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Introduction
	 Geochemists have long been aware of the problems surrounding estimating correlation coefficients for their analytical 
data sets. Very often they just don’t make sense on the basis of the mineralogy of the sample material and our knowledge of 
mineral stoichiometry. The problem lies in the nature of geochemical analyses, they are relative measures reported in such 
units as weight %, parts per million (mg/kg), µg/L, etc., the sum of the parts, individual measures, add to a constant.  Be-
cause of the relative units it does not matter whether all the parts have been determined in the analysis, the problem remains 
whatever the number of parts determined, even just two. The problems related to correlations were recognized by Pearson 
as long ago as 1897. The first geoscientist to study the problem systematically was Felix Chayes (1960) a research petrologist 
who worked for the Carnegie Institution's Geophysical Laboratory and for the Smithsonian Institution. The true information 
in a geochemical data set lies in the ratios between the parts, and Tom Pearce (1970) was the first geoscientist to promote the 
use of ratios in petrology, leading to a number of diagrams that are effective in classification and genetic studies. The math-
ematical groundwork for properly handling compositional data was laid out by John Aitchison (1984, 1986) with his exposition 
on the use of log-ratios. Since then numerous papers and books have been published on compositional data analysis, see for 
example Pawlowsky-Glahn et al. (2015) and the references in Reimann et al. (2017). Today a common approach in multivariate 
analysis, e.g., Principal Components or Factor Analysis, is to use a centred log-ratio (clr) of the data set prior to carrying out 
the analysis (e.g., Fig. 1). It might seem apparent then to also calculate the correlation coefficients on the clr-transformed data. 
However, this does not lead to consistent results, because clr variables 
are driven by their zero sum constraint. As a consequence, a negative 
bias occurs when correlation analysis in clr variables is performed.  
It is quite natural that different sub-compositions, i.e. subsets of the 
parts, for a data set do not yield the same correlation coefficients for 
the two parts of interest. The reason for this is the computation of 
the clr-transform involves dividing the value for each part (variable) 
by the geometric mean of all the parts in the subset for an individual 
sample; and different subsets for a sample will have different geomet-
ric means. One can also express each clr variable as a (scaled) sum of 
all pairwise log-ratios with the respective compositional part – a kind 
of intuitive result, when all information in compositional data is con-
tained in log-ratios. A careful choice of parts, involved in the analysis, 
is thus always necessary.
	 A solution to the problem of negative bias of correlation analysis 
in clr variables has been proposed by Kynčlová et al. (2017) and 
involves the computation of symmetric coordinates, an extension of 
isometric log-ratios (Egozcue et al., 2003). The symmetric coordinates 
are computed as weighted log-ratios that take the total number of 

Figure 1.  Principal Components Analysis for the clr-trans-
formed Nockolds data set. Lithologies: 1- Alkali Granite; 
2 - Granite; 3 - Quartz Monzonite; 4 – Granodiorite; 
5 – Quartz Diorite; 6 – Alkali Syenite; 7 – Syenite;  
8 – Monzonite; 9 – Monzodiorite; 10 - Diorite; 11 - Gabbro; 
12 - Peridotite; 13 - Anorthosite; 14 - Nepheline Syenite;  
15 - Essexite; 16 - Ijolite

parts into consideration. This procedure has been demonstrated with 
two large sets of geochemical (environmental) soil data by Reimann 
et al. (2017). The purpose of this article is to demonstrate the pro-
cedure and discuss the results for a small set of petrochemical data 
whose mineralogy will be familiar to readers.  As such, this article is a 
tutorial rather than a contribution of original science. The data set of 
16 ‘averages’ for common plutonic rocks was published by Nockolds 
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(1954) as oxide percentages.  More recent compilations have been made, but the Nockolds data suffices for the demonstration.  
The original oxides have been converted to cation percentages and H2O+ to OH-, see Appendix 1 (see digital version of Ap-
pendix 1 on the AAG website). 

Data Analysis
	 For all the following computations and graphical presentations version 1.1.14 of the R (2017) package ‘rgr’ (Garrett, 2017) 
was employed. To graphically illustrate the interrelations between the geochemical data and the lithology a Principal Com-
ponents Analysis (PCA) was undertaken following a centred log-ratio transformation (function ‘gx.mva.closed’), see Figure 1 
(function ‘gx.rqpca.plot’), which was annotated (coloured text) with the lithological abbreviations outside ‘rgr’.  The end mem-
bers and outliers in Figures 2 to 4 were similarly annotated. Functions in ‘rgr_1.1.14’, ‘xyplot.tags’ in conjunction with function 
‘gx.symm.coords.mat’, can directly display plots tagged by text, such as lithological names.
	 The first principal component, PC-1, explains 74.7% of the total variability in the data set.  High Si, Al and alkali metal 
felsic, quartzo-feldspathic, rocks are characterized by negative PC-1 scores, while femic, ferromagnesian mineral-rich, rocks 
high in Mg, Fe3, Fe2, Mn and Ti are characterized by positive PC-1 scores.  In contrast, alkalic rocks with higher Ca, Na and 
P contents are characterized by negative PC-2 scores.  The path from felsic intrusives, e.g., generally granitic, to femic rocks 
(gabbros and diorites) follows a ‘NW’ to ‘SE’ trend.  Two Si deficient rocks, olivine- and pyroxene-rich peridotite, and neph-
eline- and alkali pyroxene-rich ijolite both plot as ‘outliers’ off-trend.  The essentially mono-mineralic rock anorthosite, with 
dominant plagioclase feldspar, plots proximal to Al, K and Na close to the main trend in the data.
	 The default procedure in function ‘gx.symm.coords.r’ calculates Spearman correlation coefficients for the symmetric coor-
dinates derived from the input data. Spearman ranked coefficients are preferred over Pearson product moment coefficients as 
they provide better estimates of correlation for data pairs that vary monotonically, i.e. the data points vary sympathetically or 
antipathetically, but not necessarily linearly. Furthermore, any monotonic transformation, e.g., logarithmic, has no impact on 
the Spearman coefficient as the ranks remain the same. For Exploratory Data Analysis (EDA) any systematic data relationship 
is of interest, even if it is curvilinear; should modelling be required linearizing transformations can be sought.
	 The correlation matrix (Table 1) contains two sets of Spearman coefficients, the upper triangle contains those based on the 
symmetric coordinates computed after Kynčlová et al. (2017), and the lower contains those based on the input data. Alternate-
ly, Pearson coefficients may be selected, and the further option exists to apply a logarithmic transformation to the input data, 
which has been common practice amongst applied geochemists.

Discussion
	 Silicon (Si) is the dominant part in the data set with cation percentages varying from some 20%, ijolite and peridotite, to 
34.5%, alkali granite (see Appendix 1).  Reading down the first column of Table 1, the Spearman coefficients are all negative, 
but for K. As the dominant part (Si) increases most of the remaining parts have to decrease to maintain constant sum. Yet 
from the mineralogy of these rocks we know that Si, Al, Na and K increase together in felsic rocks as the amounts of quartz, 
and alkali feldspar increase, together with white micas (OH), at the expense of less Si-rich ferromagnesian minerals rich in Fe, 
Mg, Ti and Mn, such as dark micas and amphiboles that are more abundant in femic rocks.
	 This mineralogical reality is reflected in the Spearman coefficients based on the symmetric coordinates displayed across 
the first row of Table 1. The negative symmetric coordinate correlations for Mg, Fe2, Fe3, Ti, Mn and Ca reflect the sympathetic 
relationship between these elements in ferromagnesian minerals from amphiboles, through pyroxenes to olivines, as they 
increase in abundance in femic rocks. This increase is at the expense of quartz (Si), albitic (Na) and orthoclase (K) alumino-
silicate feldspars, and is reflected in positive symmetric coordinate correlations between Si, Al, Na, K and OH, and, as a group, 
their negative correlations with Mg, Fe2, Fe3, Ti, Mn and Ca.

Table 1.  Spearman correlation coefficients for the Nockolds data set. Upper triangle based on symmetric coordinates, lower 
triangle based on raw data

  

       	 Si    	 Al   	 Fe3   	 Fe2    	 Mg    	 Ca    	 Na     	 K    	 Ti    	 Mn     	 P    	 OH
Si		   0.87 	 -0.58 	 -0.38 	 -0.66 	 -0.55  	 0.56  	 0.74 	 -0.79 	 -0.40 	 -0.16 	  0.71
Al  	 -0.44       		  -0.54 	 -0.67 	 -0.82 	 -0.44  	 0.77  	 0.75 	 -0.80 	 -0.42 	 -0.27  	 0.60
Fe3 	 -0.79  	 0.36        		 0.45  	 0.54  	 0.22 	 -0.22 	 -0.13  	 0.46 	  0.84  	 0.08 	 -0.19
Fe 	 -0.74 	 -0.04  	 0.80        	 0.93 	  0.51 	 -0.88 	 -0.59  	 0.67  	 0.41	  -0.06 	 -0.23
Mg  	 -0.76  	 0.00 	  0.76  	 0.98        		 0.71	  -0.86 	 -0.77  	 0.92 	  0.44  	 0.11 	 -0.30
Ca 	  -0.78  	 0.54  	 0.63  	 0.57  	 0.64       		 -0.32 	 -0.76  	 0.82  	 0.10 	  0.09 	 -0.30
Na  	 -0.13  	 0.77 	  0.20 	 -0.28 	 -0.30  	 0.21       		   0.64 	 -0.68	  -0.25 	  0.01  	 0.47
K   	  0.66 	  0.06 	 -0.30 	 -0.56 	 -0.63 	 -0.63  	 0.29       		  -0.74 	 -0.30  	 0.47 	  0.41
Ti  	 -0.79  	 0.37  	 0.94  	 0.84  	 0.83  	 0.71  	 0.13 	 -0.36       		  0.41  	 0.15 	 -0.35
Mn  	 -0.77  	 0.19  	 0.84  	 0.76  	 0.70  	 0.37  	 0.06 	 -0.37  	 0.78      		   -0.21 	 -0.01
P   	 -0.40  	 0.40  	 0.75  	 0.49  	 0.50  	 0.62  	 0.30  	 0.00 	  0.79  	 0.37      		   -0.62
OH  	 -0.51  	 0.23  	 0.41  	 0.50  	 0.52  	 0.34  	 0.10 	 -0.48  	 0.54 	  0.53  	 0.17      
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	 Data inspection and interpretation is often facilitated and improved by graphical presentations, function ‘gx.symm.coords.
plot’ undertakes that task.  The classic example of problems with compositional data is the Harker diagram, which dates back 
to 1909, for plotting various oxides against silica. Silicon (Si) and Al are the dominant cation pairs for each of the lithologies in 
the Nockolds data except peridotite (Mg & Fe replace Al), and Al-rich ijolite and nepheline syenite. The plot for Si and Al is 
presented in Figure 2.

Figure 2.  Plots of the Nockolds data for Si and Al as a pseudo Harker 
diagram (left) and as symmetric coordinates (right)

	 The Harker plot on the left shows the familiar 
negative relationship imposed by the compositional 
form of the data, with the mineralogical and geochemi-
cal outliers, peridotite in the lower left, and nepheline 
syenite and anorthosite at the top with highest Al. In 
contrast, the plot based on symmetric coordinates (Fig. 
2, right) demonstrates sympathetically increasing Si 
and Al, with the ultramafic peridotite remaining an 
outlier at the bottom of the plot. The other two upper 
outliers are of interest, the most extreme is Al-rich 
anorthosite, and the less is nepheline syenite, which 
lies in the felsic to femic trend observed in the PCA 
(#14 in Fig. 1). The difference between the two plots is 
summarized in the differences between their Spearman 
correlations, -0.44 for the Harker plot and 0.87 for the 
symmetric coordinate plot, a convincing reversal.  In 
this case the Pearson correlation is of interest. It is sur-
prisingly positive 0.18 (with a logarithmic transforma-

tion) for the Harker plot, however, this is due to the influence of the high leverage outlier peridotite, and in view of the graphic 
(Fig. 2, left) totally misleading. The Pearson correlation for the symmetric coordinates is 0.69, essentially unchanged.
	 A similar reversal can be demonstrated with Ca and Na, the two cations in the anorthite-albite plagioclase solid solution 
series (Fig. 3).
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Figure 3.  Plots of the Nockolds data for Ca and Na (left) and as sym-
metric coordinates (right).

	 The standard plot on the left demonstrates little 
variation in Na, exaggerated graphically by the presence 
of the low Na peridotite at the bottom. The two highest 
Na lithologies are nepheline syenite and ijolite, alkalic 
rocks. The expected antipathetic relationship between the 
two plagioclase end members, and the increase of anor-
thitic members in femic rocks versus the increase in albitic 
members in felsic rocks is not apparent due to the role of 
Si and Al as dominant parts in the rock compositions. The 
plot of the symmetric coordinates (Fig. 3, right) illustrates 
what we know as ‘true’ on the basis of mineral stoichiom-
etry and petrology, a strong antipathetic Ca-Na relation-
ship due to the plagioclase solid solution series and the 
observed mineralogical variations between felsic and femic 
rocks. Peridotite remains an outlier at the bottom of the 
plot, and the upper right-most outlier is anorthosite, and 

the less extreme is ijolite.  Summarized numerically by the Spearman coefficients, the untransformed data are positively cor-
related, 0.21, and the symmetrically transformed data are negatively correlated, -0.32, as should be expected on geochemical 
grounds.
	 A final example is one involving K and Ti, a minor element, i.e. between 1 and 0.1% in the composition, which clarifies 
their relationship, Figure 4.

Figure 4. Plots of the Nockolds data for K and Ti (left) and as sym-
metric coordinates (right).

	 The standard plot on the left shows a generally anti-
pathetic relationship between K and Ti.  As to be expected 
as K-rich felsic rocks are poor in Ti bearing minerals such 
as biotite, ilmenite and rutile and femic rocks are rich in 
Ti-bearing biotites, amphiboles, and other ferromagnesian 
minerals, but poor in K-rich minerals. There are two outli-
ers, low Ti alkali granite and high Ti essexite, a Si under-

saturated rock dominated by plagioclase feldspar and pyroxene.  
The plot based on symmetric coordinates (Fig. 4, right) is much 
tidier, the main mass of the data plots within a more confined 
band due to the reduced influence of all the remaining parts in 
the total composition. The high Ti symmetric coordinate outlier, 
-0.30, is essexite which has the highest Ti cation percentage; 
the lithology in the lower right corner is alkali granite, which 
from its mineralogy of abundant orthoclase (K) and minimal 
biotite (Ti) plots as expected.  Summarized numerically, the raw 
data Spearman coefficient of -0.36 has been improved to -0.74 
through the symmetric coordinates removal of the effect of the 
competing parts in the composition on a part that is a minor/
trace contributor to the composition.
	 The Nockolds data set contains only major (Si, Al, Fe, Mg, 
Ca, Na & K) and minor (Ti, Mn & P) elements. It is used here 
as an example because of the ease of its interpretation. Many 
researchers are under the wrong impression that compositional 
data effects only exist when working with major elements. It has 
often been assumed (including by the senior author in the past) 
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that a simple logarithmic transformation of minor and trace element data is sufficient. The example of Ti above demonstrates 
that the effect is not restricted to major element concentrations. The dominantly trace element study of Norwegian soils by 
Reimann et al. (2017) demonstrates that equally strong effects are exhibited for trace elements.  Compositional effects are 
present in water analyses where the concentrations are usually reported in µg/L, three orders of magnitude lower than ppm 
(µg/g), and they must be treated appropriately in order to obtain a correct representation of the interrelationships between the 
parts (Flem et al., submitted). It is of no importance whether or not major elements are determined, the effect is inherent in 
the data – in their relative units.

Conclusions
	 It has been demonstrated how the use of symmetric coordinates leads to correlation coefficients that ‘tell the truth’ and 
provide numerical expression to our observations of the mineralogy of the igneous rock and the stoichiometry of their miner-
als.  Furthermore, the graphical display of the symmetric coordinates greatly improves the ability to interpret the results in a 
geoscientific context. The example of Si and Al clearly demonstrates the advantage of Spearman correlations over Pearson cor-
relations in this kind of exploratory (EDA) investigation by the reduction of the influence of high leverage outliers.  Important-
ly, the results presented go beyond correlation analysis. They demonstrate that simple bivariate scatterplots are not ‘simple’ 
at all when working with compositional data. The true relations between two parts only becomes clear when their symmetric 
coordinates are studied.
	 The Nockolds data are simple in structure and the underlying petrology and mineralogy are well understood and this is the 
reason they are used here. Interpretation of the Reimann et al. (2017) exposition for C- and O-horizon soils from a Norwegian 
survey is far more complex, and compounded by major variability introduced by varying ratios of minerogenic and organic frac-
tions within the individual soil samples.
	 Correlation coefficients are sometimes inferred to imply causal relationships between the variables, or parts for composi-
tional data. This can be dangerous as both measures may be unrelated directly, but through a third measure, ‘a lurking vari-
able’, that may, or may not, have been measured. The result of this is that the inferred causation can be false and conclusions 
drawn erroneous. Given this, it is even more important for scientists working with compositional data to numerically estimate 
and display bivariate relations without the influence of the compositional nature of their data.
	 It is to be hoped that this procedure of working with symmetric coordinates will be incorporated into the common soft-
ware packages used by geochemists and other users of compositional data. To facilitate their use the R scripts for the three 
symmetric coordinate functions are included in digital Appendix data files 3, 4, and 5 on the AAG website and an example of 
their use in Appendix 2; and if R is unavailable or inappropriate the processing flow and logic can be translated into a more 
convenient language for the user.
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Appendix 1

The Nockolds igneous plutonic data set as used in the report

ALKG - Alkali Granite; GRNT - Granite; QZMZ - Quartz Monzonite; GRDR - Granodiorite;
QRZD - Quartz Diorite; ALKS - Alkali Syenite; SENT - Syenite; MNZN - Monzonite;
MZDT - Monzodiorite; DORT - Diorite; GBBR - Gabbro; PRDT - Peridotite;
ANRS - Anorthosite; NPLS - Nepheline Syenite; ESXT - Essexite; IJLT – Ijolite

 
Appendix 2

Example scripts for use with symmetric coordinates functions

It is taken that the data table in Appendix 1 (see digital version of Appendix 1 on AAG website) has been converted to a .csv 
file and imported into R as a data frame.  Note that there can be no missing entries in the data table, if a value is missing the 
column must be deleted, or a suitable value imputed:
	 	 > nockolds <- read.csv(“D:\\my data\\nockolds.csv”)

To generate the correlation matrix with Spearman coefficients, upper triangle based on symmetric coordinates, lower triangle 
based on untransformed data, Table 1, the default:
	 	 > gx.symm.coords.r(nockolds)

To generate the correlation matrix with Pearson coefficients, upper triangle based on symmetric coordinates, lower triangle 
based on log transformed data:
	 	 > gx.symm.coords.r(nockolds, method = “pearson”, log = TRUE)

To generate the Si-Al plots in Figure 2, note that Si is in the second column of the data frame and Al in the third:
	 	 > gx.symm.coords.plot(nockolds, 2, 3)

Similarly, for the Ca-Na plots in Figure 3, with Ca in the seventh column and Ca in the eighth:
	 	 > gx.symm.coords.plot(nockolds, 7, 8)

Finally, a correlation coefficient that tells the geochemical truth… continued from page 9

Lithology	 Si	 Al	 Fe3	 Fe2	 Mg	 Ca	 Na	 K	 Ti	 Mn	 P	 OH
ALKG	 34.53	 7.28	 0.55	 0.88	 0.16	 0.51	 2.60	 4.26	 0.120	 0.039	 0.061	 0.444
GRNT	 33.70	 7.33	 0.60	 1.30	 0.31	 0.95	 2.29	 4.53	 0.222	 0.046	 0.079	 0.500
QZMZ	 32.33	 7.74	 0.85	 1.76	 0.60	 1.75	 2.49	 3.80	 0.336	 0.046	 0.087	 0.510
GRDR	 31.27	 8.29	 0.93	 2.01	 0.95	 2.54	 2.85	 2.55	 0.342	 0.054	 0.092	 0.614
QRZD	 30.93	 8.23	 0.95	 2.66	 1.17	 3.32	 2.89	 1.18	 0.372	 0.062	 0.092	 0.651
ALKS	 28.92	 8.95	 1.62	 2.04	 0.58	 1.82	 4.05	 4.91	 0.348	 0.085	 0.083	 0.500
SENT	 27.77	 9.06	 1.53	 2.20	 1.22	 2.90	 2.91	 5.42	 0.497	 0.062	 0.166	 0.595
MNZN	 25.88	 8.77	 1.80	 3.56	 2.21	 4.83	 2.60	 3.88	 0.671	 0.101	 0.192	 0.566
MZDT	 25.55	 8.99	 2.28	 4.18	 2.38	 5.00	 2.79	 2.29	 0.653	 0.108	 0.188	 0.566
DORT	 24.24	 8.68	 1.91	 5.42	 3.69	 6.00	 2.49	 1.10	 0.899	 0.139	 0.153	 0.755
GBBR	 22.61	 8.91	 1.78	 6.16	 4.86	 7.91	 1.68	 0.46	 0.791	 0.139	 0.105	 0.604
PRDT	 20.35	 2.11	 1.76	 7.65	 20.52	 2.47	 0.42	 0.21	 0.485	 0.163	 0.022	 0.717
ANRS	 25.50	 13.61	 0.58	 1.13	 0.50	 6.88	 3.46	 0.88	 0.312	 0.015	 0.048	 0.595
NPLS	 25.89	 11.27	 1.69	 1.55	 0.34	 1.42	 6.56	 4.43	 0.396	 0.147	 0.083	 0.906
ESXT	 21.92	 9.03	 2.53	 4.62	 2.93	 6.78	 3.78	 2.19	 1.684	 0.124	 0.209	 0.916
IJLT	 19.91	 9.77	 2.80	 3.26	 1.94	 8.13	 7.09	 2.12	 0.845	 0.155	 0.663	 0.528




