"Forest rings" and their implications for geochemical exploration of oil, gas and mineral deposits

AAG Distinguished Lecturer Series

Stewart M. Hamilton

THE ASSOCIATION OF APPLIED GEOCHEMISTS The Association's Journal

Elsevier

1972-1999

Geological Society of London

2001-present

Forest Rings

Cheecka Ring, near Hearst

Small rings, northeastern Ontario

Crop rings in farm fields (the real ones)

Source: Tom Morris, OGS

Ring in limestone, base of quarry

Photo: Tom Morris (OGS)

Ring formation around a well casing

Detailed Study Areas

Forest Rings - "Bean" Ring

Forest Rings - "Bean" Ring

Hamilton, Veillette & Komarechka, 1999

Forest Rings - "Bean" Ring

Hamilton, Veillette & Komarechka, 1999

Ontario

Model for Ring Formation

Hamilton, 1999; 2000

Redox - Bean Ring

Geological Survey

Natural Gas, Bean Ring

Thorn-North Ring

Redox in Soils @ 1.5m depth - Thorn-N Ring

Hamilton and Cranston, 2000

Ontario Geological <u>Su</u>rvey

Overburden Stratigraphy, Thorn-North Ring

ORP of Groundwater, 8 m Depth Thorn-North Ring

Down-Hole SP Redox Field

Electrical Field

H₂S & SO₄²⁻ in Groundwater

Methane and Oxygen in Well Headspace

pH of Groundwater

Carbonate in Sediment

Permeability of Sediments

S

Carbonate Mobility (Cheecka Ring)

10um

Adjacent to Active Rim

- •Large amount of carbonate
- •Euhedral crystals
- Porosity decreased
- Permeability decreased

Inside Active Rim

- Carbonate completely removed Only silicate clays remain
- Porosity increased

10um

Finite difference simulations of shape development

ORP at Bean Ring - 1999

Water Table and Pieziometric Surface – Thorn North Ring

Drainage deflection

Logged area

Drainage Deflection over Oil Reservoirs

Saunders et al., 1999 Figure 4

Attributed to resistive diagenetic carbonate over reservoir

Ontario

Geological Survey

Coalescing Ring Segments

Redox-Induced Spontaneous Polarization

Redox and SP – Thorn-N Ring

(Measured down-hole in plastic monitoring wells)

DF AP PILEO CEOCHEMIS

Thorn-North ring, east-west transect

Down-hole SP – Thorn-N Ring

Thorn-North ring, south-north transect

Spontaneous Polarization over a Shallow Reduced Feature

Ring Gas Study Area

Hamilton et al., 2004

SA THE PARTY

Hamilton et al., 2004

Limit of marine incursion

Phanerozoic Rocks

Linear pattern of rings SW of Jog Lake

Survev

Hamilton et al., 2004

Methane Measurements by Spectral Absorption

SOC/

HE ASSOCIA

R1 – Cheechka Ring, Hearst

Laser Gasfinder Data

Mean, Maximum, Minimum and 1 Standard Deviation

R6 – Northwest of Jog Lake

Laser Gasfinder Data

Mean, Maximum, Minimum and 1 Standard Deviation

Hamilton et al., 2004

Ontario

Geological Survey

Hamilton et al., 2004

R4, Martison Lake Carbonatite

Ontario Geological

Survey

Laser Gasfinder Data

Hamilton et al., 2004

Ontario

Geological

Source of Methane **Carbon Isotope Results**

sample	CH₄	CO ₂	1000 In α (CO ₂ -CH ₄)	Isotopic temperature (°C)*
BE01-shallow	-82.0	-12.1	73.4	13
BE01-deep	not sufficient	-12.1		
BE-11	-79.6	-12.5	70.3	22
BE-16	-87.4	-11.1	80.3	-3.9
BE-21	-75.8	-14.1	64.7	39

Ontario

Survey

Summary

1. Rings are large centres of negative (redox) charge

- 2. They are static geological features that form similarly to "reduced chimneys" over mineral deposits and oil and gas reservoirs
- 3. They are known to form over oil, gas and H₂S but could conceivably form over any negative redox anomaly (e.g. kimberlites, sulphides)
- 4. Many (>80%) in Ontario are natural gas-sourced
- A large proportion are biogenic related to Tyrell-Sea glaciomarine sediment but others may have a deeper bedrock source, due to structural control

Implications

- 1. The very fast formation of these features and large movement of mass and charge points to previously unheard-of transport processes
- 2. The ring structures offer a unique opportunity to study reduced chimneys in a shallow surface environment inexpensively and in much greater detail than could be accomplished over these other features.
- Due to the large number of rings and the great size of some, they represent a possible "unconventional" source of natural gas.

