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PREFACE 
Cumulative probability plots are applicable to a wide variety of problems in 

many different fields. The present manual has been prepared principally for use 
by persons concerned with mineral exploration but the techniques covered 
should find much wider application. Text has been organized with the thought 
that the best introduction to a subject is a clearcut idealized approach followed 
by practical examples. Throughout, the author has attempted to use practical 
examples with which he is acquainted personally. Hopefully such provincialism 
will not obscure the more general usage of the methods proposed. 

This manual evolved over the past few years as the writer became more and 
more involved in statistical analysis of many types of mineral exploration data. 
Three references (Tennant and White, 1959; Lepeltier, 1969; Bolviken, 1971) 
have been particularly instrumental in the development of the authors views and 
due acknowledgement is hereby made. Some sections of the manual have, at one 
time or another, served as a basis for lectures within the University and to 
Industry. The constructive response of many attendees of these lectures is 
greatly appreciated. Various research projects supported by the National 
Research Council of Canada and the Department of Energy, Mines and 
Resources have contributed to many of the ideas and examples cited in the text. 
Financial assistance from the Department of Energy, Mines and Resources in the 
form of a research agreement made preparation of the manuscript possible. 

The manuscript has benefitted substantially from the constructive comments 
of R. G. Garrett, A. T. Miesch, A. W. Rose and R. F. Horsnail, members of the 
Computer Applications Committee of the Association of Exploration 
Geochemists, as well as my colleagues W. K. Fletcher and J. H. Montgomery. 
All errors and omissions, however, remain the responsibility of the author. 

Technical assistance has been provided at various time by A. C. L. Fox, 
Asger Bentzen and J. F. W. Orr. Some of the geophysical examples used were 
kindly supplied by Mr. D. R. Cochrane. Illustrations were draughted by M. 
WaskettMyers and typing of various stages of the manuscript was done by Mrs. 
Joan Mullen and Mrs. Charlotte Heywood. I am grateful to all these people for 
their contributions. 

Alastair J. Sinclair 
Vancouver, B. C. Canada                February 19, 1976 
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CHAPTER I 
INTRODUCTION 

I-0: GENERAL STATEMENT 
The use of probability plots requires only a general understanding of simple 

statistical concepts, with which the reader is assumed to be familiar. Such basic 
terms as arithmetic mean, variance, standard deviation, normal density 
distribution, etc. will not be dealt with explicitly and, if necessary, reference 
should be directed to any of a large number of introductory statistical texts. 

An introduction to probability paper is deferred until Chapter II. In Chapter I 
several topics are considered that relate either to probability plots themselves or 
to the specific applications to which probability plots are put in this manual. 
Organization of the material is aimed at showing a simple progression from the 
wellknown histogram to probability plots. 

 

I-1: MINERAL EXPLORATION DATA 
Many variables measured in the course of mineral exploration programs are 

continuous or approximately so. For example, 700 soil samples analyzed for 
copper might provide values in the range 10 to 1000 ppm Cu. The variable (Cu 
in soil) is continuous between these limits because, theoretically at least, any 
intermediate value could be assumed by a sample. In practice, of course, a value 
would never be reported as 927.341 for example. In contrast to continuous 
variables are those referred to as discrete, that is, those variables that take only 
specific values. For example, the number of minerals in a polished section of an 
ore is a discrete variable. There might be 1, 2, 3, etc. minerals in a given 
polished section but not 1.372 mineral types. Here we confine our attention to 
those variables that are continuous or nearly so. 

There are many approaches to the analysis of continuous, quantitative 
variables obtained during an exploration program and only those pertinent to a 
discussion of probability graphs will be considered. The most common method 
is subjective geological analysis of tabulated data or data that has been 
contoured empirically. Such an approach to data interpretation is being 
accompanied with increasing regularity by statistical analysis of varying degrees 
of complexity. Even the construction of a simple histogram can be considered an 
initial "statistical" step. Whatever the complexity of a statistical study of data, 
one can be assured that it will involve calculation of means and standard 
deviations, and probably some method of graphical representation of data. 
Calculations of means and more particularly standard deviations, become more 
arduous as the amount of data increases if manual methods are used. The 
practical difficulty of obtaining estimates of these parameters in the field 
commonly seems insurmountable. Fortunately, as we shall see, the use of 
cumulative probability paper overcomes these difficulties. to some extent. 
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Generally speaking a set of values represents a statistical sample of a 
population. Five hundred values obtained from a magnetometer survey of 
regular grid intersections represents one sampling of values. The grid might 
have started at some other point, for example, and a somewhat different set of 
500 values would result. There are an infinite number of such statistical samples 
that might have been obtained, of which our one sample. (of <500 values) is but 
one realization. It is important to note the difference heree between statistical 
and geological usages of the term sample. A single soil sample is a. sample in a 
geological context, but it is simply one element in the statistical sample. 

 

I-2: HISTOGRAMS 
Histograms are a familiar method of displaying numerical information. Figure 

I-1 shows three histograms illustrating common variations in form that occur in 
the, case of populations encountered with mineral exploration data, ore grades in 
this case. Negatively skewed [figure I-1(a)], symmetric [figure I-1(b)], and 
positively skewed [figure, I-1(c)] density distributions are illustrated. Some 
obvious advantages of histograms as a means of visual representation of data 
are: (1) total range of data in a sample is apparent, (2) modes can be recognized 
easily, (3) the range of greatest abundance of values can be estimated rapidly, 
and (4) the general form of the density distribution of data is apparent. In some 
cases histograms are useful in distinguishing a threshold, between background 
and anomalous values, a purpose for which they have, found fairly, routine use. 
An additional advantage of an histogram is, that the preparatory grouping of 
data provides a relatively convenient form for calculating the mean and variance 
by the method of grouped data. 

Our data must be of appropriate quality for the purpose on hand they must be 
representative (unbiased) and the measuring technique used to obtain the 
"numbers" must have adequate precision. Optimum data-collecting methods can 
be based on an orientation survey, a common procedure in many extensive 
geochemical and geophysical surveys. 

There are several points concerning the construction of an histogram that are 
worthy of mention. First is the choice of class interval. According to Shaw 
(1964) a class interval is best chosen between one quarter and one-half the 
standard deviation of the data. If the class interval is too great the true form of 
the distribution is masked – if too small then too many gaps appear in the 
resulting histogram. 

A second point in the construction of an histogram is the question of where to 
start the first class. The choice is not a serious matter as a rule but it seems 
reasonable to standardize the procedure, and have either one or two classes 
disposed symmetrically with respect to the mean value. 
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FIGURE I-1 
Three examples of real density distributions of ore grades in histogram form 
showing (a) negative skewness, (b) symmetry, and (c) positive skewness. B.I. is 
class interval, N is sample size. A normal curve with the same mean and 
standard deviation as the real data has been fitted to the symmetric distribution 
(after Sinclair, 1972). 
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An histogram should be constructed with the ordinate (frequency) as a 
percentage if comparison is to be made with other histograms. Otherwise, it is 
awkward or impossible to make a meaningful visual comparison of two or more 
histograms, each based on substantially different numbers of values. In general, 
in construction of histograms it is good practice to include a listing of (1) title, 
(2) N, the sample size, (3) the class interval, and (4) the mean and standard 
deviation of the data. 

 

I-3: CONTINUOUS DENSITY DISTRIBUTIONS 
As the class interval of an histogram decreases for large samples, it is 

apparent that it becomes easier and easier to pass a smooth continuous curve 
through the tops of the classes. Consequently, it is possible to approximate many 
frequency distributions of continuous variables by a smooth mathematical curve 
known as a density distribution [see figure 1-1(b)]. One might imagine that 
many such mathematical models would be required to take into account all 
potential distributions of real data and while this might be true in theory it is 
fortunately not so in practice. A majority of variables in nature exhibit shapes of 
frequency distributions that can be approximated by a relatively small number of 
mathematical models. In fact, we will confine our attention in this manual to two 
specific forms, the normal and lognormal distributions, and will attempt to 
justify this position later in the present chapter. One must bear in mind that 
numerous discrete and continuous density distribution models are in use, 
including binomial, poisson and gamma, among others. For reference to these 
the reader should consult standard statistical texts. 

The normal or Gaussian distribution was first put forward as a theory of error 
measurement. For example, we might wish to test the reproducibility of a 
chemical method of analyzing soils. A single well mixed sample might be 
divided into 10 sub samples, each of which is analyzed using the same method. 
The 10 values obtained will not necessarily be exactly the same due to random 
variations in analytical procedure. The distribution of measured values about the 
mean follows what is known as the normal or Gaussian density distribution 
given by the following formula: 

𝑦 = 1
1

𝜎√2𝜋
 𝑒−

1
2 � (𝑥−𝜇) 2 𝜎2�  

where μ is the arithmetic mean, x is any measurement, and σ2 is the variance of 
the population. The graphical expression is the familiar bell-shaped curve shown 
in Figure I-1(b). 
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I-4: CUMULATIVE DISTRIBUTIONS 
Data prepared for a standard histogram can also be presented as a cumulative 

histogram in which, to the frequency within any class is added the total 
frequencies of all preceding classes. Frequencies can be cumulated from either 
the high or low end of the range of values. This method of representation is 
common in the field of sedimentology for sediment size fractions, where 
frequencies are cumulated from coarse-grained to fine-grained fractions. An 
example is shown in figure I-2(a) where the relationship between a standard 
histogram and a cumulative histogram is apparent. The cumulative histogram 
and a smooth cumulative curve are repeated in figure I-2(b) but with coordinates 
reversed. In this hypothetical example data were cumulated from high values to 
low. 

This method of representation of data is in the required form for plotting on 
probability graph paper (refer to section II-1). The concept of a cumulative 
histogram is straightforward and is fundamental to an understanding of 
probability plots. 

FIGURE I-2 
(a) Histogram and cumulative histogram of an hypothetical data set. Note that 
data are cumulated from high to low values. (b) The cumulative histogram of (a) 
is repeated but with coordinates reversed. A continuous curve (cumulative 
curve) has been fitted to the histogram. This is the graphic form of histogram 
that correlates most obviously with probability plots as used in this manual. 
Note that by an appropriate change in scale the cumulative curve can be 
transformed to a straight line! 
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I-5: LOGNORMAL DISTRIBUTIONS 
In its simplest conceptual form the lognormal distribution is viewed as a 

normal distribution of the logarithms (to any base) of a set of data. It has been 
described in detail by Aitchison and Brown (1957) and can form a basis for 
theory of multiplicative errors just as the normal distribution is the basis of a 
theory of additive errors. 

An extensive literature exists concerning the shape or form of density 
distributions of natural data (e.g. Ahrens, 1954; Shaw, 1961; Becker and Hazen, 
1961; Rodionov, 1961). Numerous authors have concluded that many earth 
science variables of the type we are considering here have density distributions 
that are closely approximated by the lognormal law. For example, a close 
approach to lognormality is shown commonly by such variables as (1) minor 
elements in geochemistry (e.g. Shaw, 1961) (2) many geophysical variables (e.g. 
Slichter, 1955), (3) grades and tonnages of mineral deposits (e.g. Sinclair, 
1974b), (4) sediment size data (e.g. Harris, 1958), (5) capacity of water 
reservoirs (e.g. Hazen, 1914), (6) sizes of oil pools (McCrossan, 1969), and so 
on. In addition, some variables dealt with routinely by earth scientists show 
normal distributions, but the very nature of the variables incorporates a log 
transformation. pH measurements and sediment size data (in phi units) are 
everyday examples. 

Having emphasized the general support in the literature of lognormal 
distributions of an important proportion of earth science variables and the close 
approximation to lognormal density distributions shown by many variables 
measured routinely in mineral exploration, it is important to be aware of some of 
the vaguaries and complications to such a simple interpretation. For example, no 
fundamental "lognormal law" has been stated or should be implied. The 
lognormal model is merely an adequate approximation of reality! It is important 
to realize that real data depart most from fitted empirical models at the tails of 
the fitted density distributions. Exactly where a given model no longer applies to 
real data is difficult to determine but one can be fairly certain that a lognormal 
model, for example, cannot be applied with assurance beyond the range of data 
on which the model is based. Furthermore, distributions other than lognormal 
are encountered (e.g. Govett, 1975) and one must be constantly aware of such a 
possibility. 

Perhaps the most serious problem in reconciling a lognormal model with 
much real data is encountered with polymodal distributions. Where component 
populations do not overlap appreciably each can be examined individually for 
lognormality. The frequency of occurrence of such polymodal lognormal 
distributions indicate that it is logical to expect overlapping populations to also 
approximate lognormal models. Certainly, this latter interpretation has worked 
out well in practice (e.g. Montgomery et al, 1915; Saager and Sinclair, 1974). 
Throughout this manual examples will be given that provide a test for the 
presence of combinations of lognormal populations. 
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Without entering a lengthy philosophic debate the author concludes that many 
variables commonly met in the earth sciences, particularly those measured 
routinely during mineral exploration programs, show a close approach to 
lognormality, or to a combination of two or more lognormal populations. Many 
others approximate normal density distributions. From a practical point of view 
this means that much data can be presented and interpreted usefully on standard 
logarithmic or arithmetic probability graphs. 
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CHAPTER II  
CUMULATIVE PROBABILITY PAPER 

AND SINGLE POPULATIONS 

II-0: GENERAL STATEMENT 
Cumulative probability paper was first developed by Hazen (1914) as a 

means of simplifying the interpretation of reservoir storage data by eliminating 
the sharp curvature present in graphs with an arithmetic cumulative percentage 
scale. The method has since found fairly widespread applications in graphical 
study of numeric data in many fields. Numerous publications exist describing 
the applications and limitations of such plots (e.g. Goodrich, 1927; Rissik, 1941; 
Levi, 1946; Harding, 1949; and Cassie, 1954) but the technique has been widely 
publicized and used extensively in the earth sciences only recently. 

Sedimentologists were the forerunners in the application of probability plots 
to geological problems – (e.g. Krumbein and Pettijohn, 1938; Otto, 1939; 
Tanner, 1958). Tennant and White (1959) appear to have been the first to 
recognize the potential of cumulative probability graphs in treating geochemical 
data, although Williams (1967) provides the first comprehensive treatment of 
the subject. More recently, Lepeltier (1969) has presented a succinct outline of 
the use of probability paper in interpretation of geochemical data with special 
reference to rapid, field-oriented procedures. Despite the abundant publicity 
relating to probability graphs and their applications, the method has been used in 
mineral exploration only spasmodically, but with somewhat increasing 
regularity, over the past few years. 

According to Bolviken (1972), analysis by probability graph paper is a 
routine procedure used by the Geological Survey of Norway as an aid to 
interpreting various kinds of geochemical information. Published applications to 
other types of geological and/or mineral exploration data have not been 
widespread (with the exception of sedimentological studies), but certainly 
various kinds of geological and geophysical data are amenable to such analysis. 
Other potential applications include studies of size (tonnages) or average grades 
of mineral deposits (Sinclair, 1974b), capacity of gas reservoirs (See 
McCrossan, 1969), and innumerable others. 
  



15 
 

II-1: PROBABILITY GRAPH PAPER 
Standard cumulative probability paper, commonly referred to as arithmetic 

probability paper, has an arithmetic scale (the ordinate scale on most paper 
available in North America) and a somewhat unusual percentage (or probability) 
abscissa scale. Ordinate and abscissa commonly are reversed on probability 
paper available outside North America and for that used by sedimentologists. 
The probability (cumulative percentage) scale is arranged such that a cumulative 
normal density distribution will plot as a straight line. Derivation of the 
probability scale can be seen in figure II-1. It is apparent that the ordinate is 
arithmetic in terms of "numbers of standard deviations" from a central reference 
value, zero, that corresponds to the mean value of the distribution. A sloping 
straight line (any line) is then drawn in as a means of defining the probability 
scale by projecting known cumulative percentages to the probability scale. The 
cumulative percentage to be assigned to any point projected onto the probability 
scale is the value 100 y from the equation 

𝑦 =  
1

√2𝜋
 � 𝑒(−𝑧

2

2 )
𝑧

−∞
 

where y represents the proportion of area (or values) in a normal standard 
density distribution that is below the specified standardized value "z". Hence, 
any percentage value on the probability scale can be determined by recourse to 
the foregoing integral equation. It is not necessary to work out such integrals 
because y and z values are tabulated in most elementary statistical texts. Note 
that the probability scale can be expanded or contracted by decreasing or 
increasing the slope of the line used in figure II-1 to project points to the 
probability scale. 

FIGURE II-1 
Diagram illustrating the direct relationship between Z values of a standardized 
normal distribution and cumulative percentage of the `probability" scale. 
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Although a graphical approach has been used to give an insight into the basis 
of probability paper, it is apparent from figure II-1, that cumulative percentage 
values on the probability scale are directly proportional to z values. 
Consequently, probability scales can be determined simply by multiplying z 
values by any appropriate constant. In practice, of course, probability graph 
paper with a variety of scales can be purchased. It is useful, however, to have 
some appreciation of the derivation of the probability scale if probability graph 
paper is to be used extensively. 

A second type of probability paper is in common use, logarithmic probability 
paper. Log and arithmetic probability papers have comparable probability 
scales; the former, however, has a logarithmic scale for the second axis whereas 
the latter has an arithmetic scale. The logarithmic scale is to base 10. 

Throughout the literature, probability graphs are presented using the 
probability scale as either ordinate or abscissa, and cumulating percentages 
beginning either with high or low values of a data set. Hence, there are four 
possible manners of presentation, all of which have been used by various 
authors. Throughout this manual the writer has chosen to standardize his 
presentation of probability plots. The probability scale is chosen as abscissa 
because most commercial probability graph paper readily available in North 
America is constructed in this manner. In addition, frequencies (probabilities) 
are cumulated from high towards low values. As Lepeltier (1969) has pointed 
out, this procedure avoids having the last, unplottable point (100 cumulative 
percent) at the high value end, which is commonly in the range of most interest 
in mineral exploration data. Furthermore, there are instances when such a 
procedure provides an additional point for plotting compared with the reverse 
procedure of cumulating from low towards high values (e.g. see section VIII-3). 
 

II-2: ANALYSIS OF SINGLE POPULATIONS 
The foregoing section shows that a single, cumulative, normal population 

plotted over the full probability range, defines a straight line on arithmetic paper 
because of the nature of the probability scale. Similarly, cumulative percentages 
of arithmetic values of a lognormal population define a straight line on log 
probability paper. Conversely, cumulative percentages of logarithms of a 
lognormal population define a straight line when plotted on arithmetic 
probability paper. 

In practice, one plots precisely the same data that would be used to construct 
a cumulative histogram. The points thus obtained would only coincidently plot 
exactly on a straight line. In general, there would be a certain amount of scatter 
produced by expected sampling error. For the present, our discussion will be 
confined to ideal normal populations. 
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FIGURE II-2 
Normal distributions with different mean values but identical standard 
deviations plot as a set of parallel straight lines on probability paper. Means 
can be read where the straight lines intersect the 50 percentile. Two standard 
deviations are estimated by the difference between readings at the 16 and 84 
percentiles. 

 
 
Figure II-2 shows several hypothetical populations, each represented by a 

straight line. All lines have the same slope but different mean values. The mean 
value estimate of each population can be read as the ordinate value 
corresponding to the 50 percentile. Because each of the populations 'is normal (a 
straight line plot on probability paper) the values of the mean, plus and minus 
one standard deviation, can be estimated fairly precisely by ordinate values that 
correspond to the 16 and 84,percentiles respectively. For example, in population 
A, the mean (x) is read at the 50 percentile as 70, and (𝑥̅ + s) and (𝑥̅ - s) can be 
read at the 84 and 16 cumulative percentiles as 78.6 and 61.4 respectively. 
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Consequently, estimates of parameters of population A are 70 ± 8.6. In practice, 
an estimate of 2s is obtained as the positive difference between values of the 84 
and 16 cumulative percentiles. This difference is halved to estimates. Note that 
mean and standard deviation of normal distributions are quoted in this manual as 
𝑥̅ ±s, a form that should not be confused with representation of the standard 
error of the mean! 

Three populations are shown as straight lines in figure II-3 that all intersect 
the 50 percentile line at an ordinate value of 55, indicating that each of the 
populations has the same mean value. Standard deviations of the three 
populations differ as do the slopes of lines that define the populations. In 
general, for data plotted to the same scale, a steeply sloping linear pattern 
indicates a relatively large standard deviation compared to a more gently sloping 
linear pattern. 

FIGURE II-3 
Normal distributions with the same mean but different standard deviations plot 
on probability paper as a set of straight lines that intersect at the 50 percentile. 
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In dealing with lognormal distributions, two approaches are possible: 
1) Plot logarithmic values on arithmetic probability paper  
2) Plot untransformed values on log probability paper. 
The first method is used routinely in sedimentology where sediment size 

fractions are quoted in phi values (logarithms to base 2 of sieve diameters). 
Estimation of parameters (𝑥̅ and s) is done in the manner described previously. 
These estimates, however, refer to log values. 

Ordinarily, with large numbers of values it is time-consuming and 
inconvenient to transform arithmetic values to logarithms, in which case the 
cumulative arithmetic data are plotted directly on log probability paper. This 
procedure avoids reference to tables of logarithms because the transformation is 
supplied graphically and automatically on plotting, as a result of the logarithmic 
ordinate scale. The estimated parameters read from a linear graph on log 
probability paper are antilogs of: 

1) arithmetic mean of the logarithms of values 
2) arithmetic mean of logarithms plus one standard deviation, and  
3) arithmetic mean of logarithms minus one standard deviation. 
Consequently, the mean value determined is the geometric mean of the 

original data and the two surrounding values that encompass approximately 68 
percent of values in the distribution are located asymmetrically about this 
geometric mean. Throughout this manual the form adopted to designate 
lognormal distributions will be the geometric mean followed in brackets by 
antilogs of: 

1) mean of logarithms plus one standard deviation, and  
2) mean of logarithms minus one standard deviation. 
As an example, consider the population 100 (250,40). Logarithms of these 

three values are 2, 2.3979 and 1.6021. These are equivalent to 2 ± 0.3979 and 
the symmetry of the distribution in log units becomes apparent. 

Symbols used throughout this text are summarized in table II-1. 
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TABLE II-1 
STATISTICAL SYMBOLS 

Population Example * Symbol Example 
Arithmetic 100 ± 50 𝑥̅ 100 
   Normal  s 50 
Lognormal 2.00 ± 0.153 𝑥̅ 2 
   (logarithmic values)  s 0.153 
Lognormal 100  (142,70) b 100 
   (antilogs )  b + sL 142 
  b - sL 70 

 
* Examples are those plotted in figures II-4 and II-5. 
N = no. of data values that defines a population. 
ni = no. of values in subpopulation i where a density distribution is polymodal. 
∑ni = N 

 

II-3: NORMAL DISTRIBUTIONS PLOTTED ON LOG 
PROBABILITY PAPER (AND VICE VERSA) 

It is useful to know the forms of cumulative curves that result if a normal 
population is plotted inadvertently on log probability paper (or vice versa). This 
is an obvious aid to interpretation in the case where data do not plot as straight 
lines. 

Consider an arithmetic normal distribution (AN) with parameters 100 ± 50, 
shown as a straight line in figure II-4. The same distribution is shown on 
lognormal probability paper (figure II-5) where a pronounced curved pattern, 
concave downward, is apparent. Note that the greatest curvature is towards low 
values. This curve (AN in figure II-5) bears general resemblance to a top-
truncated lognormal distribution discussed in the following section; but, as a 
rule, the two can be distinguished by noting whether greatest curvature is 
towards high or low values. 
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FIGURE II-4 
The shapes of normal (AN) and lognormal (LN) distributions with 
comparable parameters are contrasted on arithmetic probability paper. The 
same two populations are shown in figure II-5. 

 
 

FIGURE II-5 
The shapes of normal (AN) and lognormal (LN) distributions with comparable 
parameters are contrasted on log probability paper. The same two populations 
are shown in figure II-4. 
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Consider also a lognormal distribution (LN) with roughly comparable 
parameters, 100 (142, 70), shown as a straight line in figure II-5. The same 
lognormal distribution is shown in figure II-4 on arithmetic probability paper 
where it defines a pronounced curve, concave upward, with greatest steepening 
towards high values. 

To summarize briefly, lognormal distributions plotted on arithmetic 
probability paper produce curved patterns concave upward; normal distributions 
plotted on log probability paper produce curved patterns concave downward. In 
general, concave-up graphs are skewed towards high values, and vice versa. 

There are, of course, many possible types of density distributions. In section 
I-5 it was concluded that normal and lognormal distributions are approximated 
so commonly in nature that reference here will be confined to patterns arising 
from these two types of density distributions. 

 

II-4: TRUNCATED DISTRIBUTIONS 
A truncated distribution is defined as a density distribution, either normal or 

lognormal for our purposes here, for which all values above or below some 
particular value are not represented in available data. A singly truncated 
distribution thus can be described, as top-truncated or bottom-truncated 
depending on which end of the distribution is missing. Truncated distributions 
are not to be confused with censored distributions. A censored distribution is 
one for which measurements are known for items on one side of a specific value 
but only number of items is known on the other side. Common examples of 
censored distributions are sets of analytical data for which some values are 
reported as (a) greater than a particular value, or (b) zero or not detected or less 
than detection limit. If censored data are ignored in calculating cumulative 
percentages the resulting plot on probability paper is identical with a truncated 
distribution. Further discussion will be confined to truncated distributions. 

Truncated distributions arise for a variety of reasons, both natural and 
artificial. Consider, for example, a sediment with a lognormal distribution of. 
particle sizes. Winnowing during sample collection might remove all particles 
below a specific size leaving a bottom truncated distribution of the remaining 
grains. Two examples dealing with ore tonnages are described in sections III-1 
and V-3. In some cases, high analytical values have been purposely ignored in 
reporting data leading to top-truncated distributions from the observer's point of 
view (e.g. Brabec and White, 1971). 

The effect of truncation on a lognormal distribution can be seen best by 
examining hypothetical truncated distributions as shown in figure II-6. Here, a 
single population with parameters 50 (118, 22) has been recalculated assuming 
that various proportions have been removed from its upper (top-truncated) and 
lower (bottom-truncated) ends. In both cases, curves have been drawn assuming 
that 10, 25 and 50 percent of the original symmetric population is missing. 



23 
 

Note the general features of these curves: 
1) Pronounced curvature or departure from a linear pattern is most evident 

over the cumulative percentage range that has been truncated. 
2) The curvature produces a "flattening" of the cumulative distribution at 

the end that has been truncated. 
 

FIGURE II-6 
Examples of a normal distribution truncated by removing various portions of the 
population and plotting the remainders of the population over the total 
probability scale. Percentage figures show the proportion of the upper (top) or 
lower (bottom) parts of the original population that were removed to reproduce 
the labelled curves. Point C on one curve indicates how a rough estimate of 
amount of truncation can be made at a percentile near the point of most rapid 
change in slope. 

 
 

In a real situation representing a truncated distribution, recognition of top 
truncation or bottom truncation is evident from the end of the cumulative curve 
at which flattening occurs. It is possible, using a trial and error procedure, to 
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estimate fairly precisely the percentage of the population that is missing. This is 
done by replotting the curved "real data" line assuming various proportions are 
missing, by exactly the reverse procedure to that used to obtain the curves of 
figure II-6 from the original straight line plot. Providing that less than 50 percent 
of a population is missing, a rough estimate of the missing percentage is 
obtained at the point where a curve begins to flatten pronouncedly. For example, 
in the curve for a 25 percent top-truncation a point near C (about 20 cumulative 
percent) divides the curve into three segments, a long relatively steep segment of 
very gentle curvature, a short segment of rapid curvature, followed by a 
flattened segment. A first trial assuming 20 percent of the population as missing 
would lead quickly to the true value of 25 percent missing, in one or two more 
trials. 

The discussion thus far assumes that a truncated population can be recognized 
by the form of curvature of the probability plot. In practice, some ambiguity can 
exist. For example, in section II-3 and figure II-5, we have seen that a normal 
population plotted on log probability paper has a form not unlike that of a top-
truncated lognormal distribution. Caution is therefore urged against arbitrarily 
interpreting curved .graphs such as those of figure II-6 as representing truncated 
distributions, particularly for top-truncated distributions, unless some reasonable 
possibility exists that truncation has occurred. 

In mineral exploration data, some truncated distributions arise artificially as 
the result of some data being ignored. On the other hand it is possible that such 
patterns could arise naturally as the result of a biased sample of a population. 
One could imagine, for example, a large anomalous geochemical zone in which 
abundant peak values do not occur in the area sampled. 

In a later section it will become apparent that truncated patterns bear vague 
resemblance to certain kinds of bimodal plots. The two generally can be 
distinguished by the presence of inflection points in bimodal cumulative curves 
and the absence of such inflection points in curves of truncated distributions. 
  



25 
 

CHAPTER III  
PRACTICAL EXAMPLES OF SINGLE POPULATIONS 

III-0: GENERAL STATEMENT 
Thus far the discussion has been confined to ideal, hypothetical density 

distributions, their representation on probability graph paper, and techniques for 
extracting information from such plots. In this chapter, real examples will be 
presented that approximate comparable, ideal distributions. In some cases, 
information will be extracted that is not particularly pertinent to the problem 
represented by the specific data set, for the purpose of illustrating techniques 
developed in chapter II. The reader should bear in mind that some of the more 
useful applications of probability plots to exploration and other data are in the 
analysis of combinations of 2 or more density distributions, discussions of which 
are deferred to later chapters. 

 

III-1: PRODUCTION TONNAGES FROM VEIN DEPOSITS 
AINSWORTH MINING CAMP, B.C. 

As an example of a single lognormal population consider production data for 
74 Pb-Zn-Ag vein deposits in Ainsworth mining camp, southern British 
Columbia (Davidson, 1972). These data were compiled by Orr (1971) for all 
known deposits in the camp that had produced one ton or more of ore, the 
principal source being published reports of the B. C. Department of Mines and 
Petroleum Resources. A log probability plot (figure III-1) suggests that the data 
approximate a lognormal distribution and therefore can be represented by a 
straight line drawn through the plotted points. The amount of scatter of plotted 
points about the line is small considering the relatively small amount of data on 
which the graph is based and, as is generally the case, is more pronounced at the 
ends of the graph than towards the centre. 

Note that curve-fitting does not follow standard rules because more weight is 
attached to values near the centre of a probability plot relative to those points 
near the extremities. Subjective weighting during the curve-fitting procedure can 
become a problem in interpreting the pattern of real data plotted on probability 
paper. Does real curvature exist or is the pattern a straight line? One useful rule 
is to accept real curvature if several consecutive points are progressively further 
and further from a linear trend, as opposed to random fluctuations either side of 
a linear trend. A second guide, suggested by 
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Woodsworth (1972) is to plot 95 percent confidence limits for a linear fit to 
plotted points, and assume curvature in the vicinity of those points plotting 
outside those limits. 

FIGURE III-1 
Probability plot of logarithms (base 10) of production for 74 vein deposits, 
Ainsworth Camp, B. C. Note flattening at bottom of curve, suggestive of bottom 
truncation. Bounding curves are 95 percent confidence limits of the normal 
distribution that best describes the data. 

 
In this example, it is convenient to plot logarithms of production data on 

arithmetic probability paper rather than arithmetic data on log probability paper. 
The reason is that the data span more than five orders of magnitude and would 
be unwieldy using generally available log probability paper. 

Estimates of parameters of the distribution can be read directly from the 
graph using as a basis the line fitted to the points and reading ordinates that 
correspond to the 16, 50 and 84 percentiles. They are estimated to be 2.38 ± 1.28 
and compare with parameters obtained by the method of moments of 2.377 ± 
1.279. The 95 percent confidence limits have been drawn in by a graphical 
estimation method described in section VIII-7 (cf. Lepeltier, 1969). All the 
plotted points are within these limits and we might conclude therefore that the 
assumption of lognormality and estimated parameters represent an adequate 
description of the population. Values of the parameters are given by their 
antilogs as 240 (4571, 12.5). 
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Despite the statistical soundness of the interpretation it might be questioned 
on the basis of the arbitrary choice of a minimum of one ton of ore produced. 
Why should the population coincide with this arbitrary lower cut off value? In 
fact, the lower end of the graph flattens appreciably and has the general form of 
a bottom-truncated distribution, as might be expected from the very nature of the 
data. Figure III-2 shows a plot of the original data recalculated on the 
assumption that the lower 5% of the population is not present. Points on the 
"recalculated" graph were obtained by multiplying the original cumulative 
percentage at each ordinate level by 0.95. The lower flattened part of the curve 
has disappeared and the data define a lognormal population with estimated 
logarithmic parameters 2.25 ±1.37 or in arithmetic terms, 178 (4169, 7.6). 

FIGURE III-2 
Probability plot of data of figure III-1 "corrected"for an assumed bottom 
truncation of 5 percent (Sinclair, 1974b). 

 
In addition to defining the nature of the density distribution and allowing 

easy, rapid estimation of statistical parameters, plots such as these can be used to 
examine the probability that new finds in the camp will be greater than some 
specified size (Sinclair, 1974b). Let us assume that on the basis of our 
knowledge of the district, average ore grades and economic factors, a minimum 
deposit size for profitable production is estimated to be 40,000 tons (log10 = 
4.6021). Assuming our data are representative of deposits in the area, the 
probability that a newly found deposit would equal or exceed this minimum is 
read as approximately 4% from either of the graphs. In this particular case the 
correction for bottom truncation has a negligible effect on the estimated 
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probability of success. For much smaller minimum targets,, however, the 
probability would be appreciably less on the graph of figure III-2 that takes into 
account the bottom truncation. The simplicity of presentation and the ease with 
which probabilities of success can be estimated make such plots a useful adjunct 
to guides to exploration potential in districts for which adequate production data 
are available. 

 

III-2: Zn IN SOILS, TCHENTLO LAKE AREA, CENTRAL BRITISH 
COLUMBIA. 

One hundred and seventy three soil samples taken from an area underlain by 
more-or-less homogeneous dioritic bedrock, and largely covered by a thin layer 
of glacial till, are shown in figure III-3 as a probability plot. Scattered knolls of 
diorite outcrops occur here and there throughout the sampling grid, some of 
which are mineralized along joints with quartz, pyrite, and small amounts of 
molybdenite and chalcopyrite. Soil samples (B-horizon) were taken at intervals 
of 400 feet along E-W lines spaced 400 feet apart. 

An examination of the probability plot indicates the presence of a single 
lognormal population. This is further supported by the fact•that the plotted 
points occur well within the 95 percent confidence limits estimated graphically, 
as outlined in section VIII-7. Parameters of the population, as determined from 
the graph, are 87 (140, 55). 

FIGURE III-3 
Log probability plot of 173 soil Zn (B-zone) values over a stockwork copper-
molybdenum zone, Tchentlo Lake, B. C. 
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The population probably represents a background Zn population in the B-
horizon of the soils. In a case such as this, it is wise to assume that some of the 
highest values are anomalous until proven otherwise. The traditional procedure 
recommended by Hawkes and Webb (1962) is to make the assumption that a 
threshold exists at (b + 2s) i.e. assume that the upper 2½ percent of values are 
anomalous. Applying this procedure to Tchentlo Lake data a threshold is 
established at 220 ppm Zn. The five highest values thus delimited were found to 
occur sporadically, away from known mineralized areas. 

 

III-3: HAMMER SEISMIC DATA, SOUTHERN BRITISH 
COLUMBIA. 

Figure III-4 is a cumulative probability plot of 183 seismic velocity values 
from a single subsurface layer in a survey area in southern British Columbia. 
Confidence limits are shown as estimated graphically using the procedure of 
Lepeltier (1969) and described in section VIII-7. It is apparent that the data 
closely follow a lognormal distribution law. None of the real data points are 
observed to plot outside the 95 percent confidence belt. The geometric mean 
(corresponding to the mode of arithmetic values) can be estimated directly from 
the straight line fitted to the data, as 2850 f.p.s. About 68 percent of samples lie 
between 4050 and 1990 f.p.s. Local modes are often of interest in such data. 
These can be recognized by a glance at the probability plots as "offset" points 
that lie "too much" towards the upper side of the line, relative to adjacent points 
on either side. To make use of such information, however, it should be recalled 
that the actual points plotted are at the lower extremity of the bar intervals they 
represent. Consequently, the mode itself is estimated at midway between an 
"offset" point and the next highest point. In some cases false modes are 
recognized in this manner because any bar interval for which the frequency is 
greater than that forecasted by the log-normal law will plot in the manner 
described. The significance of such modes, however, is questionable if they lie 
within the 95 percent confidence belt, in which case they could merely represent 
expected fluctuations due to ever-present sampling error. 
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FIGURE III-4 
Log probability plot of 183 layer velocity measurements from a hammer seismic 
survey in southern British Columbia. 

 
 

III-4: REPRESENTATION OF SEVERAL VARIABLES ON A SINGLE 
PROBABILITY GRAPH. 

One hundred and twelve stream sediment samples from a semi-arid 
environment in southern British Columbia were analysed for Pb, Co, Cu, Zn and 
Ni. Results for each of these variables are shown as cumulative probability plots 
in figure III-5 and indicate that four of the five (Co excluded) can be considered 
as lognormal distributions. Parameters of these distributions have been 
determined graphically and are recorded in table III-1 where they are compared 
with corresponding values determined by the method of moments. 

Parameters are comparable by the two methods, except for Pb. In this latter 
case the presence of a high proportion of "zero" values and a few high values 
that plot outside the limit of the graph, are the causes of the discrepancy. 

Figure III-5 emphasizes the clarity with which several populations can be 
represented on a single probability graph and the ease with which significantly 
different populations (e.g. Co) can be recognized. 

TABLE III-1 

PARAMETERS OF POPULATIONS SHOWN IN FIGURE III-5 
DETERMINED GRAPHICALLY AND BY MOMENTS 

Variable 
 

Graphical Moments 

 
N b b+sL b-sL b b+sL b-sL 

Pb 112 5.4 12 2.4 3.6 19.1 0.7 
Cu 112 35.1 52 23.2 34.2 51.6 22.7 
Zn 112 70 96 51 71.1 106 47.5 
Ni 112 86 148 53 88.8 149.3 56.6 
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FIGURE III-5 
An example of several variables from a regional stream sediment survey, plotted 
on a single probability diagram. Note the clarity with which "different" elements 
such as Co stand out from the others. 

 
  



32 
 

CHAPTER IV  
PROBABILITY PLOTS OF 

TWO HYPOTHETICAL POPULATIONS 

IV-0: GENERAL STATEMENT 
In preceding sections, consideration has been given to patterns of single 

populations, real and hypothetical, plotted as cumulative distributions on 
probability paper. The ease with which the forms of distributions and their 
parameters can be estimated, and the clarity of presentation of several variables 
on a single graph, give some indication of the usefulness of probability plots in 
presenting and analyzing many types of numeric data such as are the product of 
numerous mineral exploration programs. 

Commonly, however, data do not plot as a straight line on probability paper 
but have a definite curvature with a pronounced inflection point, or change in 
direction of curvature. As will be shown in this chapter, such patterns commonly 
result from the presence of two (or more) populations in a data set. Attention 
will be directed first to ideal patterns based on known hypothetical populations, 
from which an attempt will be made to make generalizations that aid in the 
reverse process of extracting constituent populations from real mixed 
populations. Procedures that are concerned with the estimation of constituent 
populations from a combination of two or more density distribution are known 
as partitioning. 

IV-1: A SINGLE POPULATION PLOTTED OVER PART OF 
PROBABILITY RANGE 

As an introduction to patterns produced by mixtures of data from two 
populations, it is instructive to first consider the graphical form of a single 
distribution plotted over only a part of the probability range. Consider the 
population 200 (415, 99) shown as a straight line in figure IV-1. Suppose this 
population were replotted on the assumption that it represents only the upper 50 
percent of a data set, and ignore for the moment the lower 50 percent of the data. 
A series of points on the straight line can be replotted on their respective 
ordinate levels, each with half the cumulative probability indicated by the linear 
distribution. For example, at the 200 ordinate level we read 50 cumulative 
percent on the straight line and a new point on the 200 ordinate level is plotted at 
25 cumulative percent. The same procedure is repeated at various ordinate 
levels.until sufficient points are obtained to draw in the smooth curve on 'figure 
IV-1. A practical example involving the reverse procedure is described in 
section VIII-2. 
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FIGURE IV-1 
A single lognormal population with parameters 200 (415, 99) is replotted over 
50 percent of the probability range to illustrate the pronounced departure from 
a straight line. 

 
Curves drawn in the same manner and assuming that population 200 (415, 99) 

represents the upper 10, 25, 50, and 75 percentages of a data set, are reproduced 
in figure IV-2. Comparable curves for the same population representing 
comparable lower percentages of a data set are also shown. These graphs have 
several obvious characteristics: 

1) The distributions are no longer linear on probability plots. 
2) Curvature increases towards the centre of the plot and becomes 

asymptotic to the vertical percentile line that is the proportion of total 
data represented by the population. 

3) The curves are convex upward or downward depending on whether the 
population represents the lower or upper fraction respectively, of a data 
set. 

It is easy to imagine the pattern that would result if two curves of the sort 
shown in figure IV-2 were combined in a single data set; for example, one curve 
for 50 percent of a high population and a second curve for 50 percent of a much 
lower population such that the single resulting curve covering the entire 
probability range of interest, represents two populations (see figure IV-3). In 
fact, what has been done here is the development of a cumulative probability 
curve for a data set consisting of equal proportions of two populations with no 
effective overlap of values. 
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FIGURE IV-2 
A single lognormal population (see figure IV-1) is replotted on the assumption 
that it represents various percentages at the upper or lower ends of a larger 
group of values. 

 
 

FIGURE IV-3 
Two lognormal populations A and B are shown plotted over the upper and lower 
50 percent probability ranges respectively, to illustrate the resulting curved 
distributions. Note that the two curved segments are both asymptotic to the 50 
percentile, a feature that is never apparent in real data. Instead in practical 
cases the two curves are, joined as a single curve which in the example shown 
would have an inflection point at the 50 percentile. 
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IV-2: CONSTRUCTION OF PROBABILITY CURVES OF TWO 
HYPOTHETICAL POPULATIONS. 

Bolviken (1971) has recently described a simple graphical method of 
determining the probability curve for two populations whose parameters are 
specified, combined in any desired proportions. Consider the two populations A, 
300 (504, 174) and B, 70 (118, 43) that are to be combined in a single 
probability curve in the proportions 0.3A and 0.7B. At any particular ordinate 
level the cumulative percentage of the combined populations is equal to 0.3 
times the cumulative percent of A plus 0.7 times the cumulative percent of B. 
This relationship can be generalized and expressed in equation form as follows: 

P(A + B) = fA PA + fB PB 
where P(A +B) is the cumulative probability of the combined populations, PA 

the cumulative probability of population A, PB the cumulative probability of 
population B, fA the fraction of total data represented by population A, and fB 
the fraction of total data represented by population B. Because the two 
populations comprise 100 percent of the data, fA + fB = 1. 

FIGURE IV-4 
A general example of two lognormal populations A and B with considerable 
overlap and similar standard deviations combined in the proportions 30% A and 
70% B. The point of inflection is indicated by an arrow at the 30 percentile. 

 
Populations A, 300 (504, 179) and B, 70 (118, 41.5) shown as straight lines in 

figure IV-4 are to be mixed in proportions 0.3 A and 0.7 B. By applying the 
general equation to successive ordinate levels, a series of points on the 
probability curve for the combined populations is obtained. Sufficient points 
must be calculated to permit a smooth curve to be drawn. As an example, 
consider the 200 ordinate level in figure IV-4 which intersects the A and B 
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populations at 78% and 2.1% respectively. On applying the general equation the 
following result is obtained: 

 P(A + B) = 0.3(78) + 0.7(2.1) 
  = 24.9% 
Hence, a point for the combined populations at the 200 ordinate level is 

calculated to be at 24.9 cumulative percent. 
Similarly, at the 400 ordinate level P(A + B) = 0.3 (29) + 0.7 (0.0) = 8.7. In this 

latter case the contribution of the lower population is negligible and 
approximates zero. For very low ordinate levels (below 90 ppm) the contribution 
of the higher population is essentially 100%. Note that the resulting smooth 
curve departs drastically from a linear pattern and, furthermore, that an 
inflection point or change in direction of curvature occurs at the 30 cumulative 
percentile. This example illustrates a fairly general situation of two populations, 
with a small but significant range of overlap, being combined in unequal 
proportions. It is not completely general in that the two hypothetical populations 
have the same standard deviation as indicated by equivalent slopes in figure IV-
4. 

A variety of probability curves of combinations of two populations have been 
constructed in the foregoing manner and are shown in figures IV-5 to IV-8 
inclusive. These four diagrams can be looked upon as a sequence showing the 
effect on a combined probability graph as a population of low standard deviation 
is moved progressively upward in steps through the range of a population with a 
much larger standard deviation. The populations are labelled S and W in each of 
the diagrams to emphasize their short and wide dispersions (standard deviations) 
respectively. In addition, each of the four diagrams shows curves for 
combinations of S and W in various proportions. Consequently, diagrams 
presented thus far in this chapter define the range of patterns that result from 
ideal combinations of two lognormal (and normal) populations. 

Examination of figures IV-3 to IV-8 inclusive reveals that two fun-
damentally different types of patterns occur. These are defined as non-
intersecting bimodal curves and intersecting bimodal curves. The most common 
type, in the writer's experience, are non-intersecting curves typified by figures 
IV-5 and IV-8 where the pattern consists of a steeply sloping central segment 
flanked at either end by more gently sloping segments. Intersecting bimodal 
probability curves are illustrated by figures IV-6 and IV-7 where their pattern is 
seen to consist of a gently sloping central segment flanked by two more steeply 
sloping end segments. 

The terms intersecting and non-intersecting, as applied to these curves, refer 
to the individual populations represented on probability paper. In the case of an 
intersecting bimodal probability curve, the two ideal populations that comprise 
the mixture are represented on probability paper by lines that intersect in the 
probability range of interest. Conversely, for a non-intersecting bimodal 
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probability plot, the linear trends of the individual populations do not intersect in 
the probability range of interest. The use of "intersection" in this connection 
should not be confused with overlap. By their very nature intersecting 
populations have complete overlap in that one population is encompassed 
entirely within the range of another. Non-intersecting populations might overlap 
appreciably, but need not. 

 

IV-3: PARTITIONING OF NON-INTERSECTING BIMODAL 
PROBABILITY CURVES. 

In the preceding section, methods were presented by which bimodal 
probability curves could be constructed from specified ideal populations. 
Normally the reverse situation prevails – a set of data plots on probability paper 
with a form suggestive of a bimodal distribution, and the problem is to ascertain 
if such is the case and if so, to extract from the bimodal curve information about 
the two populations that comprise it. Procedures used to define parameters of 
individual populations within a polymodal population are known as partitioning. 

Partitioning of non-intersecting bimodal probability curves is generally a 
straight-forward matter (c.f. Harding, 1949). The most important problem is to 
ascertain the proportions in which two populations are present. An examination 
of figures IV-3, IV-4, IV-5, and IV-8, shows that in every instance an inflection 
point occurs in the bimodal curve precisely at the cumulative percentile that 
represents the proportions of the two constituent populations. Consequently, in 
dealing with a bimodal probability curve, the first information to be extracted is 
the cumulative percentile at which the inflection point occurs. Once this figure 
has been obtained it is a routine matter to partition the bimodal distribution. 
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FIGURE IV-5 
Examples of various combinations of two normal populations with different 
means and standard deviations: W has a large standard deviation (i.e. wide 
dispersion), S has low standard deviation (i.e. short dispersion). Figures IV-5 to 
IV-8 inclusive are a series that shows the range of patterns that result if two 
normal populations are combined. The S distribution can be viewed as being 
raised progressively through the effective range of the W distribution from the 
beginning to end of this series. 

 
 

FIGURE IV-6 
Mixtures of two intersecting populations W and S. See caption to figure IV-5. 
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FIGURE IV-7 
Mixtures of two intersecting populations, Wand S. See caption to figure IV-5. 

 
 

FIGURE IV-8 
Mixtures of two non-intersecting populations, Wand S. See caption to figure IV-
5. 
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FIGURE IV-9 
Illustration of partitioning procedure utilizing the two nonintersecting 
populations of figure IV-4. Black dots are convenient but arbitrarily chosen 
points on the mixed population that effectively represent either A or B. Thus no 
points are chosen in the central part, the range of effective overlap of A and B. 
These points can be recalculated readily as the open circles to define the A and 
B populations. Refer to text for details of partitioning procedure.  

 
As an example, consider the curved distribution of figure IV-9. An, inflection 

point is apparent at or near the 30 cumulative percentile, indicating 30 percent of 
an upper population and 70 percent of a lower population. The sloping central 
segment indicates that there is appreciable effective overlap of ranges of the two 
populations. (If no overlap existed the central segment would be near vertical). 
The upper extremity of the curve, however, reflects only the upper population 
and the lower extremity only the lower population. Consequently, these two 
parts of the curve can be used to estimate the constituent populations. i.e. to 
partition the mixture. 

Now, consider the cumulative percentile at any ordinate level near the upper 
extremity of the curve, say the 3 percentile for ease of calculation. This point 
represents only 3 percent of the total data but is (3/30) x 100 = 10 percent of the 
upper population. Hence, at this or dinate level a point has been defined at the 
10 percentile that plots on the upper population. This procedure can be repeated 
for various or dinate levels that correspond to 6, 9, etc., cumulative percent on 
the curve, to define points on the line describing the upper population at 20, 30 
etc., cumulative percent. The procedure can only be repeated until the effect of 
the lower population becomes significant at which point the calculated values 
depart from a linear pattern. 



41 
 

However, commonly in practice sufficient points with a linear trend can be 
determined to extrapolate the trend throughout the entire probability range and 
thus define the upper population quite precisely. The lower population can be 
estimated by the same procedure providing the probability scale is read in a 
complementary fashion (e.g. 80 cumulative percent is read as 100-80 = 20 
cumulative percent). 

The method is rapid with even a minimum of experience but results should 
always be checked, particularly in the intermediate range of overlap of the two 
populations where trends for both partitioned populations were extrapolated. 
Checking simply involves combining the partitioned populations in their 
indicated proportions to observe how closely ideal combinations fit the real, 
original curve. The procedure is that used in section IV-2. 

In practical cases some difficulty is common in defining an inflection point 
within several cumulative percentage points. If an incorrect value has been 
chosen, ideal mixtures of the partitioned populations will not agree with the 
original curve and a second trial with a new inflection point must be attempted. 
Such trials should be repeated until acceptable agreement is obtained, or until 
the 2-population model (normal or lognormal as the case may be) is rejected. 

The partitioning procedure outlined can be applied to real data that define a 
smooth curve reasonably comparable to the ideal curves of figures IV-5 and IV-
8 and with relatively little scatter of plotted points about the curve. If 
considerable scatter occurs, a similar procedure is followed that differs only in 
the choice of ordinate levels to be used in partitioning. In such a case the 
original plotted points should be recalculated and each partitioned population 
estimated by lines through the recalculated points. 

Many published interpretations of non-intersecting bimodal probability 
curves are based on fitting straight lines to each of the three sections of the curve 
and considering the two resulting intersections as important threshold values. In 
some cases this might be a useful procedure but in general such intersections 
have no particular significance. In other cases, the percentile corresponding to 
the mid point of the central segment is used as a basis for partitioning. Perusal of 
figures IV-5 and IV-8 shows, however, that in general the mid point of the 
central segment and the inflection point do not coincide and can, in some 
instances, be far removed from each other. Ordinarily there is no need to rely on 
approximate procedures such as these unless they are suited to a particular 
problem. The rapid but precise method recommended here simply involves 
drawing a smooth curve through plotted data points, recognition of an inflection 
point, partitioning of consituent populations, and checking the partition results, 
all based on the fundamental curved nature of bimodal probability plots. 

Because of the frequency with which non-intersecting bimodal probability 
plots are encountered in nature, it is worthwhile to conclude this section with a 
brief summary of their characteristics: 
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1) Such plots describe a continuous curve with characteristic shape, 
including a central steeply sloping segment flanked by more gently 
sloping end segments. 

2) An inflection point occurs within the central segment, at a percentile 
that defines relative proportions of the two constituent populations. 

3) Some indication of the relative standard deviations of constituent 
populations is given by relative slopes of the two end segments 
providing the two populations are not grossly dissimilar in their 
proportions. 

4) If the two populations have ranges without significant overlaps, the 
central segment of the curve is vertical. As the amount of overlap 
increases the slope of the central segment becomes progressively less. 

5) The partitioning procedure includes the following stages in sequence: 
(a) draw a smooth curve through plotted data points  
(b) pick the inflection point 
(c) partition both upper and lower populations 
(d) check ideal mixtures of partitioned populations with the original 

curve describing the real data. 
 

IV-4: PARTITIONING AN INTERSECTING BIMODAL 
PROBABILITY CURVE 

Partitioning of intersecting bimodal probability curves is generally a more 
difficult procedure than is the case for non-intersecting curves and, as a rule, 
involves considerably more trial-and-error. There are several characteristics of 
ideal intersecting curves, however, that aid in determining the most efficient 
partitioning procedure. 

1) The two curves for constituent populations intersect each other and the 
bimodal curve in the relatively flat central segment. 

2) This triple intersection occurs at an inflection point in the bimodaL 
curve. Unfortunately this inflection point is generally difficult, if not 
impossible, to pick out precisely, particularly in real data for which 
points are scattered somewhat about a generalized curve. 

3) The ordinate range spanned by the central, relatively flat segment 
defines, reasonably accurately, the effective range of the short 
dispersion population. 

4) The percentage range spanned by the central segment provides a very 
rough estimate of the proportion of the short dispersion population 
represented in the bimodal curve. This estimate is generally high, but at 
least provides a starting point for trial-and-error partitioning. By the 
same token, the complementary estimate for the proportion of the wide 
dispersion population is generally low. 
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Providing all three segments of an intersecting bimodal curve are well 
defined, partitioning is not too difficult. A general procedure is as follows: 

1) An estimate of the proportion of the wide dispersion population is made 
as in 4 above. 

2) Using this estimate, points near the end of the two end segments are 
recalculated and plotted as a single population. If the recalculated points 
plot on a straight line, the estimated proportion is correct and the line 
defines the wide range population. If the points do not plot on a straight 
line, a new proportion (generally higher) must be used as a basis for new 
calculations. This procedure is repeated until a linear pattern is obtained 
for calculated points representing the partitioned population. 

3) Once the wide range population has been defined, a series of points on 
the short range population can be calculated using the relationship 

PC = PW fW + PS fS 
where, for any ordinate level, PC is the cumulative probability of the 
combined populations (i.e. the real data curve), PW and PS are 
cumulative percentages of the wide dispersion and short dispersion 
populations respectively, and fW and fS are fractions (proportions) of the 
wide dispersion and short dispersion populations respec-tively. At this 
point in the partitioning procedure PS is the only unknown in the 
equation.  

4) The short dispersion population is then estimated as a straight line 
drawn through the points determined in the preceding steps. 

5) The partitioning procedure should then be checked by recalculating 
ideal combinations of the partitioned populations at various ordinate 
levels for comparison with the bimodal curve for real data. 

The foregoing partitioning method can be used most effectively in cases 
where the range of the wide dispersion population extends appreciably on either 
side of the short dispersion distribution. Considerably more guesswork is 
involved if the short dispersion population is shifted to one end of the effective 
range of the wide dispersion population. 

An hypothetical example of the partitioning procedure is shown in figure IV-
10. The curve was actually constructed for a 50:50 mixture of the two 
populations, W and S, shown. However, assuming we do not know the 
individual populations, partitioning would proceed as follows: 

1) The percentage range spanned by the central "flat" segment of the curve 
is about (80-20) = 60, i.e. our first trial might assume that W represented 
(100-60) = 40 percent of the combined population. 

2) Several points on each end segment are recalculated assuming W makes 
up 40 percent of the data. For example, on the upper segment 4 
cumulative percent on the curve becomes (4/40 x 100) = 10 cumulative 
percent on a newly estimated W. On the lower end segment calculations 
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are done in exactly the same manner except that the complements of 
cumulative percentages are used, i.e. 96 cumulative percent is read as 
(100 - 96) = 4 cumulative percent. 

3) It is apparent that the several points calculated for the two end segments 
do not define a single straight line. Consequently, calculations must be 
redone with a new estimate for the proportion of W present. Try 50 
percent. Recalculated points are shown on either end of the line W and it 
is apparent that W and its proportion have been defined. 

4) Populations S can now be estimated using the relationship PC = PW fW + 
PS fS. For example, at the 150 ordinate level: 

20.6 = .5 x 33.5 + .5 PS from which PS = 7.8 
A second point on S is already known, the intersection of W and the curve. A 
third point calculated at the 70 ordinate level gives:  

6.8 = 0.5 x 64.4 + 0.5 PS or PS = 89.2 
It is apparent that these three points describe a linear trend that defines 
population S. 

FIGURE IV-10 
Illustration of partitioning procedure for two intersecting populations W and S. 
The black dots joined by dashed lines indicate a first attempt based on an 
incorrect choice of relative proportions of S and W. With the proper choice of 
proportions the open circles at both extremities of the graph define a single 
(line) population, W. The three curves – S, Wand the mixture – intersect in a 
common point which in this case is coincidentally the 50 percentile. Other 
points on S can be determined as described in the text. 
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In this example, the results will not be checked because the bimodal 
population was originally constructed from S and W. Normally more points 
would be calculated for S and W than has been done here, where only a few 
points are shown in figure IV-10 to retain simplicity in the diagram and clarity 
of the partitioning procedure. 

In the writer's experience, plots of real geochemical and geophysical data 
having an intersecting pattern, are not nearly as common as are those of the non-
intersecting type. Furthermore, the scatter of points about a generalized pattern 
in real data can present ambiguities in interpretation. For example, certain 
combinations of 3 non-intersecting populations can produce patterns that closely 
approximate a bimodal, intersecting pattern. An example is described in section 
VI-4. 
 

IV-5: COMBINATIONS OF NORMAL AND LOGNORMAL 
POPULATIONS ON LOG PROBABILITY PAPER. 

Log probability graphs for data that consist of a combination of two 
populations, one normal and the other lognormal, can be analyzed best with an 
appreciation of idealized graphs generated from hypothetical populations. 
Certain types of data, such as ore grades and percentage minerals or elements in 
rock samples, offer.the possibility of a higher population that is normal and a 
lower population that is lognormal. Attention will be confined to this type of 
combination. Consider two such populations that overlap only slightly, as shown 
in figure IV-11, N a normal population (10 ± 2.6) and LN a lognormal 
population 1.5 (2.7, 0.84), that might simulate grades in some ore deposits. 

The resulting cumulative probability plot of the two hypothetical populations 
combined in the proportions 50:50 is shown as a curve N + LN in figure IV-11. 
The curve is similar in general form to a mixture of two lognormal populations, 
and it is difficult to recognize criteria by which the two forms can be 
distinguished readily and with certainty. 
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FIGURE IV-11 
Idealized pattern resulting if an upper normal population (N) and a lower 
lognormal population (LN) are combined on lognormal probability paper. In a 
real situation scatter of points defining the upper population could obscure its 
normal character and lead to it being interpreted as a lognormal population. 

 
Note that an inflection point at the 50 cumulative percentile is readily 

discernible. However, if this were used as a basis for partitioning two lognormal 
populations, it would not be possible to get a close check with the real curve and 
points recalculated from the partitioned populations. In particular, divergences 
would occur on that part of the curve representing the normal population. The 
presence of such divergences associated with only one part of a bimodal curve 
should lead to consideration of the possibility that a normal population is 
present. This can be checked by plotting the end of the curve having divergences 
from "check" points on arithmetic probability paper and attempting partitioning. 

Many arithmetic normal populations plotted over the full probability range on 
log probability paper can be crudely approximated by a straight line because 
their standard deviations are "short" ranges on a log scale. Hence one should 
keep in mind the possibility of normal and lognormal combinations in 
partitioning any curve that has the general form of two populations with widely 
different standard deviations. 

Furthermore, there are particular types of data that might be expected to 
contain both normally and lognormally distributed populations, some of which 
were mentioned earlier in this section. An additional point to consider is the 
form of bimodal histograms if these are available. 
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CHAPTER V 
EXAMPLES OF BIMODAL* PROBABILITY CURVES 

V-0: GENERAL STATEMENT 
Practical examples that could be cited in this chapter are almost infinite in 

terms of varieties of patterns and subject matter. The writer has chosen to restrict 
examples to topics of interest to the mineral exploration fraternity but, at the 
same time, to present real case histories sufficiently different in character and 
purpose to illustrate the wide range of applications of the techniques discussed 
in the preceding chapter. 

Examples are drawn almost exclusively from the writer's personal experience 
and are limited in scope to that extent. It should be pointed out that a very 
important application, choice of threshold values, with particular reference to 
geochemical data, is reserved for a separate chapter (Chapter VII). 

 

V-1: NON-INTERSECTING, BIMODAL DISTRIBUTION, 
7325 LEVEL, EAGLE VEIN, 
NORTHERN BRITISH COLUMBIA 

Eagle vein is a fairly regular, near vertical, copper sulphide-bearing deposit in 
the Liard Mining Division, northern British Columbia. Ninety-one Cu assays 
available for the 7325 level (Trimble 1972) are shown as a cumulative 
probability plot in figure V-1. A smooth curve drawn through the plotted points 
has the form of a non-intersecting bimodal distribution with an inflection point 
at the 62 cumulative percentile. This information was used to partition the curve 
into A and B populations, as shown in the figure using the method described in 
section IV-3. Ideal mixtures of the two curves, in the proportions 62 percent A 
and 38 percent B, were calculated as a check on the partitioning procedure and 
are shown as open triangles that coincide almost exactly with the smooth curve 
that describes original data points. 

Consequently, the 91 data values consist of (0.62 x 91) = 56 A values and 
(0.38 x 91) = 35 B values. Parameters of the two estimated lognormal 
populations are given in table V-1. 

Using the probability graph it is possible to group individual assay values as 
to population and then examine the geographic distribution of the different 
populations. In this case, assume thresholds at the lower 2 percentile of the A 
population (3.4% Cu) and the upper 2 percentile of the B population (5.8% Cu). 
Because only 2 percent of the A values (perhaps 1 value in this case) occur 
below 3.4 percent Cu, virtually all values below this limit are B population.  

 
* Bimodal is used here in the ideal sense, indicating the presence of two populations. 

 



48 
 

By comparable reasoning, virtually all values above 5.8 percent Cu belong to A 
population. The intermediate range between 3.4 and 5.8 percent Cu contains 
representatives of both populations and any given value in this range cannot be 
assigned to a specific population. The number of values in the intermediate 
range is small, however, about 12 percent of the total, or about 10 or 11 values. 

FIGURE V-1 
Log probability plot of 91 Cu assay valves, 7325 level, Eagle vein, northern B. 
C. Original data are plotted as black dots, open circles are estimated 
partitioning points, open triangles are check points obtained by ideal 
combination of partitioned populations A and B. Inflection point is shown by a 
small arrow. 

 
 

TABLE V-1 
PARAMETERS OF PARTITIONED LOGNORMAL POPULATIONS, 

CU ASSAYS (%) 7325 LEVEL, EAGLE VEIN 

Population Proportion N b b + sL b - sL 
A: High Grade 62 56 9.5 16.1 5.6 
B: Low Grade 38 35 0.51 1.63 0.16 

A + B 100 91 
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Individual values can now be coded by colour or symbol on a plan of the 
level, according to the group they represent and the geographic distribution of 
populations can be examined. A schematic plan of this procedure is shown in 
figure V-2 which emphasizes the geographic grouping of the two populations. 
Values in the intermediate range plot in zones of the two distinctive populations 
in about the same proportions as expected from the interpretations. There are, in 
fact, 9 intermediate values compared with the 10 or 11 forecasted by the model. 

FIGURE V-2 
Relative distribution along 7325 level, Eagle vein, of samples of the two 
populations obtained by partitioning as shown in figure V-1 and explained in 
text. 

 
In this case it has been possible to define a central segment of the vein (figure 

V-2) that consists almost exclusively of population B, with the remainder of the 
vein being characterized by population A. The geological character of these vein 
segments now can be investigated. On 7325 level, the central segment is 
distinguished from the rest of the vein by a much more pronounced shearing, 
fracturing and oxidation (Trimble 1972). This was recognized without recourse 
to probability plots but it is interesting to note that the probability analysis 
produced results identical with those based on field observation. In other cases 
such distinctions might not be so obvious without the help of "grouping" 
supplied by an analysis of a probability graph. 

 

V-2: NON-INTERSECTING BIMODAL DISTRIBUTION – CHOICE 
OF CONTOUR VALUES. 

Many types of mineral exploration data commonly are presented as contoured 
plans or sections. As a rule, the choice of contour values is a subjective decision 
based on a general, though perhaps detailed, perusal of the data. A more 
rigorous and standardized procedure is to take advantage of information gained 
from probability graphs to contour data in a meaningful and useful manner. 

In the simplest case, that of a single population, it is convenient to use the 
mean value as a reference contour, and to use appropriate multiples of the 
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standard deviation as other contour values. In particular, one of the contours 
could coincide with the value (b + 2s ) to outline samples or areas that might be 
anomalous in the case of certain geochemical data (See Hawkes and Webb, 
1962). Such contours have an additional value because, assuming the data are 
representative of an area or zone, one can determine rapidly the proportion of a 
sampled area that contains values above or below any specified contour. For this 
purpose it is convenient to choose contour values that are removed from the 
mean (both above and below) by simple multiples of the standard deviation. A 
contoured map of zinc in soils, described in section III-2, showed the upper 2.5 
percent of values to occur as sporadic highs outside known mineralized areas. 

In the case where two populations are represented in data, choice of contour 
values is somewhat more complex. A suggested procedure to follow involves 
the partitioning of the two populations as described in chapter IV. If no 
significant overlap of the two populations exists, contour values can be chosen 
from each of the individual partitioned populations as described previously. In 
addition, it is useful to choose another contour value that effectively separates 
the two populations. 

Where significant overlap of the two populations occurs, it is useful to define 
two thresholds as described in chapter VII, and use these as contours that divide 
the data into three groups, an upper group consisting essentially of a high 
population, a lower group consisting principally of a low population, and an 
intermediate group representing the effective range of overlap of the two 
populations and containing values belonging to both populations. Additional 
contour values above and below the threshold values could be chosen in the 
same manner as described for a single population. 

For polymodal distributions containing more thann two populations the 
procedure for choosing contours becomes complicated, in part because of 
difficulties in interpreting the cumulative curve. In straightforward cases such as 
those described in chapter VII, however, a series of thresholds can be 
established in the same manner as ' for bimodal populations, and these 
thresholds provide useful contour values (eg. Montgomery et al, 1975). 

As an example of the application of these procedures to a real situation, 
consider Pb assays from production blast hole samples, Brenda Mine, B. C. 
Brenda Mine is a large, low-grade Cu-Mo deposit in south-central British 
Columbia. Ore grade material is confined to a. single quartz diorite phase of the 
Lower Jurassic Brenda stock, although low grade material extends into other 
adjacent phases. As part of a study of the minor element distribution in and 
around the main pit area, 323 samples taken from blast hole cuttings from the 
5060 level were analyzed for Pb (Oriel, 1972). Data are shown as a probability 
plot in figure V-3. The pattern is that of two nonintersecting lognormal 
populations. A smooth curve drawn through the plotted data points was 
partitioned into an upper S population and a lower R population based on an 
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inflection point at the 10 cumulative percentile and using the method described 
in section IV-3. Overlap of the partitioned populations is negligible. 

FIGURE V-3 
Probability plot of 323 production blasthole Pb assays, 5060 level, Brenda 
Mine, southern B.C. Partitioned populations S and R have been interpreted as 
representing Pb in sulphides and silicates (rock) respectively. See figure V-1 for 
explanation of symbols. 

 
Oriel interprets the upper population, S, as indicative of sulphide lead 

(galena) and the lower population, R, as background lead held in the rock in 
silicate lattices. Because the study was a pilot project to investigate the 
possibility of zonal distribution of minor elements in and near the orebody, 
considerable importance was attached to selecting one or more contour values 
that would enhance the distinction between the two populations. In this case, a 
value of 280 ppm lead effectively separate samples and zones characterized by 
the two populations. 
 

V-3: BOTTOM TRUNCATED, NON-INTERSECTING BIMODAL 
DISTRIBUTION — PRODUCTION TONNAGES, SLOCAN 
CITY MINING CAMP, B.C. 

This example concerns total known production and reserves (tonnages) of 73 
Pb-Zn-precious metal, vein deposits in Slocan City Mining Camp, south-central 
British Columbia (Sinclair, 1974b). The veins are small and although rich would 
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probably not be of much interest to exploration companies at the present time 
because of their size and low gross value. Data, however, illustrate a method of 
analysis that is generally applicable to other mining camps, providing adequate 
information is available. Source of the data is given by Orr and Sinclair (1971). 

FIGURE V-4 
Probability plot of production tonnages of 73 vein deposits, Slocan City camp 
(Orr and Sinclair, 1971). Individual values have been cumulated. Note 
flattening at lower end, suggestive of bottom truncation. 

 
A probability plot of the data, including all deposits that have produced at 

least one ton of ore, is given in figure V-4. Note that production tonnages span 
five orders of magnitude. Consequently, it was convenient to plot logarithmic 
values on arithmetic probability paper to avoid the awkward, elongated graph 
that would have resulted had 6-cycle log probability paper been used. 
Furthermore, the curve has been constructed by cumulating individual values 
(see section VIII-1) rather than grouping data in intervals. A smooth curve 
drawn through the data points of figure V-4, has the pattern of a non-intersecting 
bimodal distribution. The pronounced flattening of the curve at its lower end 
suggests the lower distribution has been truncated, a plausible likelihood in view 
of the arbitrary lower limit of 1 ton for available data. If the populations are truly 
lognormal, the percentage of missing data below the level of truncation can be 
estimated by a trial and error procedure. This was done using the method 
described in section 11-4, and indicated that the lower 10 percent of the data had 
been truncated. Original data were then replotted in corrected form, and is 
shown in figure V-5. 
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The curve in figure V-5 was partitioned by the method described in section 
IV-3, assuming an inflection point at the 10 cumulative percentile. Points used 
to estimate the partitioned populations H and L are shown as open circles. It is 
apparent that population L is well defined whereas some uncertainty exists in 
defining distribution H. 

TABLE V-2 
PARAMETERS OF PARTITIONED POPULATIONS, 

SLOCAN CITY TONNAGE DATA 

   
In Short Tons 

Population Proportion N b b + sL b - sL 
H: High tonnage 10 7 9120 26910 316 
L: Low tonnage 90 66 16.2 132 2 

 

FIGURE V-5 
Probability plot of data of figure V-4 corrected for an assumed bottom 
truncation of 10 percent. See figure V-1 for explanation of symbols. 
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This uncertainty arises because of the small sample size and the relatively 
small proportion of population H in the total data. A number of checks were 
then made on the partitioning results by calculating ideal mixtures of H and L in 
the proportion 10:90. These are shown in figure V-5 as open triangles that 
almost coincide with the smooth curve describing the data. 

Figure V-5 can now be used to extract several types of useful information. 
Parameters of the two distributions are shown in table V-2. We know that 10 
percent of our 73 deposits (say 7) belong to the high tonnage population H and 
the remaining 66 deposits to a low tonnage population L. Because there is very 
little overlap of the effective ranges of the two populations, the 6 or 7 highest 
tonnage deposits can be assumed to belong to population H. Thus, the 
probability analysis has produced an important grouping of the data, that permits 
recognition of the specific population to which individual deposits belong. 
Geological characteristics of these groups can be examined for features that 
might permit rapid and certain distinction between the two tonnage groups. Such 
information could affect decisions involving additional exploration of a newly 
discovered deposit, or might point to a few "low tonnage" deposits with 
previously unrecognized high tonnage potential. In a detailed study of Slocan 
City Camp, Orr (1971) found that high tonnage deposits are characterized by the 
presence of carbonate in gangue, and a definite narrow range of vein 
orientations (strikes). 

The probability plot of figure V-5 can also be used as a rapid method for 
estimating probabilities that a new find will meet some specified minimum 
exploration target. Assume for Slocan City Camp that a minimum size of 5000 
[logl0 (5000) = 3.699] tons has been estimated as necessary for profitable 
production. The probability that a newly found deposit will meet this minimum 
requirement is read from the curve as about 6% (i.e. 6 chances in 100). 
However, if the newly found deposit, can be classified into population H or L on 
the basis of observed geological features, the probability changes drastically. If 
recognized as a member of population H the probability that a deposit will 
exceed the minimum target is about 60 percent, whereas if it belongs to 
population L the probability of success is less than one percent. 

Of course, an analysis of probability plots will not solve all problems. They 
simply provide an easy semi-quantitative approach to analysis of density 
distributions that allows the formulation of reasonable hypotheses concerning a 
given set of data and direct our attention by grouping data into specific 
populations. Interpretation of the significance of these populations is a matter for 
the investigator. The situation is not helped significantly if only a single 
population is found. On the other hand, the polymodal aspect of tonnage 
populations could be easily overlooked without the help of probability graphs. 

 



55 
 

V-4: INTERSECTING LOGNORMAL BIMODAL DISTRIBUTION - 
Sb IN STREAM SEDIMENTS, MT. NANSEN AREA, YUKON. 

A probability plot of 158 Sb analyses of stream sediments from near Mt. 
Nansen, Yukon Territory (see Bianconi and Saager, 1971), is shown in figure V-
6. Because of the low precision of analyses (the 95 percent confidence limits are 
± 50 percent) the plotted points are somewhat scattered, but the general form of 
their probability curve drawn freehand through the original data is that of an 
intersecting bimodal lognormal distribution. Hence the curve was partitioned 
using the method described in section IV-4 to obtain estimated populations W 
and S as shown. Check points based on a combination of 40 percent W and 60 
percent S, shown as open triangles in figure V-6, coincide almost exactly with 
the smooth curve. Estimated parameters of S and W are given in table V-3. 

FIGURE V-6 
Probability plot of 158 antimony analyses of stream sediments, Mt. Nansen 
area, Yukon. This is an example of an intersecting type. See figure V-1 for 
explanation of symbols. 

 
 

TABLE V-3 

ESTIMATED PARAMETERS OF PARTITIONED POPULATIONS Sb 
IN STREAM SEDIMENTS - MT. NANSEN AREA, YUKON 

Population Proportion N Values in ppm Sb 

 
% 

 
b b +sL b - sL 

S 60 95 4.9 6.55 3.35 
W 40 63 2.44 6.1 0.98 

S + W 100 158 
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Information in table V-3 and figure V-6 can be used to estimate thresholds 
that group the data in the most useful manner for interpreting their geological 
significance (see chapter VII). Here, thresholds are arbitrarily chosen at ordinate 
levels that correspond to the 2.5 and 97.5 cumulative percentiles of population 
S. These percentiles correspond to 8.8 and 2.7 ppm Sb respectively. This range 
includes 95 percent of the S population and (43 - 8.5) = 34.5 percent of the W 
population, i.e. about 90 S values and 22 W values in this case. Therefore, in this 
intermediate range, S values are about 4 times as abundant as are W values, 
although individual values cannot be assigned specifically to either of the 
partitioned populations. 

The remaining values, both above and below the intermediate range, belong 
predominantly to W population. In fact, only 4 or 5 values belong to S 
population whereas 41 or 42 represent W values. In other words, W values are 8 
to 10 times more abundant than S values outside the central ppm range. The 
thresholds can be used to code values by colour or symbol on a plan of the area, 
in an attempt to define the fundamental geological significance of the two 
populations. 

 

V-5: NON-INTERSECTING, NORMAL, BIMODAL DISTRIBUTION 
— AVERAGE Pb GRADES VEIN DEPOSITS, AINSWORTH 
CAMP. 

Average Pb grades of 71 vein deposits, Ainsworth Mining Camp, southern 
British Columbia, are shown as a probability graph in figures V-7 and V-8. Data 
are shown on log probability paper (figure V-7) as an example of the form that 
normal distributions take when plotted on lognormal probability paper. The plot 
of figure V-8 has the form of a bimodal distribution that can be partitioned using 
the method described in. section IV-3, based on an inflection point at the 40 
cumulative percentile. To check the partitioning procedure, a number of ideal 
mixtures of the two partitioned populations were calculated.  

These are shown as a series of open triangles on figure V-8 that closely agree 
with a curve drawn freehand through original data points. 

Parameters of the partitioned populations can now be estimated from the 
graph. These are 48 ± 12 percent Pb and 7.0 ± 3.9 percent Pb for the upper and 
lower populations respectively. 

The interpretation is not unambiguous. An examination of the upper 
population suggests that it might in fact represent an averaging of two 
populations. Data are not adequate to provide convincing proof but the 
possibility of a third population should be kept in mind. 
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FIGURE V-7 
Log probability plot of average Pb grades for 71 vein deposits, Ainsworth 
Camp, southern B.C. This pattern could arise by plotting a combination of two 
normal distributions on logarithmic probability paper. The same data are shown 
in figure V-8 plotted on arithmetic probability paper. 

 
 

FIGURE V-8 
Data of figure V-7 plotted on arithmetic probability paper. 
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V-6: MAGNETOMETER DATA, CENTRAL BRITISH COLUMBIA. 
Figure V-9 is a probability plot of values obtained from a ground 

magnetometer survey carried out on a grid over a claims group in central British 
Columbia. The curve has the form of a bimodal distribution of the non-
intersecting type and is easily partitioned into populations A and B using the 
method described in Section IV-3, assuming an inflection point at the 91 
cumulative percentile. Partitioned populations combine reasonably well to give 
the original curve, although it is apparent that agreement is not as good at the 
lower end as at the higher end. 

FIGURE V-9 
Probability plot of values obtained from a ground magnetometer survey central 
British Columbia. See figure V-1 for explanation of symbols. 

 
The two populations have a very short range of effective overlap as indicated 

by the steepness of the central segment of the data curve. In fact, at least to a 
first approximation, it is possible to pick a single value (antilog 3.14 = 1380 
gammas) that fairly effectively separates values within the two populations. The 
populations were found to correspond closely to the two dominant rock types in 
the survey area. Parameters of the two populations can be determined from the 
graph and serve as estimates that characterize values associated with individual 
rock types. These parameters are listed in table V-4. 
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TABLE V-4 

Population Proportion % 
Parameters* 

(logarithms-base 10) 
𝐱� s 

A 91 3.298 0.075 
B 9 2.867 0.123 

 
* Antilogs of the parameters provide values in gammas 
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CHAPTER VI 
PROBABILITY PLOTS OF COMBINATIONS OF THREE 

OR MORE POPULATIONS 

VI-0: GENERAL STATEMENT 
In general, as the number of populations represented in a single probability 

curve increases, more and more uncertainty is present in interpretation of the 
curve. This is particularly true in the cases of relatively few data values. To 
offset this difficulty, a useful procedure is to group data on the basis of some 
underlying physical or chemical property, such as rock type, pH, etc., to produce 
curves amenable to a simple and straight-forward, interpretation. In some cases, 
however, such grouping is not possible and a polymodal probability curve must 
form the basis of any interpretation attempted. As a rule, interpretation of 
distributions containing only three populations is straight-forward, although 
ambiguity can arise. 

 

VI-1: CONSTRUCTION OF PROBABILITY CURVES FOR 
COMBINATIONS OF THREE POPULATIONS. 

Consider the three lognormal populations, A, B, and C in figure VI-1, with 
approximate parameters 200 (290, 148), 50 (70, 36) and 15 (21, 10.7) 
respectively. Assume that these are to be combined in the proportions 1:1:1. It is 
convenient here to combine these populations in two successive stages using the 
method described in section IV-2. First, populations A and B are mixed in the 
proportions 1:1 to obtain the curve (A + B). Then (A + B) and C are mixed in 
proportion 2:1 to give the curve (A + B + C). An examination of curve (A + B + 
C) shows that two inflection points are present. As a general rule, the number of 
inflection points is one less than the number of populations present. 
Furthermore, as with the bimodal case, the inflection points provide accurate 
estimates of the proportions in which the three populations are present, i.e. at the 
33 and 67 cumulative percentiles. These relationships form the basis for 
partitioning probability curves of real data. 

Normally, if three populations are present and do not overlap too ex-
tensively, their partitioning is a straight-forward procedure not unlike that of a 
bimodal curve, but involving an additional step. Considerable ambiguity can be 
present, however, if relatively few data values are available, or if intersecting 
populations are present. 
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FIGURE VI-1 
Diagram illustrating successive combination of 3 populations A, B and C. A and 
B are combined in the ratio 1:1 to produce (A + B). (A + B) is then combined 
with C in the ratio 2:1 to produce (A + B + C). Note the 2 inflection points on 
(A + B + C) at 33 and 67 percentiles. 

 
In probability curves with the general form of figure VI-1, the partitioning 

procedure is fairly simple. The highest and lowest populations can be partitioned 
in exactly the same way as for bimodal curves, as described in section IV-3. 
With experience, it is possible in some cases to partition the intermediate 
population directly. More commonly, however, it is necessary to use a simpler 
but somewhat longer procedure that involves: 

1) Combination of the high and low populations in the proportions in 
which they are present (derived from inflection points).  

2) Application of the formula 
   P(A + B + C) = fB PB + f(A + C) P(A +C) 
for various levels. In this equation P(A + B + C) and P(A + C) are read from 
the probability graph. The three populations thus partitioned should be 
recombined at various ordinate levels for comparison with the real data 
curve. 

Figure VI-2 is presented to illustrate one of the ways in which practical 
difficulties can arise. The three hypothetical populations A, B, and C, with 
approximate parameters 250 (383, 162), 70 (133, 36) and 20 (26.5, 15.9) have 
been combined in the proportions 20:30:50 respectively, in stages, as shown in 
the figure. In this case, the upper inflection point at the 20 cumulative percentile 
is indiscernible, although the inflection point at the 50 cumulative percentile is 
apparent. This example differs from the preceding one in that the two higher 
populations overlap to a considerable extent. Furthermore, each of the upper two 
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populations comprises a significantly lower proportion of total data than does 
the lower population. In comparable cases with real data, it is certain that the 
upper inflection point would be entirely masked and one would be inclined to 
attempt an interpretation involving only two partitioned populations. For this 
particular hypothetical case, partitioning of the curve on the basis of an assumed 
bimodal distribution would result in population C being well defined but the 
upper partitioned "population" would not show a linear pattern. Instead a 
bimodal curve comparable to (A + B) in figure VI-2 would emerge that could 
itself be partitioned to give estimates of the A and B populations. 

FIGURE VI-2 
An example of 3 combined populations that superficially resembles the 
combination of 2 non-intersecting populations. Note the ambiguity in defining 
inflection points. 

 
 

VI-2: pH VALUES OF STREAMS, SOUTHERN BRITISH 
COLUMBIA. 

pH measurements of streams are commonly an integral part of stream 
sediment and/or water geochemical surveys. A probability plot of pH values 
from one such survey in southern British Columbia, is shown in figure VI-3. 
The plot is on arithmetic probability paper, a logarithmic transform being built 
into the data because of the very nature of pH values. A smooth curve through 
the plotted points has the form of a trimodal distribution, with inflection points 
at the 16 and 85 cumulative percentiles. The curve has been partitioned using the 
method described in section VI-1 to obtain populations A, B, and C. Check 
points, based on ideal mixtures of the three populations in the proportions 
16:69:15, are shown as open triangles that agree remarkably well with the real 
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data curve. Estimated parameters of the three partitioned populations are 
summarized in table VI-1. 

Thresholds arbitrarily chosen at the 99 cumulative percentiles of the A and B 
populations, and the cumulative percentiles of the B and C populations, as 
described in section VII-1, divide data into four groups (see table VI-2). This 
grouping could be of fundamental significance in interpretation of 
accompanying stream sediment analyses because of the important effect pH 
exerts on metal dispersion and concentration. Hence, the groups defined on the 
basis of the pH probability plot should be treated separately when various metal 
abundances are being examined as probability graphs. 

FIGURE VI-3 
Partitioned probability plot of pH values taken as part of a regional stream 
sediment survey, southern British Columbia. See figure V-1 for explanation of 
symbols. 

 
 

TABLE VI-1 
ESTIMATED PARAMETERS OF PARTITIONED POPULATIONS, 

pH VALUES, SOUTHERN B.C. 

Population Proportion % 𝐱� s 
A 16 7.2 0.1 
B 69 6.69 0.15 
C 15 5.88 0.21 

A + B + C 100 
  



64 
 

 
TABLE VI-2 

ESTIMATED THRESHOLDS, pH VALUES, SOUTHERN B.C. 
pH Thresholds Principal Content of Range Percent of Total Data 

 POPULATION A 15 
7.04 

POPULATIONS A + B 4.5 
6.93 

POPULATION B 64.5 
6.36 

POPULATION C 16 
  

VI-3: APPARENT RESISTIVITY DATA, SOUTHERN BRITISH 
COLUMBIA. 

Figure VI-4 is a cumulative probability plot of 708 apparent resistivity values 
obtained as part of an I.P. survey over a mineral prospect in southern British 
Columbia. The graph has a complex form with inflection points located 
approximately at the 8, 22, and 63 cumulative percentiles indicating the possible 
existence of four lognormal populations. Partitioning, proceeding on the 
assumption of lognormality, gives the four populations shown as straight lines. 
Control points used in obtaining the partitioned populations are shown as open 
circles.' The four partitioned populations were then recombined ideally in their 
respective proportions, at selected points shown as open triangles that virtually 
coincide with the original data curve. Consequently, the assumption of four 
lognormal populations in the original data set appears a plausible model and 
interpretation can proceed on this basis. In practice, interpretation of the 
significance of each population should be done in a manner comparable to that 
for geochemical data, i.e. selection of thresholds as described in chapter VII, and 
colour coding of various groups of values thus obtained for ease of comparison 
with geological maps or other data. 

This example of partitioning assumes that because the original curve has a 
large data base (708 values) the inflection points are significant. Furthermore, 
the example illustrates the ease with which partitioned populations can be 
estimated when only relatively few points are available to define them. The 
actual partitioning procedure is of some interest. Populations A and D were 
partitioned in the normal way and the two were subtracted from the original data 
curve. The resulting "difference" curve had a simple bimodal distribution pattern 
that was easily partitioned into populations B and C. 
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FIGURE VI-4 
Partitioned probability plot of 708 apparent resistivity readings over a mineral 
prospect in southern British Columbia. See figure V-1 for explanation of 
symbols. 

 
 

VI-4: GROUND MAGNETOMETER SURVEY, ASHNOLA 
PORPHYRY COPPER PROSPECT, SOUTHERN BRITISH 
COLUMBIA. 

This example illustrates some of the ambiguities that arise in analysis of real 
polymodal data. Figure VI-5 is a log probability plot of 772 magnetometer 
readings obtained on a regular grid over the Ashnola porphyry copper prospect 
in southern British Columbia (Montgomery et al, 1975). Ignoring a slight 
variation at the upper end of the graph, one might easily interpret the general 
form as a combination of two intersecting populations. Alternatively, the pattern 
can be explained as the combination of three non-intersecting populations. 
Which of these interpretations is more likely? The probability graph itself does 
not necessarily provide an answer to this question. Where such ambiguities arise 
it seems wise to attempt both interpretations and evaluate them in terms of 
independent information, geological, for example. For the particular example 
quoted here, the model involving three non-intersecting populations seemed 
most reasonable because the partitioned populations could be related to rock 
types. In particular, the upper partitioned population, A of figure VI-5, which 
was ignored in the "two non-intersecting populations model" was found to 
correlate with several dyke-like intrusions of magnetite-bearing quartz 
monzonite. 

This type of ambiguity is not uncommon in polymodal data in which one 
population dominates others by an order of magnitude or more. Alternate 
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interpretations can easily escape detection if considerable scatter of data occurs 
in the probability plot, as might be expected with relatively few data. 

FIGURE VI-5 
Probability plot of 772 ground magnetometer readings over Ashnola por-phyry 
copper prospect, southern British Columbia. 
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CHAPTER VII 
EFFECTIVE GROUPING OF POLYMODAL DATA — 
ESTIMATION OF THRESHOLDS IN GEOCHEMICAL 

DATA 

VII-0: GENERAL STATEMENT 
Threshold is a term commonly used in the mineral exploration industry to 

signify a specific value that effectively separates a set of data into high and low 
groups that result from different causes. Commonly, the term is applied to a 
value that distinguishes an upper anomalous set of data from a lower 
background set. In many types of data anomalous values are associated with 
mineralized areas. Hence, the estimation of a threshold value can be of 
considerable importance in directing exploration towards anomalous areas 
where the chances of discovery of an economic mineral deposit are greatly 
enhanced. 

Thresholds are chosen in a variety of ways. The method recommended in 
several publications involves estimation of the statistical parameters of a data set 
and the arbitrary designation of values lying more than two standard deviations 
from the mean as being anomalous. In some cases this procedure might be 
adequate but the subjective approaches commonly used in practice, based on 
evaluation of an histogram or general perusal of tabulated data, suggests that the 
statistical approach is lacking in effectiveness. In fact, use of quantitative 
subjective approaches is a recognition of the fact pointed out by Bolviken 
(1971), that both anomalous and background values each represent their own 
density distributions. There is obviously no reason why only 2½ percent of any 
data set need be anomalous – why not 1 percent or 25 percent? In a case where 
no effective overlap of the two population occurs, it is a relatively easy matter to 
pick a threshold by rapid perusal of either a histogram or tabulated data 
(providing the data list is not too long). However, as the two populations overlap 
more and more, choice of a threshold becomes increasingly difficult. What is 
more, the effectiveness of a single threshold value decreases. If it is chosen in 
such a manner that all anomalous values are included, then a high proportion of 
background values are also included. If it is chosen at some point within the 
range of overlap then a number of anomalous values are missed due to inclusion 
with background values. Obviously a procedure is desirable for choosing 
threshold values that maximizes the recognition of anomalous values and 
minimizes the number of background values included with anomalous values. 
Cumulative probability plots provide an effective graphical technique to solve 
this problem (Sinclair, 1974a). 

In a previous section (III-2), the writer suggested that the method of Hawkes 
and Webb (1962), of assuming the mean plus 2 standard deviations to be a 
threshold, values above which are anomalous, provides a useful safety factor 
when a single population is indicated on a probability graph of the data. In such 
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a case, a very small proportion of the data might represent an anomalous 
population present in sufficiently small proportion that it does not show up on a 
probability graph. It is thus a wise procedure to assume the upper few values are 
anomalous until proven otherwise. 

 

VII-1: CHOICE OF THRESHOLDS IN BIMODAL DISTRIBUTIONS 
Many practical examples of geochemical data consist simply of combinations 

of a single background population and a single anomalous population. Such 
distributions commonly plot on log probability paper as curved distributions of 
the non-intersecting type discussed in chapters IV and V. An hypothetical 
example is shown in figure VII-1. Here the curved distribution is partitioned into 
two populations, A [100 (144, 71)] and B [42 (55, 33)] on the basis of an 
inflection point at the 20 cumulative percentile. Thresholds are chosen 
arbitrarily near the upper extremity of the B population and the lower extremity 
of the A population. For example, thresholds can be chosen at the 99 and 1 
cumulative percentiles of the A and B populations respectively. There is nothing 
sacrosanct about these choices. In a given problem they could be different. In 
the writer's experience, the 98 or 99 and 1 or 2 cumulative percentiles have 
provided useful practical thresholds. These percentiles divide the data into three 
groups based on arbitrary thresholds at the 44 and 78 ppm levels. Sixteen 
percent of the total data is above the 78 ppm level. This consists of about 76 
percent of the anomalous values and 1 percent of the background values. If the 
data set contained 100 values for example, the 16 greater than 78 ppm would 
consist of approximately 15 anomalous samples and 1 background sample. 

FIGURE VII-1 
An idealized bimodal distribution is partitioned into components A and B. 
Thresholds are chosen arbitrarily at I cumulative percent B and 99 cumulative 
percent A to give values of 78 and 44 ppm metal respectively. 
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The lower group, below 44 ppm, contains about 46 percent of the total data. It 
is made up of 57 percent of the background population and 1 percent of the 
anomalous population. In the case of a data set with 100 values, one anomalous 
value at most would be in this lower group and the remaining values would be 
background population. 

The intermediate group between the arbitrary thresholds of 78 and 44 ppm 
contains about 38 percent of the values consisting of about 42 percent of the B 
population and 23 percent of the A population. In our hypothetical sample of 
100 values, the intermediate group would contain four or five A values and 
thirty-three or thirty-four B values. Results are summarized in Table VII-1. 

TABLE VII-1 
DISTRIBUTION OF VALUES OF POPULATIONS A AND B AMONG 

GROUPS DEFINED BY ARBITRARY THRESHOLDS: 
HYPOTHETICAL EXAMPLE 

 Total Data Population A Population B 

 % N % N % N 
GROUP I 
78 ppm 16 16 76 15 1 0.8 

GROUP II 
44 ppm 38 38 23 4.8 42 33.6 

GROUP III 46 46 1 0.2 57 45.6 
TOTALS 100 100 100 20 100 80 

 
This procedure has thus divided the anomalous values effectively into two 

groups, an upper group in which they outnumber background values by about 15 
to 1, and a second group where they are outnumbered by background values by 
about 5 or 6 to 1. Priorities for further evaluation can now be assigned to each of 
the upper groups – top priority to the upper group because virtually all values in 
it are anomalous, and a lower priority to the central group because, although it 
contains essentially all remaining anomalous value, abundant background values 
are present. 
 

VII-2: Cu IN STREAM SEDIMENTS, MT. NANSEN, AREA, YUKON 
TERRITORY 

Cu analyses of 158 stream sediment samples from the Mount Nansen area, 
Yukon Territory, are shown as a probability plot in figure VII-2 (see Saager and 
Sinclair, 1974). A smooth curve through the plotted points has the form of a 
bimodal distribution consisting of two non-intersecting lognormal populations. 
An inflection point is evident at about 15 cumulative percent. The curve was 
partitioned, using the method described in section IV-3, to obtain populations A 
and B whose estimated parameters are given in Table VII-2. The partitioning 
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procedure was checked at various ordinate levels by combining the two 
partitioned populations in the proportions 15 percent A and 85 percent B, with 
check points shown in figure VII-2 as open triangles that essentially coincide 
with the real data curve. In this example, some of the high values of population 
A are associated with known Cu-Mo sulphides related to porphyritic intrusions, 
and it seems reasonable to interpret the two populations as anomalous (A) and 
background (B). 

Two arbitrary thresholds can be determined readily from the graph at the 1.0 
and 99.0 cumulative percentiles of the B and A populations respectively. These 
percentiles coincide with values of 70 and 37 ppm Cu respectively. Hence, the 
data are divided into three groups, an upper group of predominantly anomalous 
values, a lower group of predominantly background values, and an intermediate 
group containing both anomalous and background values. Of the 158 values, 
about 23 are anomalous and 135 are background; 80 percent, or about 18 of the 
anomalous values are above the 70 ppm threshold, as are one or two background 
values. The remaining 5 values are, for all practical purposes, contained in the 
intermediate group with about 11 background values. The lower group consists 
of 91.5 percent of the background samples, i.e. about 124 values. 

FIGURE VII-2 
Partitioned log probability plot of 158 Cu determinations on stream sediments, 
Mt. Nansen area, Yukon. See figure V-1 for explanation of symbols. 
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TABLE VII-2 
ESTIMATED PARAMETERS OF PARTITIONED POPULATIONS, Cu 

IN STREAM SEDIMENTS,  MT. NANSEN AREA — YUKON 
TERRITORY 

Population Proportion % No. 
Values in ppm Cu 

b b + sL b - sL 
A 

Anomalous 15 24 101 155 63 

B 
Background 85 134 14.7 28.5 7.4 

A + B 100 158     
This procedure has permitted definition of two ranges of ppm Cu that contain 

anomalous values, and to which priorities can be assigned for follow-up 
investigation. Values above 70 ppm Cu have top priority because they are 
almost entirely anomalous. Second priority is assigned to the 16 values between 
37 and 70 ppm Cu because only 5 are anomalous. 

Theoretically, individual values in the intermediate range cannot be assigned 
to either A or B populations. In practice, however, many, if not all, can 
commonly be recognized with a fair degree of certainty. Colour coding of values 
on a plan, according to their respective groups, permits recognition of those 
intermediate range samples that occur downstream from recognizable 
anomalous values. In many cases, virtually all anomalous samples in the 
intermediate range can be identified. A comparable procedure can be used in 
dealing with soil or whole rock analyses for which two thresholds are 
recognized. In this way, follow-up examination of second priority values can be 
cut to a minimum. 
 

VII-3: Ni IN SOILS, NEAR HOPE, BRITISH COLUMBIA. 
Figure VII-3 is a log probability graph of 166 Ni analyses of soils obtained 

from a grid superimposed on a known Cu-Ni showing related to ultramafic rocks 
enclosed in regionally metamorphosed fine-grained sedimentary strata near 
Hope, British Columbia. A smooth curve drawn through the plotted points 
indicates the presence of at least three populations, by inflection points at the 5.5 
and 25 cumulative percentiles (see section VI-1). Two populations, A and C, 
were partitioned using techniques described in section IV-3. Estimation of the 
third population, B, was done as described in chapter VI, using the relationship 

PM = fA PA + fB PB + fC PC 
where PM is the probability read from the real data curves, fA, fB, and fC are 
proportions determined from inflection points, and PA , PB and PC are 
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probabilities on the three partitioned populations. Populations A, B, and C, were 
then combined ideally in the proportion 5.5 A, 19.5 B, and 75 C, at a number of 
Ni ppm levels. These ideal points are shown in figure VII-3 as open triangles 
that virtually coincide with the real data curve. 

FIGURE VII-3 
Partitioned log probability graph of 166 soil (B-horizon) Ni values from an area 
near Hope, B. C. that includes a small Cu-Ni showing. See figure V-1 for 
explanation of symbols. 

 
 

TABLE VII-3 
ESTIMATED PARAMETERS OF PARTITIONED POPULATIONS, Ni 

IN SOILS, HOPE AREA, B.C. 

Population  Proportion 
% 

No. of 
samples 

Values in ppm Ni 
b  b + sL  b - sL 

A: Anomalous 5.5 9 1170 1380 980 
B: Background 
(Ultramafic) 19.5 32 356 515 248 

C: Background 
(Metaseds ) 75 125 52 108 24.5 

 100 166     
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Population A is obviously not well defined, as indicated by the scattering of 
points used to define it. The main reason for this is that population A is only a 
small proportion of the total data and represents a very small sample on which to 
base the estimate of the entire population. Populations B and C, on the other 
hand, appear reasonably well defined. Estimated parameters are given in table 
VI-3. Populations B and C overlap somewhat and two thresholds are necessary. 
These thresholds are taken arbitrarily at the 2 cumulative percentile of 
population C (i.e. 236 ppm Ni) and the 98 cumulative percentile of population B 
(i.e. 170 ppm Ni). The three thresholds, reproduced in table VII-4, divide the 
data into four groups, three of which consist principally of single populations. 
(See table VI-3). 

TABLE VII 

ESTIMATED THRESHOLDS, Ni IN SOILS — 
HOPE AREA, BRITISH COLUMBIA 

Threshold (ppm Ni) Principal Content of Group 

 Almost exclusively A Population 
780 

Almost exclusively B Population 
236 

Combination of B and C Populations 
170 

Almost exclusively C Population 
  

Threshold values can be used as contour values on a plan of the grid, or as a 
basis to code sample locations by colours or symbols to aid in interpretation. In 
this case, population A is related to Ni-Cu mineralization and is therefore 
interpreted as anomalous. Population B corresponds to areas underlain by 
ultramafic rocks and population C to areas underlain by metasedimentary rocks. 

This example illustrates the arbitrary nature of threshold choice. Thresholds 
between, B and C population could equally well have been chosen, using 1 and 
99 cumulative percentiles of the C and B populations respectively, as was done 
in the Mount Nansen example. 

 

VII-4: Cu IN SOILS, SMITHERS AREA, BRITISH COLUMBIA 
A probability plot of 795 soil copper analyses from an area near Smithers, 

British Columbia, is shown in figure VII-4. This. quantity of data is 
characteristic of that obtained from reconnaissance exploration surveys where 
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large quantities of information are gathered during a relatively short time 
interval. The area sampled is underlain by acid to intermediate intrusive rocks, 
that cut a thick volcanic sequence. 

FIGURE VII-4 
Partitioned log probability plot of 795 soil Cu analyses from an area near 
Smithers, B. C. See figure V-1 for explanation of symbols. 

 
Inflection points are evident on the curve at approximately the 1, 2, and 32 

cumulative percentiles (see chapter VI). These populations can be estimated by 
partitioning the curve in stages. In this case, it is convenient to begin with 
population C for which most data points are available. Once C has been defined, 
D can be estimated, using, C and the original data curve. Both C and D 
populations can be defined reasonably well. The upper two populations, A and 
B, can be approximated roughly but cannot be delineated with much accuracy 
because of the small percentage of total data that each represents. Crude 
estimates of A and B are shown, based on available data. 

A number of check points, shown as open triangles on the original data curve, 
were calculated for the partitioned populations A, B, C, and D, combined in the 
proportions 1:1:30:68. These points agree almost perfectly with the original 
curve, suggesting that the partitioning results are a plausible model for the data. 

Comparison of data with a geological map suggests that populations C and D 
represent background Cu in soils over volcanic and plutonic rocks respectively. 
In the same way, A and B were interpreted as anomalous populations over 
volcanic and plutonic rocks respectively. 

In choosing thresholds for distinction between anomalous and background 
values, there is no need, in this case, to consider either populations A or D. The 
critical part of the graph is the range of overlap of populations B and C. About 
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1.5 percent of the data, or 12 values, are above 100 ppm. Of these 12 values, 11 
are anomalous, and 1 belongs to population C. Virtually all the anomalous 
values are above 85 ppm. The interval 85 to 100 ppm contains 5 anomalous and 
about 2 or 3 values from C population. Hence, two threshold values have been 
defined that contain all anomalous values and only a small number of 
background values. 

There are several important points illustrated by this example, as follows: 
1) In polymodal distributions it is not always necessary to begin 

partitioning at an end of the probability curve. 
2) It is generally a wise procedure to carry through with a complete 

partitioning, even where this is not essential to the specific problem on 
hand. 

3) Even in cases where specific populations cannot be defined with 
certainty, useful thresholds can be obtained, at least as useful as those 
resulting from other techniques in common use. 

4) Inflection points on a probability curve based on abundant data are 
probably real, even if they indicate populations present in small 
proportions, and should be considered in the partitioning process. 

5) An alternative approach would have been to group the data initially on 
the basis of the two predominant underlying rock types. This procedure 
was not followed because an interpretation deemed adequate for the 
problem was obtained by the simpler method used. 

The foregoing examples show that the major advantage of probability plots is 
to provide a useful grouping of data. Commonly, this grouping is not simply for 
the purpose of obtaining thresholds between anomalous and background 
populations, but more generally is to derive thresholds between populations that 
aid in a general interpretation of the significance of the data. 

TABLE VII-5 
ESTIMATED PARAMETERS OF PARTITIONED POPULATIONS, 

Cu IN SOILS, SMITHERS AREA, BRITISH COLUMBIA. 

Population Proportion 
% N 

Values in ppm Cu 
b  b + sL b - sL 

A 1 8 135 143 128 
B 1 8 100 108 93 
C 30 239 42.8 57.2 32.1 
D 68 540 14.8 21.8 9.6 

A+B+C+D 100 795     
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CHAPTER VIII 
ADDITIONAL TOPICS 

VIII-0: GENERAL STATEMENT 
This chapter contains a number of special procedures, examples and 

summaries that do not fit readily into the framework of previous sections. It is a 
"catch-all" chapter, devoted to specific topics that elucidate and complement 
material presented thus far. 

 

VIII-1: CUMULATIVE PLOTS OF DATA CONSISTING OF A SMALL 
NUMBER OF VALUES. 

Data cannot be used to construct a cumulative plot in the manner thus far 
outlined if they include only a small number of values. An appropriate method 
for the plotting of such data on probability paper described in some statistics 
texts (e.g. Schmitt, 1969), involves the cumulative frequencies of individual 
values rather than cumulative frequencies of class intervals as done heretofore. 

As an extreme example of this technique consider the average gold assays of 
total production from each of 19 vein deposits in Ainsworth Mining Camp, 
British Columbia. Data are listed in the table VIII-1 and plotted in figure VIII-1. 
Note that in this case logarithms of assay values are plotted on arithmetic 
probability paper, because the arithmetic values cover four orders of magnitude 
and a log probability plot would have been unwieldy using commercially 
available graph paper. 

FIGURE VIII-1 
Probability graph of logarithms (base 10) of average gold grades of 19 vein 
deposits, Ainsworth Camp, B. C. Values are cumulated individually. 
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TABLE VIII-1 
CUMULATIVE PERCENTAGE DATA FOR 

KNOWN Au GRADES OF MINERAL DEPOSITS IN 
AINSWORTH MINING CAMP, BRITISH COLUMBIA 

Average Au Grade Number of 
Mines 

Cumulative 
Percent Oz/Ton Log 10 

0.0001 4�.000 2 100 
0.0002 4�.301 1 89.5 
0.0003 4�.477 2 84.2 
0.0004 4�.602 2 73.7 
0.0007 4�.845 1 63.2 
0.0019 3�.279 1 57.9 
0.002 3�.301 1 52.6 
0.0035 3�.544 1 47.4 
0.0059 3�.771 1 42.1 
0.016 2�.204 1 36.8 
0.0325 2�.512 1 31.6 
0.0342 7�.534 1 26.3 
0.0416 2�.619 1 21.1 
0.043 2�.634 1 15.8 
0.0814 2�.911 1 10.5 
0.2758 1�.441 1 5.3 

 
Scatter of the 15 plotted values is considerable but the pattern can be 

approximated by a straight line, as shown in figure VIII-1. A qualitative 
interpretation is thus, that no evidence of more than a single population exists 
although we. cannot entirely exclude such a possibility. Furthermore, as might 
be expected, the data can be approximated adequately by a lognormal 
distribution model with parameters 3�.60 ± 1.19, or, in terms of ounces per ton, 
0.0040 (0.0617, 0.0003). The graphically determined mean of logarithms, 3�.60, 
compares with 3�.48 determined by moment calculations. The agreement is 
adequate considering the scatter of plotted points about the "estimated" straight 
line. 

The implications of such a plot to explorations considerations are worthy of 
some mention. Of 74 productive deposits in the area, only 19 have Au content 
recorded in publically available sources. These 19 values thus represent the total 
sample on which the entire population must be estimated, and this estimate is an 
important constituent of any potential ore that might be found in the camp. 
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VIII-2: REAL DATA CONTAINING A HIGH PROPORTION OF ZERO 
OR LESS THAN DETECTION LIMIT VALUES — CENSORED 
DATA 

Sixty-seven pyrite samples from Endako molybdenum mine and vicinity, 
were analyzed spectrographically for twelve minor elements, including Bi 
(Dawson and Sinclair, 1974). Of these sixty-seven samples, Bi was not detected 
in twenty-six. A probability plot for Bi values is shown in figure VIII-2 as a 
curved line. The curve is relatively well defined and has the appearance of a 
single population plotted over part of the probability range (see section IV-1), in 
this case the upper 60 percent of the probability range. To check whether or not 
this curve might represent a single population, a number of points on the smooth 
curve were recalculated to 100 percent. These are shown in figure VIII-2, where 
it is apparent that a straight line can be drawn through them without difficulty. 

One conclusion from this analysis is that two populations are represented in 
the data – an upper lognormal population, accounting for 60 percent of the 
values, lies above the analytical detection limit and is almost perfectly defined 
by the probability plot. A second population consisting of 40 percent of the data, 
lies below the detection limit and nothing can be said of its parameters or 
density distribution. The detection limit is coincidently an efficient threshold 
separating the two populations. 

FIGURE VIII-2 
Log probability graph of 67 Bi analyses of pyrites, Endako Molybdenum Mines, 
B.C. (after Dawson and Sinclair, 1974) 
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TABLE VIII-2 
DATA FOR CALCULATION OF POINTS ON ASSUMED LOWER 

POPULATION (B), Pb IN PYRITE, MORRISON LAKE PORPHYRY 
COPPER DEPOSIT 

Ordinate Level 
(ppm Pb) 

Read from Graph Calculated 
P(A + B) PA PB 

200 28.5 89 2.57 
100 34.3 97.8 7.14 
60 37 100 10 
40 40 100 14.3 
30 42.5 100 17.9 
20 45 100 21.4 
10 51 100 30 

fA = 0.30,  fB = 0.70 

 
It is important to emphasize that the curvature of the probability graph in this 

example, based on the total sixty-seven samples, is the clue that two populations 
exist. If the plot had been straight we would have concluded that a single 
population was represented. In general, a useful procedure in considering data 
with a high proportion of zero (or analytically non-detectable) values, is to 
construct a probability plot based on all data, including zeros, and to examine it 
for presence or absence of curvature. If curvature is present, attempt to estimate 
the proportion of the population for which data are available, either by 
recognizing an inflection point, or by trial and error (see also section VIII-4). 

 

VIII-3:. PLOTTING DATA WITH GAPS OR SHORT RANGES 
Figure VIII-3 is a plot of Mo analyses of 158 stream sediment samples from 

the Mount Nansen area, Yukon. Values range from 0 to 10 ppm Mo. In such a 
case, the use of a bar interval of 1/4s or narrower, provides the type of plot 
shown by the solid dots of figure VIII-3. Note that the bar interval is 
significantly less than successive reported values of the variable (integer values 
in this case). In a normal histogram the resulting unit of pattern is several empty 
bars followed by a bar containing values, giving rise to the pronounced steplike 
pattern in figure VIII-3. The natural tendency is to pass a straight line through 
the centre of gravity of each vertical set of solid points. A little thought, 
however, shows that this would bias the distribution 
 



80 
 

FIGURE VIII-3 
Log probability plot of 158 Mo values for stream sediment samples, Mt. Nansen 
area, Yukon. Black dots provide an ambiguous plot obtained by grouping data 
in classes with an interval much less than the interval between successive 
recorded values. Open circles are obtained by cumulating individual values. 

 
towards too low a mean value. There are two ways of treating the data that in 

many cases give identical results. The first, recommended by Lepeltier (1969), is 
to choose a sufficiently wide bar interval such that no bars of a normal 
histogram are empty. The second method involves cumulating individual values 
(see also section VIII-1), and is illustrated by the open circles in figure VIII-3. 
Note the two lines drawn in figure VIII-3, the lower of which underestimates the 
mean due to being based on too narrow a bar interval relative to the precision of 
the analytical method used. This problem exists with much analytical data that 
has a short range relative to precision, and is particularly common with semi-
quantitative chemical data where values are not interpolated between standards. 
Common geochemical examples include Mo, Hg, and Ag. 

Note in figure VIII-3 that by cumulating data from high towards low values, 
we can plot ten data points. If data had been accummulated from low values 
towards high values, we would have precisely the same points except that only 
nine could be plotted. That is, the 100 cumulative percentile could not be 
plotted, nor could the zero molybdenum values! 
 

VIII-4: PARTITIONING OF PARTIAL BIMODAL DISTRIBUTION—
Pb IN PYRITE, MORRISON LAKE DEPOSIT. 

Seventy-five pyrite samples from the Morrison Lake porphyry copper deposit 
in central British Columbia were analyzed by Wong (1972) for six elements, 
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including Pb. Of the 75 samples, 35 contained Pb below the detection limit and 
were recorded as zero values. A probability plot of the data (figure VIII-4) is 
based on individual values, as described in section VIII-1, because of the 
number of values available. A relatively smooth curve is obtained that indicates 
the presence of at least two populations if lognormal distributions are assumed. 
However, an inflection point cannot be picked out easily. 

FIGURE VIII-4 
Log probability plot of 75 Pb analyses of pyrites, Morrison Lake porphyry 
copper deposit, B.C. See figure V-1 for explanation of symbols. Partitioning had 
to be done by a trial and error technique assuming various proportions of the 
component populations because the inflection point could not be specified with 
assurance. 

 
To overcome this problem, we can partition an upper population by trial and 
error, assuming different proportions of the upper population until a linear 
pattern is obtained. This has been done for a variety of percentages from 70 to 
30, and results are shown as curves whose curvature decreased progressively 
until at 30 percent the distribution is essentially linear. The linear pattern 
represents our estimate of an upper population, A. Now, assuming that only a 
single lower population exists, we can estimate it at various ordinate levels using 
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the relationship P(A + B) = PA fA + PB fB. The plotted points define a linear trend 
reasonably well. Parameters of the two populations can now be estimated. In 
addition, thresholds that group the data and provide useful contour values can be 
estimated, as outlined in sections VII-1. 

 

VIII-5: RAPID METHODS FOR FIELD APPLICATION OF 
CUMULATIVE PROBABILITY PLOTS. 

One of the major advantages of cumulative probability plots is their 
simplicity which leads to relative ease of application in the field. This is 
particularly true for geochemical and certain types of geophysical data. Lepeltier 
(1969) has treated the topic at some length. 

Equipment necessary for field applications includes, in addition to 
logarithmic and arithmetic probability paper, a slide rule and, on occasion, a set 
of log tables. A straight edge and ‘fish tail’ curve are useful for interpolation. 

In order to plot a probability graph, it is necessary to group data into classes 
of equal interval. In Chapter I, a class interval in the range one-quarter to one-
half the standard deviation was recommended. In most cases, the vast majority 
of data is contained by a range of 2½ standard deviations about the mean. A 
class interval in the range ¼s to ½s, is equivalent to about ten or twenty groups. 
Suppose we choose fifteen groups of values as being a reasonable compromise, 
the appropriate interval for a set of data can then be estimated using the 
following formula: 

Log (Interval) = 𝐿𝑜𝑔 𝑅
𝑛

 

where R is the ratio of highest to lowest value in the data set and n is the number 
of classes. R can be determined by inspection of the data and n should be in the 
range ten to twenty (say fifteen in most cases). 

Log intervals calculated in this manner are not simple decimals but can be 
rounded to some convenient figure. The writer has found that for geochemical 
data an arbitrary class level (expressed logarithmically to base 10) of 0.05 or 0.1, 
depending on the range and magnitude of the data, is appropriate. Use of the 
above formula is simple and rapid. 

Classes must be set up starting at some odd number to avoid the problem of 
values coinciding with class boundaries. A table can then be arranged as shown 
in figure VIII-5. Once this table has been organized the number of values in 
each class must be determined, a somewhat tedious exercise if the number of 
data values is large. A convenient procedure is to involve two people, one 
calling out values consecutively, and the other adding counters to appropriate 
class intervals 
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FIGURE VIII-5 
Example of a tally sheet for field use in preparing probability graphs. 

 
 
Class frequencies as percentages are then easy to calculate, as are cumulative 

frequencies. The data are then in an appropriate form for construction of 
histogram, cumulative histograms, probability graphs, etc. Note that the table is 
arranged in descending order of magnitude and the classes are cumulated from 
high to low classes, as recommended by Lepeltier (1969) and used throughout 
this manual. 

Cumulative probability plots prepared in the foregoing manner are, for the 
most part, equally as good as those prepared by more sophisticated approaches, 
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such as computerized methods, but are obviously more tedious and thus more 
subject to human error. One advantage of such plots is that abnormalities in the 
curves can be identified early and checked for possible error, thus increasing 
efficiency of field work. 

 

VIII-6: CONSTRUCTING AN HISTOGRAM FROM PROBABILITY 
PLOTS OF REAL AND HYPOTHETICAL DATA. 

Generally speaking, cumulative plots are more explicit and meaningful than 
are histograms. In some cases, however, it is desirable to present data in 
histogram form, particularly as a means of presenting information to those 
unfamiliar with probability plots. Cumulative percentages are read and tabulated 
for intervals of ¼s, disposed symmetrically about the mean or mode. From this 
table the proportions of data within each class interval can be calculated and the 
results used to plot a histogram. In the case of a polymodal distribution, a minor 
problem arises in choosing an appropriate bar interval. An adequate choice, 
normally made by inspection, is to choose a bar interval that provides 15 to 20 
bars. When a probability curve, based on real data, is used to construct a 
histogram, the resulting histogram can differ slightly in detail from that plotted 
directly from original data because of (1) a smoothing imposed on the 
probability graph, and (2) limitations of graphical interpolation. 

 

VIII-7: PLOTTING CONFIDENCE LIMITS. 
In some cases, it is desirable to plot confidence limits of a probability curve. 

This can be done graphically using a nomogram devised by Liorzou (1961), and 
reproduced from Lepeltier (1969) in figure VIII-6. Examples of its use are given 
in figures II-1, III-3, and III-4. 

A single point on curves, defining the 95 percent confidence interval, is 
estimated by holding a straight edge on the number of samples and the 
cumulative percentage at a given ordinate level. Two values are then read from 
the graph and plotted. A number of such points are plotted and two smooth 
curves drawn to define the 95 percent confidence belt. 

This technique is useful for a graphical comparison of two or more 
probability curves. It has been used by Woodsworth (1972) as a quantitative 
means of recognizing the presence of a "significant" change in slope of a single 
probability curve. If a point on a curve plots outside the 95 percent confidence 
belt, significant curvature is assumed. 
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FIGURE VIII-6 
A nomogram for estimating the 95 percent confidence limits for normal 
distributions plotted on probability paper (after Lepeltier, 1969). 
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VIII-8: SUMMARY OF ADVANTAGES AND LIMITATIONS IN THE 
USE OF PROBABILITY PLOTS. 

The main purpose of this manual has been to stress possible applications of 
probability paper in the analysis of various types of mineral exploration data. At 
the same time, the writer has attempted, in appropriate places, to indicate 
difficulties that arise. It seems useful, however, to summarize in one section, the 
general advantages and limitations of this simple graphical technique. 

Advantages: 
1) A simple form of graphical representation of data.  
2) Rapid, qualitative analysis of density distributions. 
3) Rapid estimation of parameters of normal and lognormal distributions. 
4) Compact graphical representation of several sets of data on a single 

diagram. 
5) Recognition of polymodal distributions. 
6) Partitioning of polymodal distributions. 
7) Estimation of thresholds and fundamental grouping of data.  
8) Rapid recognition of certain abnormalities in data. 
9) Specific applications (e.g. error representation in geochemical data, 

probability of success, etc.) 
Disadvantages: 
1) Data might not approximate normal or lognormal density distributions. 
2) Data might be too sparse for meaningful analysis on probability paper. 

Some authors recommend a minimum of 100 values, but this is an 
arbitrary figure and many of the plots in this text based on as few as 70 
data values appear valid and useful. 

3) Tails of cumulative distributions commonly are not well-defined. This 
can cloud interpretation in the upper value range which is of particular 
interest in most mineral exploration data. 

4) A small but significant proportion of plots appear to be uninterpretable, 
using procedures outlined in this text. This is particularly true if several 
populations are present with extensive overlap and/or different types of 
density distributions. Except in very special cases, four populations are 
about the maximum that can be treated successfully, and difficulties are 
not uncommon if three or four populations are present. 

5) The lower the quality of data, the more ambiguous is the interpretation 
of the corresponding probability plot. 

The most significant use of probability plots applied to mineral exploration 
data, is in therecognition of the number of populations in a data set, and the 
partial or complete partitioning of individual values into their respective groups 
or populations. Interpretation of the significance of the resulting groupings of 
data is then up to the user. Throughout the text the term anomalous has been 
used commonly to denote a high population, and to distinguish it from low 
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background population(s). High populations are not always anomalous and their 
designation as such constitutes an interpretation. 

 

VIII-9: SOME USEFUL HINTS ON PROCEDURE 
1) Original data should be plotted on appropriate probability paper 

(arithmetic or lognormal), clearly and accurately. 
2) Interpretations can be attempted on transparent overlays: In some cases, it 

is advantageous to plot original data on transparent probability paper. 
3) Retain tabulated data used in the original plot and label it clearly to 

provide a . rapid check on details of the original plot and interpretations, if 
the need arises. 

4) Probability plots should be labelled immediately as they are.constructed 
with all information pertaining to the partitioned populations' tabulated on 
them. 

5) Never attempt to interpret and/or partition bimodal probability plots on the 
basis of assumed straight line segments. The curvature in such plots is an 
important element of interpretation. 

6) Label assumed inflection points because they are not always obvious, 
particularly on a draughted copy. 

7) A standardized procedure for labelling is useful (see below). 
8) A complete partitioning and interpretation should always be done even 

where not apparently necessary, for a specific problem. The. time involved 
is slight as experience is gained and unexpected results are commonly 
forthcoming. 

A standardized approach to plotting and labelling diagrams increased their 
clarity and avoids ambiguity. In this manual, filled black circles are used to 
represent original data, open circles indicate points used to estimate partitioned 
populations, and open triangles are check points. The use of different symbols 
for different data sets, plotted on the same graph paper, of course, avoids 
ambiguity. 

Routine procedure in preparing and plotting data should include – (a) an 
examination of data to choose an appropriate bar interval, (b) grouping of the 
data into intervals and calculation of cumulative percentages for each interval, 
beginning with large values, and (c) plotting data on appropriate probability 
paper (normal, lognormal) with an appropriate choice of ordinate scale in the 
case of arithmetic probability plot. 

If a single population is indicated, a straight line should be fitted to the plotted 
points and parameters estimated. If desired, confidence limits can be determined 
graphically and plotted. If plotted points have a curved pattern, a smooth curve 
should be drawn through them, with particular attention paid to possible 
inflection points. The form of the curve should be examined closely to ascertain 
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the most probable interpretation of the number of populations represented, the 
possibility of truncation, etc. 

Partitioning should be done following the appropriate procedures outlined in 
the text. A series of checks should be made on the par, titioning procedure by 
calculating ideal combinations of the partitioned populations for a number of 
ordinate levels. If these numerous check points essentially coincide with the real 
data curve, a plausible model for the data has been obtained by partitioning. 

One can then proceed to the interpretation stage, perhaps using thresholds 
chosen on the basis of partitioned populations. For mineral exploration data, 
colour or symbol coding of groups of values defined by thresholds on a plan, 
commonly provides a useful means of analyzing the geological significance of 
each group. 
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