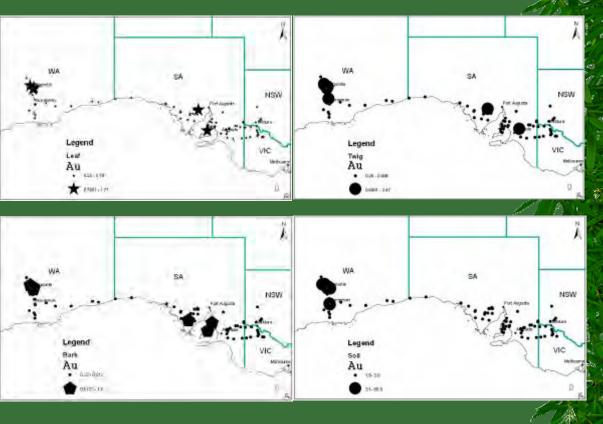


Table 1: Correlation analysis for As between soil and plants*

	Correlation coefficient (r)	_]=
soil vs. bark (n=5)	0.79	
soil vs. leaf (n=13)	0.95	
soil vs. twig (n=10)	0.90	
Table 2: Correlation analysis f	or Au between soil and plan	nts*
Table 2: Correlation analysis f		A A
	correlation coefficient (r)-	
Table 2: Correlation analysis f u in bark and Au in soil (n=4)		
	correlation coefficient (r)-	

*Detection limit for As and Au are 0.1 ppm and 0.5 ppb in plants and 0.5 ppm and 3.0 ppb in soil

Table 3: Comparison of different media for Au (ppb)and its pathfinders (ppm)

site	Province	bark	leaf	twig	top soil	Au in depth
1	Murray Basin	Te (0.21)	-	Au (0.51)	-	in granite at 5m depth (2.4)
2	Murray Basin	-	-	Te (0.24)	-	in claystone at 1.9m depth 2.6)
3	Gawler Craton	Au (0.73)	As (0.14)		-	in calcrete at 1.05m (2.5)
		Te (0.28)				
4	Yilgarn Block	-	ŀ	(0.55)	-	in calcrete at 50cm depth (11.9)
5	Gawler Craton	-	ŀ	Te (0.31)	-	in calcrete at 30cm depth (3.6)
6	Yilgarn Block	Te (0.39)	-	-	-	in calcrete at 45cm (5.5)
7	Gawler Craton	Au (0.72)	Au (0.8)	-	-	- 4.50
8	Gawler Craton	Te (0.26)	Te (0.21)	-	-	· .
9	Gawler Craton	-	Te (0.26)	Te (0.29)	-	
10	Gawler Craton	Au (0.52)	-	Te (0.23)	-	· · ·

Table 4: Mean biological absorption coefficients (BAC) for soil- plant relation

From Brooks, 1995 and Kovalevski, 198

Element	Bark	Leaf	Twig	Element	BAC	
As	0.01	0.06	0.04	As	0.04	and an
Au	0.07	0.06	0.07	Au	0.01	一次认为
Ba	0.04	0.05	0.04	Ba	0.03	and the second second
Ca	1.05	0.84	1.41	Ca	0.14	
Cr	0.011	0.007	0.016	Cr	0.003	4 A and a
Fe	0.005	0.007	0.004	Fe	0.004	
K	0.22	0.94	0.45	K	0.12	
Na	1.05	3.24	1.37	Na	0.01 -	
REE	0.02	0.02	0.03	REE	0.003	2 20 2 3
Th	0.005	0.005	0.003	Th	0.005	- and
Zn	0.14	0.27	0.27	Zn	0.62	7485

Results in this study

BAC = Cplant/<u>C</u>soil

Table 5: Mean biological absorptioncoefficients (BAC) for calcrete-plant relation

Element	Bark	Leaf	Twig
As	0.02	0.04	0.03
-Au	0.06	0.04	0.04
Ba	0.04	0.05	0.04
-Ca	0.05	0.03	0.06
Cr	0.01	01	0.02
+Fe	0.01	0.01	0.01
+K	0.40	1.68	0.82
Na	0.81	2.94	1.20
Th	0.01	0.01	0.01
+Zn	0.17	0.45	0.42

Conclusion

- Mallee vegetation's biochemical patterns have this capability to reflect lithological variation.
- The results show that biogeochemical methodology in reconnaissance scale in southern Australia is applicable and helpful in locating mineral potential targets over regolith terrains.