Geochemical exploration in areas of thick glacial cover

Stew Hamilton

Ontario Geological Survey

THE ASSOCIATION OF APPLIED GEOCHEMISTS

The Association's Journal

Elsevier

AND THE SAME AND A LOF GEOCHEMICAL EXPLORATION

1972-1999

Geological Society of London

2001-present

Ontario Geologica Survev

Presentation Overview

- 1. What is deep penetrating geochemistry?
- 2. Things that happen over buried mineral deposits
 - redox responses
 - pH responses (high or low)
 - selective leach metal responses
 - dry terrain
 - peat bogs
 - (soil hydrocarbons)

3. An optimized strategy for exploration in areas of thick cover

- selective leach; pH; soil gas hydrocarbons
- sampling: peat terrain; dry terrain

Deep Penetrating Geochemistry

Methods that use surface geochemistry to detect buried mineralization

The methods target a geochemical process characterized by:

- 1. a hydromorphic dispersion halo
 - i.e. chemical weathering; dissolved transport; deposition
- 2. a response directly over the deposit
 - transport is primarily vertical, therefore response occurs above
- 3. a proximal (property-scale) response
 - response is rarely more than twice the width of the buried target
- 4. both a primary and secondary signal
 - e.g. primary ore forming elements; secondary: pH responses

Primary vs. Secondary Responses

in the process of trying to understand how selective leaches can detect a response we discovered a number of other related phenomena

 some of these are so ubiquitously associated with SL responses that they can be confused with direct responses due to mineralization
 they can, therefore be used as indicators of

mineralization

Geochemical processes over a buried sulphide

Modified after Cameron et al., 2004

Marsh Zone, Line 15 - 3D pH & Redox

Hamilton et al., 2004a

Cross Lake, Line 6 - 3D Redox & pH

Hamilton et al., 2004b

Soil Slurry pH 6 m Below Water Table, Cross Lake, Line 6

Ontario Geological Survey

Development of pH Anomaly Above A Reduced Area in Overburden

Sampling above water table

Development of pH Anomaly Above A Reduced Area in Overburden

Acid Production - Implications...1

1. H⁺ anomaly occurs over the reduced chimney
most intense above the water table
disappears below the water table

2. Intensity of pH response correlates with strength of redox negativity

Conclusion: Acid is produced by oxidation of reduced metals

Acid Production - Implications...2

- pH anomaly is:
- Highly localized

 yet H⁺ is the most mobile aqueous species

 Apparently permanent

 yet H⁺ is one of the most reactive of aqueous species

Conclusion: Acid production is an ongoing process

Acid Production - Implications...3

Acid production by metal oxidation requires *precipitation* of insoluble metal hydroxides
 Since oxidation must continue, there must be:

 Continuous upward movement of metals
 Deposition of metals in the shallow subsurface

Geochemical processes over a buried sulphide

Modified after Cameron et al., 2004

Ontario Geological Survev

% CO₃ in B-Horizon Soil Cross Lake, Line 6

pH, Line 6, Cross Lake

Ontario Geological Survey

Calcium – Line 6, Cross Lake

Ontario Geological <u>Survey</u>

Calcium concentration in peat plotted against pH Marsh Zone Profile Data

Geochemical processes over a buried sulphide

Modified after Cameron et al., 2004

Selective Leach Methods

Most overburden in Canada is exotic

- i.e. it has been transported from somewhere else
- till, glaciofluvial sands, glaciolacustrine clay, etc.

The bulk chemical composition of exotic overburden is not related to that of underlying bedrock or mineralization

Selective Leach Methods

Any geochemical signal due to mineralization results from hydromorphic transport from below

- Such transported metals are weakly bound to the mineral matrix
- By analyzing only this component, the signal from mineralization can be greatly enhanced

Profile in Sand

Geological

Ontario

Geological Survey

original ground surface

B-Horizon

Profile in Clay

60 Aqua regia (ppm) 40 20 0 100 700 800 200 300 400 500 600 0 North **Distance (m) along Line 6** South

Cameron et al., 2004

Ontario

Geological Survey

30 m

Cameron et al., 2004

Ontario

Ge<mark>ological</mark> Survey

original ground surface

Profile in Clay

Mobile Metal Ion (MMI)

PPM

Cameron et al., 2004

<u>Ontario</u>

Geological Survey

30 m

Profile in Clay

<u>Ontario</u>

Geological Survey

Ca in Soils over 3 Kimberlites

Lady's slippers grow best in well drained, high calcium soils and are extremely profu over the B-30 and 95-2 Kimberlites (picture

pH Parameters – Gemini VMS, Line 6450S

e: Jackson, 2003: Report to CAMIRO & OMET on Gemini VMS

Ca in Upper Peat – Gemini VMS, Line 6450S

e: Jackson, 2003: Report to CAMIRO & OMET on Gemini VMS

Cu in Upper Peat – Gemini VMS, Line 6450S

25-50 cm depth peat

e: Jackson, 2003: Report to CAMIRO & OMET on Gemini VMS

Zn in Upper Peat – Gemini VMS, Line 6450S

e: Jackson, 2003: Report to CAMIRO & OMET on Gemini VMS

Development of geochemical responses in a peat bog

Elements input: B, Co, Cs, Fe, K, Li, Mg, Mn, Mo, Na, Nb, Ni, Cu, Pb, S, Sr, Ti, Zn, Zr: predominantly <u>lithophile</u> elements

Development of geochemical responses in a peat bog

External input of elements diminishes

Development of geochemical responses in a peat bog
Input of elements in centre of bog due to airborne fallout in upper peat; diffusion in lower peat

Input at edges of bog due to lateral dispersion from adjacent areas; groundwater input.

Result: Edge effects in practically every element

Geochemical responses due to bog "edge effects" in <u>upper and basal peat</u>

Geochemical responses due to bog "edge effects" in <u>upper and basal peat</u>

Geochemical responses due to bog "edge effects" in <u>upper and basal peat</u>

Peat by Aqua Regia

Peat by Na-Pyrophosphate

A AMERICAN CONTRACTOR

How <u>NOT</u> to collect samples

Indiscriminate sampling of uppermost clay results in Cu anomalies related to unweathered clay under the bog

Enzyme Leach (ppm Cu)

tario blogical vev

ario logical /ev

ario logical

′evĭ

tario ological vev

ario logical ⁄ey

0.8 - 1.0

0.2 - 0.7

ario logical /ey

Pb at MZ - 5 cm depth

Pb at MZ - 10 cm depth

Pb (AR, ppm) at MZ - 20 cm depth

Pb at MZ - 30 cm depth

Pb at MZ - 40 cm depth

Pb at MZ - 50 cm depth

Pb at MZ - 60 cm depth

Conclusion:

- the top-down zonation of metals at the Marsh Zone is due to airborne fallout of contaminants into the peat; probably dust from gold tailings less than 1 km to the south
- 2. The bottom-up zonation is due to clastic matter entrained in the peat

-65 -75

> ario Iogical

Determining source of Pb anomalies using isotopes

Line 6 trench: best profile for is by AA7, selecting top of B and Ae samples Pb (Ae & B) AA7

265.4

Intario

280.5

30 m

154-1 181-1 200-1 Unoxidised clay in alluvial area, 270 and 280-6

30 m

Pb isotopes, Line 6

Kidd Creek Tailings – 26 km to the northwest of Cross lake

Recap - Geochemical processes over buried features

- 1. Apical or "rabbit-ear" commodity element responses in shallow soils
- 2. Acid responses either immediately over or flanking the deposit near surface
- 3. A negative redox anomaly centred above mineralization (reduced chimney)
- 4. Secondary elemental responses due to the redox / pH anomaly (e.g. CO₃, Ca, etc.)

Soil Gas Hydrocarbons

Measurable increases in the concentration of hydrocarbon compounds occur in soils above mineral deposits

Somewhat similar suites of hydrocarbons in the pulped rock of the same deposits suggested they might be originating from the deposits

Problem: thick, young clays would restrict movement of large, sticky hydrocarbon molecules to surface

Soil Gas Hydrocarbons

Cross Lake Line 6

Soil Gas Hydrocarbons

Cross Lake Line 6 (expanded)

SDP, Line 6, anom

SGH & Redox

The source of hydrocarbons

Hydrocarbon anomalies correlate with: Mineralization (spatially) Reduced chimneys (spatially) Redox variation pH anomalies in soil O₂ depletions / CO₂ enrichments in soil gas Organic carbon depletions Metal enrichments Increased bacterial populations

The source of hydrocarbons

Conclusions:

- 1. Source of hydrocarbons is bacterial biomass and microbial exhalation above the reduced chimney
- 2. Increased hydrocarbons result from increased microbial activity
- 3. Increased microbial activity results from enhanced redox gradients and a greater availability of essential nutrients over the chimney
- 4. SGH & SDP should therefore be <u>an</u> <u>excellent proxy for redox</u>

SRBs - Cross Lake - 14 m from line

Ontario Geological

Slide courtesy of Gordon Southam

SRBs - Cross Lake - 12 m from line

Aerobic Heterotrophs - Cross Lake - 12 m from line

Slide courtesy of Gordon Southam

Ontario Geological <u>S</u>urvey

Aerobic Heterotrophs - Cross Lake - 12 m from line

Optimizing an Exploration Strategy for the Abitibi

Ontario Geological Survey

Methodology, Deep Penetrating Geochemistry

Selective leach geochemical methods

- targeting commodity metals and secondary responses
- pH measurement
 - targeting the "acidic cap" or "basic chimney"
- Redox measurement
 - targeting the reduced chimney
 - direct measurement of redox impractical; indirect methods must be used (i.e. hydrocarbons)

Selective Leach Sampling in Variable Terrain

Sampling in Oxidized Sand and Clay

Sample inorganic media if available between

Clay, sand Alluvium differentiat
 Moisture is

e positives

Ontario Geological Survey

(always record depth of clastics if within 1 auger length)

Ontario Geological Survev

pH Measurement

PH should be measured either in the field or later in camp on the day of sampling

Never mix media! Organics are almost always more acidic than inorganics; humus is more acidic than peat

Survey

pH Measurement – contd.

False positives (i.e. acidic responses):

- Organic matter is the most likely cause of false positives in mineral soil.
- Sandy clastic matter (paradoxically) is the most likely cause of false positives in peat.
- Dry soils in an otherwise wet area
- False negatives (i.e. alkaline responses):
 - Poor <u>soil drainage</u> is the most likely cause of false positives in humus & mineral soil
 - clayey clastic matter a likely cause of false negatives in peat (often an edge-of-bog effect)

 Mineralization-related responses are acidic, sometimes accompanied by flanking "rabbit-ear" alkaline responses (occasionally the reverse occurs)
 Kimberlite-related responses are alkaline

Redox Measurement Techniques

ORP slurries

- Extremely subject to analytical errors; instrument failure & sample oxidation
- Almost useless except in fully saturated, very homogenous media
- CO₂ / O₂ soil gas measurements

 Works well in deserts; requires low soil moisture

 Bacteriological measurements

 SRBs; aerobic heterotrophs; anaerobes
 Very time consuming and expensive

 Soil gas hydrocarbons

 SGH (Actlabs); SDP

Note Taking

Station:

Moisture conditions

Thickness of peat, which helps to identify "edge effect" false positives

Site disturbance (drill pad, etc.)

Slope; vegetative cover

Sample:

- Sample: i.e. organic or inorganic
- Soil horizon: B-horizon, Ae horizon, C-horizon, mixture
- Soil type: clay, sand, silt, alluvium
- Depth of sample

Obvious contamination or mixing ce.g. sand present in peat)

Uses of Deep Penetrating Geochemistry

Target discrimination: determining the nature of previously identified targets prior to drilling

Discriminating sulphide from graphite

Characterizing sulphide as barren or metalliferous

Target prioritization: ranking of many possible geophysical targets in the most appropriate order for drilling

Significantly increases the value of geophysics

Target generation: the discovery of previously unknown targets for drilling

Summary

- 1. Selective leaches should be used in conjunction with pH and some form of redox measurement
- In the Abitibi, soil hydrocarbon measurement (SGH, SDP) appears to be a good proxy for redox
- 3. Deep penetrating geochemistry is appropriate for target discrimination and prioritization
- DPG is less successful in target generation because of the effort required to differentiate real from "false" anomalies

