

LOCATING ORE UNDERCOVER USING A BACTERIAL LEACH AND OTHER GEOCHEMICAL TECHNIQUES

Ryan Noble

CSIRO/CRC LEME/Curtin University

Extraction Techniques

- Various methods have been employed
 - Some are novel: enzymes, buffers
 - Some are recycled: new technology with old methods
- Many extractions are not compared to other techniques

Bacterial Leach

- Developed by Curtin University, now run by SoLogic Ltd and called LocatOre®
 - Uses a non-pathogenic bacteria for the dissolution of the ultra thin surface layers of minerals
 - Advantages
 - Simple technique
 - Geochemical signature is not diluted in the matrix
 - Disadvantages
 - Lack of knowledge about the quantification/selectivity of individual elements
 - Bacteria are saturated quickly, incomplete digestion requires combining elements in suites to enhance signature

Background Problem

- Leviathan Gold Mine (Stawell) is interested in less expensive and intrusive methods to target mineralised zones
 - Western Victorian Gold deposits are known to repeat under cover to the north
- MPI (now Lionore) also had sampled soil over buried Ni deposit (Honeymoon Well)
 - Opportunity to test Bacterial Leach in another environment

Mineral deposits and geology of Victoria

Wildwood

Honeymoon Well

Mineral deposits and geology of HW (Dept. Industry and Resources WA, 2003)

Honeymoon Well

OBJECTIVES

- Assess the efficacy of the Bacterial Leach in locating mineralisation under cover in Victoria and WA
- Compare Bacterial Leach to other techniques

METHODS

- Initial development at Kewell
- Sites investigated
 - Stawell (Wildwood): six traverses, across a known VMS Au deposit, with 20-70 m of alluvial cover
 - 80 soil samples at 30 m intervals from argillic horizon
 - Honeymoon Well: three traverses across a known Ni ore body
 - 45 soil samples, 15 from each traverse, at 20-50 m intervals from surface and approximately 35 cm depth
 - Kewell: Regolith profiles sampled at 5 m intervals down hole

Analytical Techniques

Analytical Method	Target phase
Total Dissolution	None. All phases incorporated. Useful in understanding background soil composition and interpretation of leach results.
Bacterial Leach	Non-selective, surface sorbed elements
Ammonium chloride	Water-soluble and exchangeable/surface sorbed elements
Ammonium acetate	Carbonate bound elements
0.1M Hydroxylamine hydrochloride in 0.01 M nitric acid	Amorphous/weakly crystalline Mn oxide bound elements
0.25M Hydroxylamine hydrochloride in 0.25 M nitric acid at 60°C	Amorphous/weakly crystalline Fe oxide bound elements

• All analysis run on ICP-MS/AES for a suite of approximately 50 elements

Statistical Techniques

- Correlation between elements based on laboratory techniques
- Principal Component Analysis
- Hypergeometric statistics to assess anomaly expression
 - Allows orientation survey results to be statistically compared based on probability of response through random number generation
 - Requires assumptions of expected anomalous sample points prior to getting results
 - Removes bias of viewer (Stanley 2003; Stanley and Noble 2005)

RESULTS

- Wildwood Site 1 = All listed analyses
- Honeymoon Wells= Bacterial Leach and Totals
- Kewell = Weak HA and some Totals
- Bacterial Leach uses elements suites that are combinations of Ni, Cu, As, Sb, Ga, Ge, Se, W, Te, Bi, V, Cr, Ti
- Most element suites respond similarly

Element Suite Responses

Site 1 Wildwood

Questionable Success

- No consistent single element anomalous results for Bacterial Leach
- Not successful in 3 traverses
- Traverse #3 was not assessed as underlying mineralisation is being revised

• Combining selected element suites was successful (confirmed with hypergeometrics) in 2 of 5 traverses corresponding to the shallowest region of cover in the prospect.

Hypergeometric evaluation

- Pr(x) = 3 traverse 6 by chance = 2%
- Pr(x) = 3 traverse 5 by chance = 3.5%
- Add negative response $Pr(x) \ge 2 = 16\%$ for traverse 6

Wildwood Hypergeometric Evaluation

Traverse	Sample points	True positive	False positive	False negative	Hypergeometric Probability P(x)
1	12	0	1	4	100
2	13	0	0	5	100
4	16	0	0	4	100
5	13	3	2	0	3.5
6	11	3	1	0	2.4

Wildwood Technique Evaluation

Technique	Successful analysis P(x) < 0.05	Number of orientation surveys	Technique % success rate
Total Dissolution	0	5	0
Bacterial Leach	2	5	20
0.1M HA	0	5	0
0.25M HA	0	5	0
Ammonium chloride	0	5	0
Ammonium acetate	0	5	0
EC	0	5	0
pH	0	5	0

Site 2 Honeymoon Well

Unsuccessful Exploration Geochemistry

- Single element anomalies occur, but do not correspond with mineralised zones
- Combining selected elements did not produce a significant trend in Bacterial Leach
- Values for elements taken at depth were much higher than surface samples for Bacterial Leach

Comparison of sample depth – Bacterial Leach

- Enrichment Factors significantly higher in samples taken 30 cm lower in the profile
- Average EF for elements at depth 4.3 x
- Very important to sample consistently and on morphology
- Be aware of erosional/depositional landforms

Comparison of sample depth - Totals

- Total Digestion
 - Enrichment Factors slightly higher in samples taken 30 cm lower in the profile
 - Average EF for elements at depth 1.2 x

Advantage of partial/selective extractions

Bacterial Leach geochemical suite response

Total Dissolution Cu and Zn concentrations

Bacterial Leach Cu and Zn concentrations

NH₂OH HCl Cu and Zn concentrations

Why the poor results?

- Different climate and soil type (influence of soil properties)
- Different target ore
- Understanding dispersion direction and mechanisms of movement and anomaly formation
- Lack of understanding about technique

Comparison of techniques using Stawell samples (Wildwood, Kewell and Wartook)

- Correlation analysis to understand the different results from the different techniques
- PCA analysis

Correlation of techniques

Bacterial Leach versus total digestion

	Li T	As T	Cu T	Zn T	V T	Cr T	Mn T	Ni T
Bacterial Leach	-0.18	-0.20	0.23	-0.24	-0.24	-0.51	0.94	-0.16
	Rb T	Sr T	Zr T	Cd T	Sb T	Te T	Ba T	Pb T
Bacterial Leach	-0.52	0.90	-0.37	0.80	-0.40	0.13	0.12	0.29

Bacterial Leach versus hydroxylamine hydrochloride

	Li HA	As HA	Cu HA	Zn HA	V HA	Cr HA	Mn HA	Ni HA
Bacterial Leach	0.92	0.73	0.95	0.89	0.80	0.33	0.96	0.70
	Rb HA	Sr HA	Zr HA	Cd HA	Sb HA	Te HA	Ba HA	Pb HA
Bacterial Leach	0.91	0.97	0.69	0.87	0.67	0.89	0.58	0.85

Strong Correlation
Moderate Correlation
Moderate Correlation
Weak Correlation

Indicates Bacterial Leach may be phase selective

- Principal Component Analysis
 - Confirms correlation analysis about similarity of techniques and geochemical response

PCA loadings Victorian samples

Transported regolith component loadings

Residual regolith component loadings

• Technique responses between elements do not vary greatly depending on change in regolith

The 3D test of faith

- Do you see the distribution in 3D?
- Bacterial Leach too expensive as a first test
- Hydroxylamine Hydrochloride (and Totals) used
- Results: No clear dispersion pattern to surface

Arsenic values above Au mineralisation

Arsenic values above barren sulphides

However...

- Ratio of pathfinders with Mn revealed a zone of sampling interest
- Capillary fringe/Watertable regolith samples
 - Relates to calcrete, base of hardpan, interface sampling
 - Zone of intense chemical changes and movement and element capture

Similar response from Pb and Zn

Cu, Ni and Co response evident, but less pronounced

CONCLUSIONS

- Understanding sample media, depth and soil properties are key to getting good results
 - Depth is clearly critical at Honeymoon Well
 - Potentially new sampling zone detected at Stawell
- Hypergeometric statistics provide a method to compare techniques
- Understanding movement/dispersion mechanisms is essential to future geochemical investigation undercover

CONCLUSIONS

- Bacterial Leach and the other analyses provided different results to each other
- Bacterial Leach does seem to have some association with Mn-oxide bound elements (HA technique)
- No method consistently identified mineralisation beneath thick cover, although Bacterial Leach was the only successful technique
- Bacterial Leach has not proved superior to the other techniques at this stage, but the element suites and increased contrast for anomalies may be beneficial

Thank you for your attention

Thanks also to the following groups:

CRC LEME

CSIRO Exploration and Mining

Curtin University of Technology

Leviathan Resources

LionOre

Questions?

