Recent Advances in Exploration Geochemistry and Future Directions

Dr. Jeffrey A. Jaacks President Applied Geochemistry International j.jaacks@att.net

Our newest geochemical platform?

(And the second second

Future of Exploration Geochemistry

- New Roles of the exploration geochemist
- Recent Advances
- Searching for Buried deposits
- Research Directions

Our changing role?

- Traditional
- Exploration Centered
- Orientations
- Surveys
- · QAQC
- · Evaluation

- · New
- Complete Mining Lifecycle
- Baseline Environmental
- Exploration
- · Development
- · Operations
- Mine Closure

What has been happening to Exploration Geochemistry?

- Geochemical staffs reduced
- More geochemical outsourcing
- Research funding disappearing
- Academic and Government Surveys moving to environmental research
- Academic training programs reduced
- Layoffs left a group of highly qualified experienced geochemists seeking new opportunities

Geochemical Entrepreneurship

- Geochemical services.
- Exploration companies that develop new resources.
- Companies that develop and implement new technologies.

The Last Decade 4 Paradigm Shifts

- Analytical down another two orders of magnitude with multielement analyses
- Selective Extractions selective to isolate mineral phases or characterize dispersion process
- Information Management large data systems on personal computers integrated with GIS
- Interpretive Methods threshold to pattern
 recognition incorporating geochemical process

Recent Advances in Analytical Technology

- Instrumentation
- · ICP/MS
- Laser Ablation ICP/MS
- · GC/MS

- Extractions
- · Selective
- · Partial
- · Sequential

- Lower detection limits
- Reduced interferences
- Larger elemental suite
- Greater dynamic range

- Chemical Zonation
- Element Partitioning
- **REE Characterization**
- Fluid Inclusions
- Isotopic Analysis

"Selective" Extractions

- Allow us to focus on elemental form or phase
- Provide greater contrast anomalies
- See common patterns over deposits throughout the world
- Gives rise to new questions about geochemical dispersion processes

Porphyry Project - Standardized Cu Contrast Comparison

Where to go with Selective Extractions Isolating Dispersion Processes

Mechanical Hydromorphic Electrochemical Evaporation Transpiration Vapor Accumulation Sediment Sediment Fe-Mn Ox Caliche Biogeochemistry Soil Gas Soil 4 Acid Aqua Regia Cold Hydrox NaHOAc NAA GC-MS BCL

Recent Advances in Interpretive Methods

- · Threshold
- *mean* + 2s
- numerically oriented
- interpolation
- contouring

- · Pattern
- populations
- process oriented
- spatial clustering
- · imaging

Population Analysis

- populations represent processes
- isolate individual populations
 - *determine their spatial relationships*
- evaluate primary and secondary processes by spatial and multielement relationships

Pattern Recognition

100 ft.

Common Patterns

Or Fact?

Fantasy?

- Common Patterns
- In different media
- Collected at the same scale
- Over different deposits
- Under varying climatic conditions
- Around the world

Characteristic Patterns Over Ore

Soil profile over supergene mineralisation,Chimborazo.

(from Kelley et al, 2002)

New Evaluation Methods?

 Pattern recognition or Signal Analysis
 Object oriented database design Pattern Libraries

New Visualization Technologies

- Population imaging In real time
- Pattern recognition

Need new visualization technologies to view and compare patterns

Summary of Recent Advances

- Analytical down another order of magnitude with multielement analyses
- Extractions selective to isolate mineral phases or dispersion process
- Information Management large data systems on personal computers integrated with GIS
- Interpretive Methods threshold to process oriented

Another Frontier – Brownfields

Great Basin, USA

Exploring Under Cover Future Needs

- Understand operative dispersion process.
- What do these common patterns represent and develop numerical methods to evaluate for patterns.
- Find out what the relationship is between mobile metals, soil-gas, microbes/bacteria.

Future Challenges

- Under Cover
 - Develop improved understanding of process, microbial intervention, and the role of gas in metal migration
 - Link this with surface geochemical expression
 - Develop interpretation methods to recognize these processes
- Rapid reconnaissance methods
 - Airborne geochem systems focused on gas and aerosols

Future Challenges

- Train a new generation
- Educate the current generation
- New visualization technologies
- New evaluation methods for pattern recognition
- Role of gases and aerosols in migration

Or is this our future platform?