Mineral Chemistry: Modern Techniques and Applications to Exploration

W.L. Griffin, N.J. Pearson, E.A. Belousova, S.Y. O'Reilly

GEMOC ARC National Key Centre Macquarie University Sydney, Australia

www.els.mq.edu.au/GEMOC/

Background, Outline

Mineral Chemistry and Mineral Exploration

- Must use *in situ* analytical techniques
- Wide range of techniques: widely variable cost, value/\$\$
- Focus on most widely used, cost-efficient technologies
- Examples of applications -- rest is up to your imagination

This talk:

- Major elements: EMP
- Trace elements: LAM-ICPMS, Proton microprobe
- Isotopic analysis (low precision): LAM-ICPMS vs ion probe (U-Pb)
- Isotopic analysis (high precision): LAM-MC-ICPMS

In situ Major Element Analysis: Electron Microprobe

 Mature techology (from 1960s)

GEMOC

- Electron beam; Xray generation
- Spot sizes 1µm
- EDS vs WDS spectrometers
- Major elements (%); minor elements (200-500 ppm)
- Imaging BSE, CL
- Mapping (major elements)

In situ Major Element Analysis: Electron Probe

GEMO

- precise analysis -- detection limits 200-500 ppm
- one element at a time, on each spectrometer
- higher resolution, higher intensity with larger crystals (\$\$)
- Data quality depends on counts (time)
- element mapping of areas to 50 x 80 mm (≤5 elements)

EDS: energy-dispersive analysis (Si(Li) detector)

- energy spectrum: *rapid* phase identification (saves time)
- analysis of *major* elements (use as extra spectrometer)
- rapid mapping of 9-32 elements, areas 1.5 x 1.5 mm

Recommendation: Need both EDS and WDS, integrated

Major Element Imaging: Electron Probe

Ca map of garnet: WDS scan 5 x 5 mm

BSE image of zoned zircon

EDS maps of mantle sulfide, 100μ m

In situ Trace-Element Analysis: Proton Microprobe (PMP)

Beam line on 3MeV accelerator; electromagnetic focussing

GEMOC

PIXE (X-rays) + PIGE (gamma rays, light elements)

Non-destructive, standardless EDS analysis (ppm) of minerals, fluid inclusions

Imaging (element maps); analysis in each pixel

Proton Microprobe: Imaging

Mode 1: Beam scanning in Y, stage stepping in X

200 x 200 pixels

2: Beam raster in X and Y (~2 interlaced frames per second)

GEMOO

Proton Microprobe: Basics

MeV Ion Beam Interactions

- Predictable, smooth slowing down behaviour
 - small energy uncertainty.
- Negligible beam deflection and scattering
 - travel in straight lines.
- Non-destructive.
- Insensitive to chemical state.

Methods:

PIXE – Proton Induced X-ray Emission ::

- Ionization of inner shell atomic electrons.
- Low continuum background.

PIGE – Proton Induced y-ray Emission:

• Nuclear reactions on light nuclei,

(e.g. Li, Be, B, F, Na, ...).

In situ Trace-Element Analysis: LAM-ICPMS

Laser Microprobe + ICPMS

Spatial resolution 20-80 µm

Typically 30-40 elements/spot

ppb detection limits

Minerals, fluids, fluid inclusions

LAM-ICPMS: Detection Limits

GEMOC

Which ICPMS ?

Quadrupole ICPMS :

- Rapid scanning of whole mass spectrum
- High sensitivity
- Relatively low cost (\$US 150,000)
- Reaction/collision-cell ICPMS (\$US 180,000)
 - ***** elimination of some overlaps

High-Resolution (double focussing) ICPMS:

- Higher sensitivity (2x) (in principle, rarely in practice)
- Resolves overlaps (eg ArO on Fe) for special applications
- Scans *portions* of spectrum rapidly, whole spectrum slowly
- High cost (\$US 320,000)

Quadrupole ICPMS more versatile, economic

LAM-ICPMS: Laser Hardware

GEMOC

Nd:YAG (solid state) -- most widespread.

- Intrinsic 1064 nm wavelength, reduced by harmonic-generator xls
- ---> 266 or 213 nm; 213nm better absorbed, more controlled
- robust, low operating costs, "low" cost (\$US 120K)
- 193 nm solid-state now available -- no comparative data

Excimer (ArF) - 193 nm; better ablation control, high power high initial cost (\$US 150-600K), higher operating costs

GEMOC: 213 nm as workhorse, 266 for sulfides, opaques, diamond

LAM-ICPMS Analysis: Time-resolved Signals

GEMOC

In situ Trace-Element Analysis: **GLITTER software**

Review Signal Select Analysis No std-1 610 std-2 610 971-1 opx 971-2 opx 971-3 opx 971-5 opx 612 unk-1 612 unk-2 612 unk-3 bcr-2g-1 bcr-2g-2 bcr-2g-3 972-1 opx	ction Signal							Time-resolved essential; integration On-line data r linked revi plots, resu			
972-2 opx 972-3 opx 972-4 opx 972-5 opx std-6 610 std-7 610				_4			47	Plot V 51 441.613 449.403	Save Co 59 379.657 407.676	Export Ni 60 407.757 431.958	
	La 139	Log/Lin	աշորեր Linear	میں" "لیریہ Ratio to	lis I	Raw		310.425 330.143 310.072 330.400 307.248 301.188 318.097	36.3243 35.6320 34.5805 36.2572 35.3961 31.7972 34.7917	55.3336 59.3203 56.5598 57.1916 59.6443 16.3311 14.1374	
Set IS Set Ma	rks Save	Previous	Next	vr40305a-gt3-1 6.3	94000	Close	29.0522	281.672 295.733 301.725 362.537	30.9970 32.6790 31.9983 40.9996	17.0845 13.4985 14.8977 17.6215	
				vr40305a-gt4-1 6.1 vr40305a-gt4-3	80000	154.586	25.3699	277.775	32.6852	14.9682	
Exploration 07				C:\Glitter\Glitter!-4-9- Concentration Value	98\Esme - au s 💌 Direc	igust\ag19a.rep t		O IS in pp	m o⊂lSin.wt%		

d analysis select intervals

eduction; ew window, Its table

Help

Ga 69

423.978

447.291

4.89408

5.62749

4.88583

5.64096

5.05123

1.69832

2.26914

1.65999

1.92107

1.96762

2.89518

1.73511

Options

_ 🗆 ×

Quit

Sr 88

525.111

524.679

2.05365

2.20061

2.07849

2.20069

2.10471

2.15664

1.43896

2.52092

1.27802

1.82393

1.60532

2.64260

Update

In situ Trace-Element Analysis: LAM-ICPMS

GEMOC

Major applications -- GEMOC

- Silicates, oxides in mantle xenoliths (mantle petrology)
- Diamond indicator minerals (mantle petrology, exploration)
- Diamonds, other gemstones (genetic studies, forensics)
- Sulfides; PGEs, other traces (ore deposit studies, mantle)
- Zircons (dating, crustal evolution)
- Feldspars, apatite, titanite etc (granite petrology; indicators)
- Fluid inclusions (ore deposit studies)
- Fish bones, teeth, etc (environmental studies)
- Synthetic materials (physics applications)

Lac de Gras: Layered Lithospheric Mantle

GEMOC

Apatite Trace Elements: Recognition of Host Rock Type

In situ Trace Element Analysis: Comparisons

Proton Microprobe

- Rapid, non-destructive, good MDLs but limited # elements
- Imaging capability
- High capital cost, not widely available

Ion Probe

- Lower MDLs; matrix-sensitive (standardisation); few elements
- Data quality depends on counts -- very slow (expensive)
- Better spatial (depth) resolution -- few microns

LAM-ICPMS

- Rapid, insensitive to matrix, very low MDLs, largest # elements
- Low capital costs, widely available, relatively low cost/analysis
- Depth resolution less than ion probe, ≈ PMP

In-situ Dating: U-Pb in Zircon, Monazite

BSE/CL images of zircons

- TIMS single-grain analysis: most precise
 --but zircons heterogeneous, multistage
 --need 20-50 µm resolution
- Pb contents low, but ±1% precision very useful
- Ion microprobe (SHRIMP, CAMECA) good but slow & expensive (cost/analysis)
- LAM-ICPMS: similar precision, faster, cheaper
 ablation volume larger (10-50 µm deep)
- GEMOC: Q- ICPMS + Nd:YAG laser (213 nm); GLITTER on-line data reduction
- 40-50 analyses/day, 5 6000 analyses/year

LAM-ICPMS U-Pb Dating: Temora Zircon Standard

LAM-ICPMS Dating: U-Pb in Zircon

Chilean Porphyry

GEMOC

Inverse-concordia plot

6.28±0.23 Ma

Equivalent to SHRIMP data in quality

Much faster, cheaper

Youngest yet dated = 1.2 Ma

Kimberlite Dating: U-Pb on Groundmass Perovskite

DeBeers Mine, Kimberley, RSA Zircon standard Rapid -- 3-4 hours, single polished section Typical precision ± 2-5 Ma (95% conf.) Good agreement with "known" ages

GEMOC

Isotopic Analysis: LAM-MC-ICPMS

High ionisation efficiency -can analyse difficult <u>elements like Hf</u>

Multiple collectors, static measurement = high precision

Element spiking by injection of solutions (TI in Pb, Ir in Os....) = improved precision

Nu Plasma MC-ICPMS: schematic

In-situ Isotopic Analysis: LAM-MC-ICPMS

- Rb-Sr, Sm-Nd, Lu-Hf, Re-Os: more precision required relative to element abundance -- use LAM-MC-ICPMS
- Peak overlap corrections essential for LAM applications (eg Rb on Sr) -- but very difficult on some instruments --
- These corrections limit "dating" applications
- Best for measurement of *initial ratios* (Sr, Hf, Os, Nd, etc...)
- Major applications: Hf in zircons, Os in sulfides, Sr in carbonates and feldspars
- GEMOC: Nu Plasma ICPMS + Nd:YAG laser (266 or 213 nm) or Excimer laser (193 nm). Hf in zircon >80 analyses/day

TerraneChron[®]: Integrated analysis of detrital zircons

U-Pb dating = age

GEMO

- Hf isotopes = magma source
- Trace elements = magma composition
- Integration = crustal history in drainage area
- Terrane-scale studies of crustal evolution
- Extra dimension to sedimentprovenance studies

In-situ Isotopic Analysis: Sr in carbonate, feldspar

Worm tube: ⁸⁷Sr/⁸⁶Sr= 0.708087±10

 $(TIMS = 0.708079 \pm 20)$

Fusilinid: ⁸⁷Sr/⁸⁶Sr= 0.708121±15

Bryozoan: ⁸⁷Sr/⁸⁶Sr= 0.708302±17

⁸⁷Sr/⁸⁶Sr -- information on isotopic composition of fluids

1000 ppm Sr = 10-20 ppm precision

Tracer of diagenesis in sediments, fluid changes in hydrothermal systems

Dating of fossils relative to seawater Sr-isotope curves

Isotope stratigraphy in feldspar -- magma evolution

In-situ Isotopic Analysis: Re-Os in mantle sulfides

Mantle Os resides in sulfides, can give model ages

>1 generation sulfide in rocks; whole-rock model ages = mixtures

Analyse single sulfide grains; model ages resolve different events

50 ppm Os = 0.01% precision

Kaapvaal Craton peridotite xenolith: sulfides + whole rock

In-situ Isotopic Analysis: Re-Os in mantle sulfides

Analyse single sulfide grains; model ages resolve different events

Mantle events = crustal events, in detail

Lithosphere formed 3.6-2.9 Ga; modified at 2.6-2.7 Ga, ca 2.2 Ga, 1.7-1.8 Ga

More precise tool for analysis of crust/mantle evolution

In-situ Isotopic Analysis: Sm-Nd in titanite

Stable Isotope Analysis: New Developments

Metal Isotopes (Cu, Fe, Zn, Mo, Sb, Ni....)

- New field, made possible by MC-ICPMS (better ionisation)
- Rapidly expanding into LAM-MC-ICPMS
- Ore deposit studies -- direct data on sources of metals
- Light elements -- Mg, Li, B -- data on other processes

LAM-MC-ICPMS data: Cu isotopes

Cu + Fe isotopes measured *in situ*: chalcopyrite grains from range of ore deposit types

GEMOC

Analytical precision: $\pm 2sd \approx 1\epsilon^{65}Cu$

Large ranges in some ore deposits fluid flow, deposition episodes

"Magmatic band"; deviations related to redox processes

New tools for ore deposit studies, mineral exploration

Grasberg Intrusive Complex Irian Jaya (3 Ma)

2 models:

(1) 3 episodes of mineralisation associated with 3 intrusive phases (MacDonald and Arnold, 1994)

GEMOC

(2) Bulk of ore post-magmatic (Kavalieris & Pennington, 1999); (Pollard and Taylor, 2002)

Grasberg Intrusive Complex Irian Jaya (3 Ma)

3 bodies have different Cu- (and Fe-) isotope signatures in Cpy

GEMOC

Supports model of MacDonald and Arnold, 1994)

Can use to identify ore sources in drilling programs

Summary

- In-situ microanalysis: Essential for applications of RIM technology to mineral exploration
- EMP (major and minor elements) -- data quality depends on counting time -- cutting corners may be wasting \$\$\$
- Trace elements: LAM-ICPMS is most rapid, cost-effective
- U-Pb dating: LAM-ICPMS best for 90-95% of work!
- LAM-MC-ICPMS isotope analysis -- many new applications (Hf, Sr, Nd) for tracers
- Stable isotopes of metals -- new and promising field for applications to mineral exploration

More in GEMOC's 2006 Annual Report

CD here now!

Or download from:

www/es.mq.edu.au/GEMOC

and get an extra 10 years of Research Highlights!

Zircon Trace Elements: Recognition of Host Rock Type

GEMOC

LAM-ICPMS vs SHRIMP:

U-Pb ages of detrital zircons

comparable in accuracy and precision
LAM more rapid (5 minutes/grain)

GEMO

- significantly lower unit cost w/ LAM
- but slightly lower spatial resolution

 scatter of ages = more complex grains