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Introduction
	 Geochemists	have	long	been	aware	of	the	problems	surrounding	estimating	correlation	coefficients	for	their	analytical	
data	sets.	Very	often	they	just	don’t	make	sense	on	the	basis	of	the	mineralogy	of	the	sample	material	and	our	knowledge	of	
mineral	stoichiometry.	The	problem	lies	in	the	nature	of	geochemical	analyses,	they	are	relative	measures	reported	in	such	
units	as	weight	%,	parts	per	million	(mg/kg),	µg/L,	etc.,	the	sum	of	the	parts,	individual	measures,	add	to	a	constant.		Be-
cause	of	the	relative	units	it	does	not	matter	whether	all	the	parts	have	been	determined	in	the	analysis,	the	problem	remains	
whatever	the	number	of	parts	determined,	even	just	two.	The	problems	related	to	correlations	were	recognized	by	Pearson	
as	long	ago	as	1897.	The	first	geoscientist	to	study	the	problem	systematically	was	Felix	Chayes	(1960)	a	research	petrologist	
who	worked	for	the	Carnegie	Institution's	Geophysical	Laboratory	and	for	the	Smithsonian	Institution.	The	true	information	
in	a	geochemical	data	set	lies	in	the	ratios	between	the	parts,	and	Tom	Pearce	(1970)	was	the	first	geoscientist	to	promote	the	
use	of	ratios	in	petrology,	leading	to	a	number	of	diagrams	that	are	effective	in	classification	and	genetic	studies.	The	math-
ematical	groundwork	for	properly	handling	compositional	data	was	laid	out	by	John	Aitchison	(1984,	1986)	with	his	exposition	
on	the	use	of	log-ratios.	Since	then	numerous	papers	and	books	have	been	published	on	compositional	data	analysis,	see	for	
example	Pawlowsky-Glahn	et al.	(2015)	and	the	references	in	Reimann	et al.	(2017).	Today	a	common	approach	in	multivariate	
analysis,	e.g.,	Principal	Components	or	Factor	Analysis,	is	to	use	a	centred	log-ratio	(clr)	of	the	data	set	prior	to	carrying	out	
the	analysis	(e.g.,	Fig.	1).	It	might	seem	apparent	then	to	also	calculate	the	correlation	coefficients	on	the	clr-transformed	data.	
However,	this	does	not	lead	to	consistent	results,	because	clr	variables	
are	driven	by	their	zero	sum	constraint.	As	a	consequence,	a	negative	
bias	occurs	when	correlation	analysis	in	clr	variables	is	performed.		
It	is	quite	natural	that	different	sub-compositions,	i.e.	subsets	of	the	
parts,	for	a	data	set	do	not	yield	the	same	correlation	coefficients	for	
the two parts of interest. The reason for this is the computation of 
the	clr-transform	involves	dividing	the	value	for	each	part	(variable)	
by	the	geometric	mean	of	all	the	parts	in	the	subset	for	an	individual	
sample; and different subsets for a sample will have different geomet-
ric	means.	One	can	also	express	each	clr	variable	as	a	(scaled)	sum	of	
all	pairwise	log-ratios	with	the	respective	compositional	part	–	a	kind	
of	intuitive	result,	when	all	information	in	compositional	data	is	con-
tained	in	log-ratios.	A	careful	choice	of	parts,	involved	in	the	analysis,	
is	thus	always	necessary.
	 A	solution	to	the	problem	of	negative	bias	of	correlation	analysis	
in	clr	variables	has	been	proposed	by	Kynčlová	et al.	(2017)	and	
involves	the	computation	of	symmetric	coordinates,	an	extension	of	
isometric	log-ratios	(Egozcue	et al.,	2003).	The	symmetric	coordinates	
are	computed	as	weighted	log-ratios	that	take	the	total	number	of	

Figure 1.  Principal Components Analysis for the clr-trans-
formed Nockolds data set. Lithologies: 1- Alkali Granite; 
2 - Granite; 3 - Quartz Monzonite; 4 – Granodiorite; 
5 – Quartz Diorite; 6 – Alkali Syenite; 7 – Syenite;  
8 – Monzonite; 9 – Monzodiorite; 10 - Diorite; 11 - Gabbro; 
12 - Peridotite; 13 - Anorthosite; 14 - Nepheline Syenite;  
15 - Essexite; 16 - Ijolite

parts into consideration. This procedure has been demonstrated with 
two	large	sets	of	geochemical	(environmental)	soil	data	by	Reimann	
et al.	(2017).	The	purpose	of	this	article	is	to	demonstrate	the	pro-
cedure and discuss the results for a small set of petrochemical data 
whose	mineralogy	will	be	familiar	to	readers.		As	such,	this	article	is	a	
tutorial rather than a contribution of original science. The data set of 
16	‘averages’	for	common	plutonic	rocks	was	published	by	Nockolds	

https://doi.org/10.70499/YKCX6512
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(1954)	as	oxide	percentages.		More	recent	compilations	have	been	made,	but	the	Nockolds	data	suffices	for	the	demonstration.		
The	original	oxides	have	been	converted	to	cation	percentages	and	H2O+ to OH-,	see	Appendix	1	(see	digital	version	of	Ap-
pendix	1	on	the	AAG	website).	

Data Analysis
	 For	all	the	following	computations	and	graphical	presentations	version	1.1.14	of	the	R	(2017)	package	‘rgr’	(Garrett,	2017)	
was	employed.	To	graphically	illustrate	the	interrelations	between	the	geochemical	data	and	the	lithology	a	Principal	Com-
ponents	Analysis	(PCA)	was	undertaken	following	a	centred	log-ratio	transformation	(function	‘gx.mva.closed’),	see	Figure	1	
(function	‘gx.rqpca.plot’),	which	was	annotated	(coloured	text)	with	the	lithological	abbreviations	outside	‘rgr’.		The	end	mem-
bers	and	outliers	in	Figures	2	to	4	were	similarly	annotated.	Functions	in	‘rgr_1.1.14’,	‘xyplot.tags’	in	conjunction	with	function	
‘gx.symm.coords.mat’,	can	directly	display	plots	tagged	by	text,	such	as	lithological	names.
	 The	first	principal	component,	PC-1,	explains	74.7%	of	the	total	variability	in	the	data	set.		High	Si,	Al	and	alkali	metal	
felsic,	quartzo-feldspathic,	rocks	are	characterized	by	negative	PC-1	scores,	while	femic,	ferromagnesian	mineral-rich,	rocks	
high	in	Mg,	Fe3,	Fe2,	Mn	and	Ti	are	characterized	by	positive	PC-1	scores.		In	contrast,	alkalic	rocks	with	higher	Ca,	Na	and	
P	contents	are	characterized	by	negative	PC-2	scores.		The	path	from	felsic	intrusives,	e.g.,	generally	granitic,	to	femic	rocks	
(gabbros	and	diorites)	follows	a	‘NW’	to	‘SE’	trend.		Two	Si	deficient	rocks,	olivine-	and	pyroxene-rich	peridotite,	and	neph-
eline-	and	alkali	pyroxene-rich	ijolite	both	plot	as	‘outliers’	off-trend.		The	essentially	mono-mineralic	rock	anorthosite,	with	
dominant	plagioclase	feldspar,	plots	proximal	to	Al,	K	and	Na	close	to	the	main	trend	in	the	data.
	 The	default	procedure	in	function	‘gx.symm.coords.r’	calculates	Spearman	correlation	coefficients	for	the	symmetric	coor-
dinates	derived	from	the	input	data.	Spearman	ranked	coefficients	are	preferred	over	Pearson	product	moment	coefficients	as	
they	provide	better	estimates	of	correlation	for	data	pairs	that	vary	monotonically,	i.e.	the	data	points	vary	sympathetically	or	
antipathetically,	but	not	necessarily	linearly.	Furthermore,	any	monotonic	transformation,	e.g.,	logarithmic,	has	no	impact	on	
the	Spearman	coefficient	as	the	ranks	remain	the	same.	For	Exploratory	Data	Analysis	(EDA)	any	systematic	data	relationship	
is	of	interest,	even	if	it	is	curvilinear;	should	modelling	be	required	linearizing	transformations	can	be	sought.
	 The	correlation	matrix	(Table	1)	contains	two	sets	of	Spearman	coefficients,	the	upper	triangle	contains	those	based	on	the	
symmetric	coordinates	computed	after	Kynčlová	et al.	(2017),	and	the	lower	contains	those	based	on	the	input	data.	Alternate-
ly,	Pearson	coefficients	may	be	selected,	and	the	further	option	exists	to	apply	a	logarithmic	transformation	to	the	input	data,	
which has been common practice amongst applied geochemists.

Discussion
	 Silicon	(Si)	is	the	dominant	part	in	the	data	set	with	cation	percentages	varying	from	some	20%,	ijolite	and	peridotite,	to	
34.5%,	alkali	granite	(see	Appendix	1).		Reading	down	the	first	column	of	Table	1,	the	Spearman	coefficients	are	all	negative,	
but	for	K.	As	the	dominant	part	(Si)	increases	most	of	the	remaining	parts	have	to	decrease	to	maintain	constant	sum.	Yet	
from	the	mineralogy	of	these	rocks	we	know	that	Si,	Al,	Na	and	K	increase	together	in	felsic	rocks	as	the	amounts	of	quartz,	
and	alkali	feldspar	increase,	together	with	white	micas	(OH),	at	the	expense	of	less	Si-rich	ferromagnesian	minerals	rich	in	Fe,	
Mg,	Ti	and	Mn,	such	as	dark	micas	and	amphiboles	that	are	more	abundant	in	femic	rocks.
	 This	mineralogical	reality	is	reflected	in	the	Spearman	coefficients	based	on	the	symmetric	coordinates	displayed	across	
the	first	row	of	Table	1.	The	negative	symmetric	coordinate	correlations	for	Mg,	Fe2,	Fe3,	Ti,	Mn	and	Ca	reflect	the	sympathetic	
relationship	between	these	elements	in	ferromagnesian	minerals	from	amphiboles,	through	pyroxenes	to	olivines,	as	they	
increase	in	abundance	in	femic	rocks.	This	increase	is	at	the	expense	of	quartz	(Si),	albitic	(Na)	and	orthoclase	(K)	alumino-
silicate	feldspars,	and	is	reflected	in	positive	symmetric	coordinate	correlations	between	Si,	Al,	Na,	K	and	OH,	and,	as	a	group,	
their	negative	correlations	with	Mg,	Fe2,	Fe3,	Ti,	Mn	and	Ca.

Table 1.  Spearman correlation coefficients for the Nockolds data set. Upper triangle based on symmetric coordinates, lower 
triangle based on raw data

  

        Si     Al    Fe3    Fe2     Mg     Ca     Na      K     Ti     Mn      P     OH
Si   0.87  -0.58  -0.38  -0.66  -0.55   0.56   0.74  -0.79  -0.40  -0.16   0.71
Al   -0.44         -0.54  -0.67  -0.82  -0.44   0.77   0.75  -0.80  -0.42  -0.27   0.60
Fe3  -0.79   0.36          0.45   0.54   0.22  -0.22  -0.13   0.46   0.84   0.08  -0.19
Fe    -0.74  -0.04   0.80         0.93   0.51  -0.88  -0.59   0.67   0.41  -0.06  -0.23
Mg   -0.76   0.00   0.76   0.98          0.71  -0.86  -0.77   0.92   0.44   0.11  -0.30
Ca   -0.78   0.54   0.63   0.57   0.64         -0.32  -0.76   0.82   0.10   0.09  -0.30
Na   -0.13   0.77   0.20  -0.28  -0.30   0.21          0.64  -0.68  -0.25   0.01   0.47
K     0.66   0.06  -0.30  -0.56  -0.63  -0.63   0.29         -0.74  -0.30   0.47   0.41
Ti   -0.79   0.37   0.94   0.84   0.83   0.71   0.13  -0.36          0.41   0.15  -0.35
Mn   -0.77   0.19   0.84   0.76   0.70   0.37   0.06  -0.37   0.78         -0.21  -0.01
P    -0.40   0.40   0.75   0.49   0.50   0.62   0.30   0.00   0.79   0.37         -0.62
OH   -0.51   0.23   0.41   0.50   0.52   0.34   0.10  -0.48   0.54   0.53   0.17      
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	 Data	inspection	and	interpretation	is	often	facilitated	and	improved	by	graphical	presentations,	function	‘gx.symm.coords.
plot’	undertakes	that	task.		The	classic	example	of	problems	with	compositional	data	is	the	Harker	diagram,	which	dates	back	
to	1909,	for	plotting	various	oxides	against	silica.	Silicon	(Si)	and	Al	are	the	dominant	cation	pairs	for	each	of	the	lithologies	in	
the	Nockolds	data	except	peridotite	(Mg	&	Fe	replace	Al),	and	Al-rich	ijolite	and	nepheline	syenite.	The	plot	for	Si	and	Al	is	
presented	in	Figure	2.

Figure 2.  Plots of the Nockolds data for Si and Al as a pseudo Harker 
diagram (left) and as symmetric coordinates (right)

	 The	Harker	plot	on	the	left	shows	the	familiar	
negative	relationship	imposed	by	the	compositional	
form	of	the	data,	with	the	mineralogical	and	geochemi-
cal	outliers,	peridotite	in	the	lower	left,	and	nepheline	
syenite	and	anorthosite	at	the	top	with	highest	Al.	In	
contrast,	the	plot	based	on	symmetric	coordinates	(Fig.	
2,	right)	demonstrates	sympathetically	increasing	Si	
and	Al,	with	the	ultramafic	peridotite	remaining	an	
outlier at the bottom of the plot. The other two upper 
outliers	are	of	interest,	the	most	extreme	is	Al-rich	
anorthosite,	and	the	less	is	nepheline	syenite,	which	
lies in the felsic to femic trend observed in the PCA 
(#14	in	Fig.	1).	The	difference	between	the	two	plots	is	
summarized	in	the	differences	between	their	Spearman	
correlations,	-0.44	for	the	Harker	plot	and	0.87	for	the	
symmetric	coordinate	plot,	a	convincing	reversal.		In	
this case the Pearson correlation is of interest. It is sur-
prisingly	positive	0.18	(with	a	logarithmic	transforma-

tion)	for	the	Harker	plot,	however,	this	is	due	to	the	influence	of	the	high	leverage	outlier	peridotite,	and	in	view	of	the	graphic	
(Fig.	2,	left)	totally	misleading.	The	Pearson	correlation	for	the	symmetric	coordinates	is	0.69,	essentially	unchanged.
	 A	similar	reversal	can	be	demonstrated	with	Ca	and	Na,	the	two	cations	in	the	anorthite-albite	plagioclase	solid	solution	
series	(Fig.	3).
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Figure 3.  Plots of the Nockolds data for Ca and Na (left) and as sym-
metric coordinates (right).

 The standard plot on the left demonstrates little 
variation	in	Na,	exaggerated	graphically	by	the	presence	
of the low Na peridotite at the bottom. The two highest 
Na	lithologies	are	nepheline	syenite	and	ijolite,	alkalic	
rocks.	The	expected	antipathetic	relationship	between	the	
two	plagioclase	end	members,	and	the	increase	of	anor-
thitic	members	in	femic	rocks	versus	the	increase	in	albitic	
members	in	felsic	rocks	is	not	apparent	due	to	the	role	of	
Si	and	Al	as	dominant	parts	in	the	rock	compositions.	The	
plot	of	the	symmetric	coordinates	(Fig.	3,	right)	illustrates	
what	we	know	as	‘true’	on	the	basis	of	mineral	stoichiom-
etry	and	petrology,	a	strong	antipathetic	Ca-Na	relation-
ship due to the plagioclase solid solution series and the 
observed mineralogical variations between felsic and femic 
rocks.	Peridotite	remains	an	outlier	at	the	bottom	of	the	
plot,	and	the	upper	right-most	outlier	is	anorthosite,	and	

the	less	extreme	is	ijolite.		Summarized	numerically	by	the	Spearman	coefficients,	the	untransformed	data	are	positively	cor-
related,	0.21,	and	the	symmetrically	transformed	data	are	negatively	correlated,	-0.32,	as	should	be	expected	on	geochemical	
grounds.
	 A	final	example	is	one	involving	K	and	Ti,	a	minor	element,	i.e.	between	1	and	0.1%	in	the	composition,	which	clarifies	
their	relationship,	Figure	4.

Figure 4. Plots of the Nockolds data for K and Ti (left) and as sym-
metric coordinates (right).

	 The	standard	plot	on	the	left	shows	a	generally	anti-
pathetic	relationship	between	K	and	Ti.		As	to	be	expected	
as	K-rich	felsic	rocks	are	poor	in	Ti	bearing	minerals	such	
as	biotite,	ilmenite	and	rutile	and	femic	rocks	are	rich	in	
Ti-bearing	biotites,	amphiboles,	and	other	ferromagnesian	
minerals,	but	poor	in	K-rich	minerals.	There	are	two	outli-
ers,	low	Ti	alkali	granite	and	high	Ti	essexite,	a	Si	under-

saturated	rock	dominated	by	plagioclase	feldspar	and	pyroxene.		
The	plot	based	on	symmetric	coordinates	(Fig.	4,	right)	is	much	
tidier,	the	main	mass	of	the	data	plots	within	a	more	confined	
band	due	to	the	reduced	influence	of	all	the	remaining	parts	in	
the	total	composition.	The	high	Ti	symmetric	coordinate	outlier,	
-0.30,	is	essexite	which	has	the	highest	Ti	cation	percentage;	
the	lithology	in	the	lower	right	corner	is	alkali	granite,	which	
from	its	mineralogy	of	abundant	orthoclase	(K)	and	minimal	
biotite	(Ti)	plots	as	expected.		Summarized	numerically,	the	raw	
data	Spearman	coefficient	of	-0.36	has	been	improved	to	-0.74	
through	the	symmetric	coordinates	removal	of	the	effect	of	the	
competing	parts	in	the	composition	on	a	part	that	is	a	minor/
trace contributor to the composition.
	 The	Nockolds	data	set	contains	only	major	(Si,	Al,	Fe,	Mg,	
Ca,	Na	&	K)	and	minor	(Ti,	Mn	&	P)	elements.	It	is	used	here	
as	an	example	because	of	the	ease	of	its	interpretation.	Many	
researchers are under the wrong impression that compositional 
data	effects	only	exist	when	working	with	major	elements.	It	has	
often	been	assumed	(including	by	the	senior	author	in	the	past)	
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that	a	simple	logarithmic	transformation	of	minor	and	trace	element	data	is	sufficient.	The	example	of	Ti	above	demonstrates	
that	the	effect	is	not	restricted	to	major	element	concentrations.	The	dominantly	trace	element	study	of	Norwegian	soils	by	
Reimann et al.	(2017)	demonstrates	that	equally	strong	effects	are	exhibited	for	trace	elements.		Compositional	effects	are	
present	in	water	analyses	where	the	concentrations	are	usually	reported	in	µg/L,	three	orders	of	magnitude	lower	than	ppm	
(µg/g),	and	they	must	be	treated	appropriately	in	order	to	obtain	a	correct	representation	of	the	interrelationships	between	the	
parts	(Flem	et al.,	submitted).	It	is	of	no	importance	whether	or	not	major	elements	are	determined,	the	effect	is	inherent	in	
the data – in their relative units.

Conclusions
	 It	has	been	demonstrated	how	the	use	of	symmetric	coordinates	leads	to	correlation	coefficients	that	‘tell	the	truth’	and	
provide	numerical	expression	to	our	observations	of	the	mineralogy	of	the	igneous	rock	and	the	stoichiometry	of	their	miner-
als.		Furthermore,	the	graphical	display	of	the	symmetric	coordinates	greatly	improves	the	ability	to	interpret	the	results	in	a	
geoscientific	context.	The	example	of	Si	and	Al	clearly	demonstrates	the	advantage	of	Spearman	correlations	over	Pearson	cor-
relations	in	this	kind	of	exploratory	(EDA)	investigation	by	the	reduction	of	the	influence	of	high	leverage	outliers.		Important-
ly,	the	results	presented	go	beyond	correlation	analysis.	They	demonstrate	that	simple	bivariate	scatterplots	are	not	‘simple’	
at	all	when	working	with	compositional	data.	The	true	relations	between	two	parts	only	becomes	clear	when	their	symmetric	
coordinates are studied.
	 The	Nockolds	data	are	simple	in	structure	and	the	underlying	petrology	and	mineralogy	are	well	understood	and	this	is	the	
reason	they	are	used	here.	Interpretation	of	the	Reimann	et al.	(2017)	exposition	for	C-	and	O-horizon	soils	from	a	Norwegian	
survey	is	far	more	complex,	and	compounded	by	major	variability	introduced	by	varying	ratios	of	minerogenic	and	organic	frac-
tions within the individual soil samples.
	 Correlation	coefficients	are	sometimes	inferred	to	imply	causal	relationships	between	the	variables,	or	parts	for	composi-
tional	data.	This	can	be	dangerous	as	both	measures	may	be	unrelated	directly,	but	through	a	third	measure,	‘a	lurking	vari-
able’,	that	may,	or	may	not,	have	been	measured.	The	result	of	this	is	that	the	inferred	causation	can	be	false	and	conclusions	
drawn	erroneous.	Given	this,	it	is	even	more	important	for	scientists	working	with	compositional	data	to	numerically	estimate	
and	display	bivariate	relations	without	the	influence	of	the	compositional	nature	of	their	data.
	 It	is	to	be	hoped	that	this	procedure	of	working	with	symmetric	coordinates	will	be	incorporated	into	the	common	soft-
ware	packages	used	by	geochemists	and	other	users	of	compositional	data.	To	facilitate	their	use	the	R	scripts	for	the	three	
symmetric	coordinate	functions	are	included	in	digital	Appendix	data	files	3,	4,	and	5	on	the	AAG	website	and	an	example	of	
their	use	in	Appendix	2;	and	if	R	is	unavailable	or	inappropriate	the	processing	flow	and	logic	can	be	translated	into	a	more	
convenient language for the user.
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Appendix 1

The Nockolds igneous plutonic data set as used in the report

ALKG - Alkali Granite; GRNT - Granite; QZMZ - Quartz Monzonite; GRDR - Granodiorite;
QRZD - Quartz Diorite; ALKS - Alkali Syenite; SENT - Syenite; MNZN - Monzonite;
MZDT - Monzodiorite; DORT - Diorite; GBBR - Gabbro; PRDT - Peridotite;
ANRS - Anorthosite; NPLS - Nepheline Syenite; ESXT - Essexite; IJLT – Ijolite

 
Appendix 2

Example	scripts	for	use	with	symmetric	coordinates	functions

It	is	taken	that	the	data	table	in	Appendix	1	(see	digital	version	of	Appendix	1	on	AAG	website)	has	been	converted	to	a	.csv	
file	and	imported	into	R	as	a	data	frame.		Note	that	there	can	be	no	missing	entries	in	the	data	table,	if	a	value	is	missing	the	
column	must	be	deleted,	or	a	suitable	value	imputed:
	 	 >	nockolds	<-	read.csv(“D:\\my	data\\nockolds.csv”)

To	generate	the	correlation	matrix	with	Spearman	coefficients,	upper	triangle	based	on	symmetric	coordinates,	lower	triangle	
based	on	untransformed	data,	Table	1,	the	default:
	 	 >	gx.symm.coords.r(nockolds)

To	generate	the	correlation	matrix	with	Pearson	coefficients,	upper	triangle	based	on	symmetric	coordinates,	lower	triangle	
based on log transformed data:
	 	 >	gx.symm.coords.r(nockolds,	method	=	“pearson”,	log	=	TRUE)

To	generate	the	Si-Al	plots	in	Figure	2,	note	that	Si	is	in	the	second	column	of	the	data	frame	and	Al	in	the	third:
	 	 >	gx.symm.coords.plot(nockolds,	2,	3)

Similarly,	for	the	Ca-Na	plots	in	Figure	3,	with	Ca	in	the	seventh	column	and	Ca	in	the	eighth:
	 	 >	gx.symm.coords.plot(nockolds,	7,	8)

Finally, a correlation coefficient that tells the geochemical truth… continued from page 9

Lithology Si Al Fe3 Fe2 Mg Ca Na K Ti Mn P OH
ALKG 34.53 7.28 0.55 0.88 0.16 0.51 2.60 4.26 0.120 0.039 0.061 0.444
GRNT 33.70 7.33 0.60 1.30 0.31 0.95 2.29 4.53 0.222 0.046 0.079 0.500
QZMZ 32.33 7.74 0.85 1.76 0.60 1.75 2.49 3.80 0.336 0.046 0.087 0.510
GRDR 31.27 8.29 0.93 2.01 0.95 2.54 2.85 2.55 0.342 0.054 0.092 0.614
QRZD 30.93 8.23 0.95 2.66 1.17 3.32 2.89 1.18 0.372 0.062 0.092 0.651
ALKS 28.92 8.95 1.62 2.04 0.58 1.82 4.05 4.91 0.348 0.085 0.083 0.500
SENT 27.77 9.06 1.53 2.20 1.22 2.90 2.91 5.42 0.497 0.062 0.166 0.595
MNZN 25.88 8.77 1.80 3.56 2.21 4.83 2.60 3.88 0.671 0.101 0.192 0.566
MZDT 25.55 8.99 2.28 4.18 2.38 5.00 2.79 2.29 0.653 0.108 0.188 0.566
DORT 24.24 8.68 1.91 5.42 3.69 6.00 2.49 1.10 0.899 0.139 0.153 0.755
GBBR 22.61 8.91 1.78 6.16 4.86 7.91 1.68 0.46 0.791 0.139 0.105 0.604
PRDT 20.35 2.11 1.76 7.65 20.52 2.47 0.42 0.21 0.485 0.163 0.022 0.717
ANRS 25.50 13.61 0.58 1.13 0.50 6.88 3.46 0.88 0.312 0.015 0.048 0.595
NPLS 25.89 11.27 1.69 1.55 0.34 1.42 6.56 4.43 0.396 0.147 0.083 0.906
ESXT 21.92 9.03 2.53 4.62 2.93 6.78 3.78 2.19 1.684 0.124 0.209 0.916
IJLT 19.91 9.77 2.80 3.26 1.94 8.13 7.09 2.12 0.845 0.155 0.663 0.528




