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Good Morning.

What we would like to do today is make geochemists aware of a 
potential pitfall associated with assay strategies designed to address 
sampling problems associated with deposits exhibiting the ‘nugget 
effect’. 

This pitfall can occur in exploration projects involving a variety of deposit 
types, including those containing Au, Pt-Pd, diamonds, and others with 
rare grains (or nuggets) of economic interest.  

This pitfall has previously gone un-recognized, but can lead to 
significant grade estimation biases that may undermine the economic 
feasibility of a mining venture.
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ProblemProblem
exploration/resource assessment datasets commonly exploration/resource assessment datasets commonly 

contain replicate assays for elements affected by the contain replicate assays for elements affected by the 
nugget effect (nugget effect (typically undertaken to avoid nugget typically undertaken to avoid nugget 
effect and obtain better estimates of gradeeffect and obtain better estimates of grade))

assay used is typically the mean of all replicate valuesassay used is typically the mean of all replicate values
sometimes, the decision to undertake replicate analysis is sometimes, the decision to undertake replicate analysis is 

based on the initial grade obtained in analysisbased on the initial grade obtained in analysis
the fact that samples with different initial grades are the fact that samples with different initial grades are 

treated differently results in a biastreated differently results in a bias
this bias can sometimes be very significant this bias can sometimes be very significant 
bias is unpredictable without a priori knowledge of size bias is unpredictable without a priori knowledge of size 

& # of nuggets in the samples (=> un& # of nuggets in the samples (=> un--correctable)correctable)
possible possible important/catastrophic consequences!important/catastrophic consequences!

One strategy for avoiding or minimizing the impact of the ‘nugget effect’ 
on mineral exploration and resource assessments involves undertaking 
replicate analysis of the samples. Once averaged, these replicate 
analyses effectively increase the ‘size’ of the sample analyzed, and thus 
reduce the variation associated with the random inclusion or omission of 
coarse nuggets.

However, historically mining companies have commonly employed 
analytical regimens that involve an initial sample assay, the magnitude 
of which guides subsequent analysis. For example, if the assay reports 
an initial high grade, subsequent replicate assays may be undertaken 
and averaged to obtain a better estimate of the true grade; however, if 
the assay reports an initial low grade, no additional assays are made.

Unfortunately, because samples are treated differently depending on 
grade, a bias is introduced. This bias can be significant, and is not 
predictable unless a priori knowledge of the sizes and number of
nuggets in the samples is available. As a result, this bias can have 
important or even catastrophic consequences.
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Staged Replicate Sampling SchemeStaged Replicate Sampling Scheme
500 gram pulverized sample500 gram pulverized sample
30 gram sub30 gram sub--sample with an initial grade sample with an initial grade 

((470 grams left over470 grams left over))
rere--assay criteria:assay criteria:

if grade < 2if grade < 2 gptgpt => => use result as gradeuse result as grade

if grade is between 2 & 5if grade is between 2 & 5 gptgpt => => take 2take 2ndnd 30 gram split 30 gram split 
and assay again; useand assay again; use
average of two as gradeaverage of two as grade

if grade > 5if grade > 5 gptgpt => => take 3 additional 30 gramtake 3 additional 30 gram
splits; assay them; usesplits; assay them; use
average of four as gradeaverage of four as grade

Results in Biased Estimate of Grade!!!Results in Biased Estimate of Grade!!!

To illustrate this bias, consider a scenario where a 30 gram sub-sample 
is split from a 500 gram pulverized sample and analyzed for gold. Based 
on the result of this first assay, additional assays may be undertaken.

- If the grade < 2 gpt, the sub-sample did not likely contain large 
nuggets.
- If the grade > 2 & < 5 gpt, the sub-sample may have contained 
nuggets, and a second 30 gram sub-sample collected from the original 
500 gram (now 470 gram) pulverized sample would, after assaying and 
averaging, provide a better grade estimate.
- However, if the grade > 5 gpt, then nuggets most certainly existed in 
the sub-sample, and three additional 30 gram sub-samples from the 
original pulverized sample might be necessary to, after analysis and 
averaging, provide an adequate grade estimate.

Unfortunately, this approach does not recognize that any initial low 
grade assays may be derived from samples containing large nuggets 
(because the nuggets were randomly omitted), and thus the first 
analysis cannot be used reliably to guide subsequent analytical 
procedures designed to avoid or mitigate the ‘nugget effect’.
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EquantEquant Grain ModelGrain Model

EquantEquant Grain ModelGrain Model
samples composed of equal sized, spherical grainssamples composed of equal sized, spherical grains
element of interest occurs in one grain type element of interest occurs in one grain type ((thethe nuggetnugget))
small number of nuggets occur in sample small number of nuggets occur in sample (< 50)(< 50)
large number of ‘gangue’ grains occur in samplelarge number of ‘gangue’ grains occur in sample

(> 10,000)(> 10,000)
Allows use of Poisson distribution to determine Allows use of Poisson distribution to determine 

how manyhow many nuggets occur per samplenuggets occur per sample

To illustrate the magnitude of this bias, a simple model must be used. 
We have invoked the ‘Equant Grain Model’, which assumes that all
(nugget and gangue) grains are the same size and shape (in this case, 
spherical) to illustrate this problem.

This model assumes that the element of interest occurs in only one 
mineral or grain type, that there are a small number of nuggets, and that 
there are a large number of gangue grains.

If true, the number of nuggets contained within a sample or sub-sample 
will be governed by the Poisson distribution.
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EquantEquant Grain Model ExampleGrain Model Example
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An example of this model is presented here, with a number of sub-
samples from a larger sample.

In each of these sub-samples (the squares), a different number of 
nuggets (in blue) are obtained.

As a result, the grades of these sub-samples vary, and the frequency 
distribution describing the number of grains obtained in the sub-samples 
is the Poisson distribution.
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EquantEquant Grain Model ExampleGrain Model Example
600 grains total600 grains total
12 nuggets12 nuggets

subsub--samples of 25 grainssamples of 25 grains
average = ½ nugget/subaverage = ½ nugget/sub--samplesample
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Here, we compare a histogram of the results from the previous slide 
with the Poisson distribution having the same mean number of nuggets 
per sub-sample (= ½ nuggets/per sample).

This admittedly ‘cooked’ example illustrates how the Poisson distribution 
can be used to describe geochemical variation associated with the 
‘nugget effect’.
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Simulation to Assess Bias inSimulation to Assess Bias in
Staged Replicate Sampling SchemeStaged Replicate Sampling Scheme

baselinebaseline => => 3 nuggets per 30 gram split average3 nuggets per 30 gram split average
70 um diameter spherical nugget 70 um diameter spherical nugget 
assumed pure gold nugget (assumed pure gold nugget (ρρ = 19.3 g/ml)= 19.3 g/ml)
1.051.05××101088 grains totalgrains total
1.041.04 gptgpt gradegrade

Modified the number of nuggets/sample (0.3 <=> 4.5)Modified the number of nuggets/sample (0.3 <=> 4.5)
Modified the size of grains (10 <=> 150 um)Modified the size of grains (10 <=> 150 um)
Resulted in total number of grains between Resulted in total number of grains between 

1.03 1.03 ×× 101088 <<=> 3.59 => 3.59 ×× 10101111

Resulted in gold grades between 0.001 and 15.348Resulted in gold grades between 0.001 and 15.348 gptgpt

Because the ‘Equant Grain Model’ and Poisson statistics can be used to 
describe the ‘nugget effect’, we have used these in a mathematical 
simulation to determine the magnitude of the bias associated with a 
representative grade-dependent sampling and analysis scheme.

We have chosen a baseline case where we have 3 gold nuggets per 
sub-sample (on average), and 70 um diameter spherical nugget and 
gangue grains. We also assume the gold is pure, and that gold does not 
occur in the gangue grains.

With these assumptions, there will be approximately 100 million grains 
per 500 gram pulverized sample, and the Au concentration will be 1.04 
gpt.

In our simulation, we also varied the number of nuggets per sub-sample 
(from 0.3 to 4.5) and the size of the grain diameters (from 10 to 150 
um). This resulted in a range in the total number of grains per pulverized 
sample, from less than 100 million to over 300 billion (satisfying the 
assumptions required for invoking of the Poisson distribution), and a 
range in gold grades from < 0.001 gpt to > 15 gpt.
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Samples of average grade (1.04 gpt) have 3 
nuggets (diam. = 70 um) per 30 gram sample

   5 % => 0 nuggets
 22 % => 3 nuggets
   5 % => 6 nuggets
   0.25 % => 9 nuggets

Simulation BaselineSimulation Baseline

This histogram illustrates the expected number of nuggets we would 
obtain by sub-sampling our baseline case a number of times. The 
resulting gold grades vary substantially, due to the random inclusion of 
a different number of nuggets in each sub-sample.

The true # of nuggets is obtained only 22 % of the time; grades less 
than the true # of nuggets are obtained 42 % of the time, and grades 
greater than the true # of nuggets are obtained 36 % of the time.

Clearly, using the first analysis as a basis to determine how to further 
analyze a sample can result in significant errors in subsequent sample 
analysis, as incorrect grades are obtained initially more than ¾ of the 
time.

Perhaps I should stop there!
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Staged Replicate Sampling SchemeStaged Replicate Sampling Scheme
< 2< 2 gptgpt => 1 analysis=> 1 analysis

2 to 52 to 5 gptgpt => 2 analyses=> 2 analyses
> 5> 5 gptgpt => 4 analyses=> 4 analyses

Expected Grade (gpt)
Nugget Size (um)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
5 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.1 0.1 0.2 0.2 0.3 0.4 0.5 0.7 0.8 1.0

10 < 0.1 < 0.1 < 0.1 < 0.1 0.1 0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.3 1.7 2.0
15 < 0.1 < 0.1 < 0.1 0.1 0.1 0.2 0.3 0.5 0.7 0.9 1.2 1.6 2.0 2.5 3.1
20 < 0.1 < 0.1 < 0.1 0.1 0.2 0.3 0.4 0.6 0.9 1.2 1.6 2.1 2.7 3.3 4.1

# 25 < 0.1 < 0.1 < 0.1 0.1 0.2 0.3 0.5 0.8 1.1 1.5 2.0 2.6 3.3 4.2 5.1
of 30 < 0.1 < 0.1 < 0.1 0.1 0.2 0.4 0.6 0.9 1.3 1.8 2.4 3.1 4.0 5.0 6.1

Nuggets 35 < 0.1 < 0.1 0.1 0.1 0.3 0.5 0.7 1.1 1.5 2.1 2.8 3.7 4.7 5.8 7.2
per 40 < 0.1 < 0.1 0.1 0.2 0.3 0.5 0.8 1.2 1.8 2.4 3.2 4.2 5.3 6.7 8.2

500 g 45 < 0.1 < 0.1 0.1 0.2 0.3 0.6 0.9 1.4 2.0 2.7 3.6 4.7 6.0 7.5 9.2
Sample 50 < 0.1 < 0.1 0.1 0.2 0.4 0.7 1.0 1.6 2.2 3.0 4.0 5.2 6.7 8.3 10.2

55 < 0.1 < 0.1 0.1 0.2 0.4 0.7 1.1 1.7 2.4 3.3 4.4 5.8 7.3 9.2 11.3
60 < 0.1 < 0.1 0.1 0.2 0.5 0.8 1.2 1.9 2.7 3.6 4.8 6.3 8.0 10.0 12.3
65 < 0.1 < 0.1 0.1 0.3 0.5 0.9 1.4 2.0 2.9 3.9 5.2 6.8 8.7 10.8 13.3
70 < 0.1 < 0.1 0.1 0.3 0.5 0.9 1.5 2.2 3.1 4.2 5.6 7.3 9.3 11.6 14.3
75 < 0.1 < 0.1 0.1 0.3 0.6 1.0 1.6 2.3 3.3 4.5 6.1 7.9 10.0 12.5 15.3

baselinebaseline

This table presents the various nugget simulations we considered.

On the left of this matrix is the number of nuggets per 500 gram
pulverized sample that we considered; on the top of this matrix is the 
diameters of the nuggets we considered.

Gold grades increase from left to right and top to bottom on this chart, 
as the nugget size (ranging from 10 to 150 um) and number of nuggets 
per sample (ranging from 5 to 75) increase. Highest grades occur in the 
brownest boxes in the lower right corner of the matrix. This corresponds 
to the case with the largest number of largest nuggets in the sample.

Our baseline case is identified in the box. It has a grade of 1.04 gpt with 
70 um diameter spherical gold nuggets, and 50 nuggets in the 
pulverized sample). It is used in the following slide to illustrate the 
simulation calculations.
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Simulation to Assess Bias inSimulation to Assess Bias in
Staged Replicate Sampling SchemeStaged Replicate Sampling Scheme

# nuggets in first split = 0 3 6 9 12 15 18

# nuggets in initial sample = 50 50 50 50 50 50 50
# nuggets in first 30 g sub-sample = 0 3 6 9 12 15 18

# nuggets in left-over material = 50 47 44 41 38 35 32

initial average # nuggets in 30 grams = 3.000 3.000 3.000 3.000 3.000 3.000 3.000
subsequent average # of nuggets in 30 grams = 3.191 3.000 2.809 2.617 2.426 2.234 2.043

# of followup 30 gram analyses = 0 0 1 1 1 3 3
total # of analyses = 1 1 2 2 2 4 4

Poisson Probability (u = 3.0; in %) = 4.98 22.40 5.04 0.27 0.01 0.00 0.00

initial sample grade (gpt) = 1.040 1.040 1.040 1.040 1.040 1.040 1.040
first sub-sample grade (gpt) = 0.000 1.040 2.080 3.120 4.159 5.199 6.239

average left-over sample grade (gpt) = 1.106 1.040 0.973 0.907 0.841 0.774 0.708
average of all replicates (gpt) = 0.000 1.040 1.527 2.013 2.500 1.881 2.091

Although our baseline scenario has an average of 3 nuggets per 30 
gram sub-sample, the actual first sub-sample may contain any number 
of nuggets (up to 50) with probabilities described by the Poisson 
distribution. 

As a result, we must simulate each of these possible scenarios (where 
the initial sub-sample had 0, 1, 2, 3 nuggets, etc.), by first determining 
how many nuggets occur in the left-over material.

Given the number of nuggets collected in the first sub-sample, we can 
calculate the initial grades, as well as the grades of the material left-
over. The 1 or 3 subsequent assays of this left-over material will report 
this ‘left-over’ grade, on average. As a result, for each scenario with 
different #’s of nuggets in our first assay, we can calculate the expected 
average grade for all (either 1, 2 or 4) of our replicate analyses.

Finally, we can calculate the average grade expected via this sampling 
and analysis procedure, a weighted average calculation where the
weights are the Poisson probabilities for each scenario.
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Staged Assay Regime Test
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36 % of the time, first analysis over-estimates the grade
22 % of the time, first analysis accurately estimates the grade
42 % of the time, first analysis under-estimates the grade

The true grade of 1.04 gpt is represented in orange for each scenario 
involving a first sub-sample containing a given number of nuggets.

The different scenario grades of the left-over material, after the first sub-
samples were collected, are presented in green.

Clearly, the grade of the left-over material changes for each scenario, 
so if this material is not subsequently re-sub-sampled and analyzed in a 
routine and identical manner, differences in the average replicate grade 
can result.
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Staged Assay Regime Test
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Because one is more likely to under-estimate the grade in the 
first analysis, and because the nature of the follow-up re-
analysis regimen is grade dependent, this sampling regimen 
results in an estimation bias!

Obviously, the grade of the initial sub-sample (in blue) varies with the 
number of nuggets collected in that sub-sample. After using this initial 
grade to determine how many additional sub-samples (0, 1 or 3) are 
assayed and averaged, the expected average replicate grade can be 
determined (in red).

Note that this expected average replicate grade equals the initial sub-
sample grade when the initial grade is less than 2 gpt, as expected, 
because no additional sub-samples were collected or analyzed. 
Furthermore, note that two discontinuities occur in the expected
average replicate grade (in red) where the initial grade crosses the 2 
and 5 gpt levels, precisely because these are the thresholds where 
subsequent sample treatment changes with grade.

Finally, because the initial sub-sample assays provide an average grade 
estimate that is un-biased, the fact that the expected average replicate 
grades for most scenarios differ from these initial sub-sample grades 
indicates that the expected average replicate grades are biased (in this 
case, downward).
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Staged Replicate Sampling SchemeStaged Replicate Sampling Scheme
< 2< 2 gptgpt => 1 replicate=> 1 replicate

2 to 52 to 5 gptgpt => 2 replicates=> 2 replicates
> 5> 5 gptgpt => 4 replicates=> 4 replicates

Estimation Bias (in % of true grade)
Nugget Size (um)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
5 100 100 100 100 100 100 100 100 100 106 106 106 185 188 188

10 100 100 100 100 100 100 100 100 100 108 108 108 167 171 171
15 100 100 100 100 100 100 100 99 99 109 108 108 152 156 156
20 100 100 100 100 100 100 100 98 98 107 107 107 139 144 144

# 25 100 100 100 100 100 100 99 97 97 105 104 104 128 132 132
of 30 100 100 100 100 100 100 99 95 95 102 101 101 118 122 122

Nuggets 35 100 100 100 100 100 100 98 94 93 99 97 97 110 114 114
per 40 100 100 100 100 100 100 97 92 91 95 94 94 103 106 106

500 g 45 100 100 100 100 100 100 96 90 89 91 90 90 97 99 99
Sample 50 100 100 100 100 100 100 95 88 87 88 86 86 91 93 93

55 100 100 100 100 100 100 93 86 84 84 83 83 86 88 88
60 100 100 100 100 100 100 91 84 82 81 79 79 82 83 83
65 100 100 100 100 100 99 89 82 79 77 76 76 78 79 79
70 100 100 100 100 100 99 88 80 77 74 73 73 75 76 76
75 100 100 100 100 100 98 86 79 74 71 70 70 72 72 72

baselinebaseline

Here we present the calculated expected % bias for each simulation we 
undertook in this study.

For small nugget sizes (in green), no significant bias is produced by the 
grade-based, staged sampling and analysis regimen.

However, as nugget sizes get larger, significant bias results. 

When a large number of large nuggets per sub-sample exist, this staged 
sampling and analysis regimen results in significant under-estimation of 
the true grade.

Conversely, when a small number of large nuggets per sub-sample 
exist, this staged sampling and analysis regimen results in significant 
over-estimation of the true grade.

Note that the baseline case under-estimated the grade by 5 %, as 
depicted on the previous slide. Also note that the bias caused by this 
analysis regimen ranges from 72 to 188%. Is it no wonder why some 
gold mines over-produce their estimated grade, and some go out of 
business?



14

Staged Replicate Sampling SchemeStaged Replicate Sampling Scheme
Coarse NuggetsCoarse Nuggets
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500 um spherical nugget diameters
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227 % to 73 % bias

From these results, it is clear that grade estimation of coarse grained 
nugget-bearing mineral deposits will be the most affected by bias 
produced by a grade-based, staged sampling and analysis regimen.

To illustrate the magnitude of this bias for even larger nuggets, the 
expected biases for simulations with 100 um nuggets (in blue) and 500 
um nuggets (in red) are presented on this graph.

Clearly, very significant biases can exist, and these can be in either 
direction (positive or negative), depending on the number of nuggets in 
the sample.

Without knowledge of the size or number of nuggets in a sample, one 
would never know whether a staged sampling and analysis regimen 
would be biased up or down. As a result, one cannot know whether the 
estimated grade of a deposit is the best or worst case scenario.
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Coarse NuggetsCoarse Nuggets

Effective
Grain Size

Unfortunately, real nuggets exhibit a range of grain sizes.

This frequency histogram (the dark grey bars) of diamond sizes from 
one zone at the Argyle Mine, Northern Territory, Australia depicts a 
typical range of nugget grain sizes in an ore.

If we sampled this material several times, the total number of carats 
would exhibit a variability due to the nugget effect. Some samples would 
contain more nuggets and some less. The largest contributor to this 
variability would be the largest nuggets, and how many of these occur in 
the samples will largely determine the grade of the samples.

We could obtain the same relative variability seen in the Argyle diamond 
ore containing a range of nugget sizes by sampling an idealized ‘equant 
grain-bearing’ material with only one nugget size. This ‘effective’ nugget 
size is represented by the white bar on this histogram.
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The ‘effective grain size’ of nuggets in samples are The ‘effective grain size’ of nuggets in samples are 
typically ~ 2/3 the size of the largest nugget (because typically ~ 2/3 the size of the largest nugget (because 
the nugget sizes are mass weighted, the largest nugget the nugget sizes are mass weighted, the largest nugget 
exerts the largest ‘nugget effect’)exerts the largest ‘nugget effect’)

(Clifton et al. 1969)(Clifton et al. 1969)

Samples with coarse nuggets (typically those with the Samples with coarse nuggets (typically those with the 
highest grades) exhibit the most bias (+ and highest grades) exhibit the most bias (+ and --) ) 
As a result, the most grade bias is commonly in the As a result, the most grade bias is commonly in the 
most critical (high grade) samples!most critical (high grade) samples!

Coarse NuggetsCoarse Nuggets
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The ‘Equant Grain Model’ and Poisson statistics allow one to calculate 
the ‘effective grain size’ of nuggets that via random sampling would 
produce the same relative error as a real sample with a range of nugget 
sizes.

Clifton et al. showed over 30 years ago that this ‘effective grain size’ can 
be determined using this formula. This formula involves calculation of a 
‘mass weighted’ geometric mean, and requires knowledge of the size 
distribution of nuggets in a real sample. 

Because the ‘effective grain size’ is ½ to ¾ the size of the largest real 
nugget grain, the size of the largest grains will control the magnitude of 
the nugget effect. Their presence will thus create the most bias if a 
grade-based, staged sampling and analysis procedure is employed. 
This adds further insult to injury!
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ConclusionsConclusions
Conditional reConditional re--sampling of assays subject to the sampling of assays subject to the 
‘nugget effect’ based on initial grade will result in ‘nugget effect’ based on initial grade will result in 
significant estimation biassignificant estimation bias
Bias may be positive or negative, depending on the Bias may be positive or negative, depending on the 
grades observed, the grade thresholds used to schedule grades observed, the grade thresholds used to schedule 
rere--assaying, and the nugget sizesassaying, and the nugget sizes

To avoid this bias:To avoid this bias:
ReRe--assay all samples in balanced program, regardless assay all samples in balanced program, regardless 
of grade of grade 
Undertake an assay procedure amenable to large Undertake an assay procedure amenable to large 
sample volumes (sample volumes (e.g. e.g. –– metallicsmetallics;; after pulverizing, after pulverizing, 
assay all coarse material and assay subassay all coarse material and assay sub--samples of samples of 
fine material, then reconstitute gradefine material, then reconstitute grade))

In summary, we have shown that conditional, staged sampling and 
analysis regimens that treat samples differently based on grade will 
produce significant analytical bias.

This bias can be positive or negative, depending on the number of 
nuggets in the sample, the grade thresholds used to schedule re-
assaying, and the size of the nuggets.

In order to avoid this bias in samples influenced by the ‘nugget effect’, 
geologists, engineers, and metallurgists (note we have omitted 
geochemists from the above list, because they know better) should:

1) treat all samples identically by re-assaying all or a 
random selection of samples in a balanced program regardless of 
grade, and/or

2) use an analytical procedure that obtains its determination 
from a large sample volume (e.g. - metallics assay procedure), to avoid 
or mitigate the ‘nugget effect’.
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Thank youThank you

Thank You.


